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Abstract. We present an optimisation problem that arises when plan-
ning rosters for drivers in a delivery company. The rosters, or so-called
shift patterns are rota systems that determine, for each weekday over
a fixed set of weeks, when and how many hours a driver (or vehicle)
will work, i.e. perform deliveries. The shift pattern has to meet legal re-
quirements, such as not exceeding the maximal working hours per week.
Furthermore, shift patterns must have a simple structure to be accepted
by the employees.

Typically, shift patterns are designed assuming the same delivery demand
for every weekday. However, in reality, the demand is not stable, and
delivery companies often observe peaks and lows on particular days. For
instance, a delivery company’s demand may increase over the week, with
low demand on Monday and high demand towards the weekend. Dealing
with varying demand is a big challenge for delivery companies. High
demand days require hiring contractors that increase the operational
costs and the contractors often do not provide the same quality of service
as the company’s own staff. Low demand days leave the drivers under-
employed, often with the same pay. We therefore propose the design of a
shift pattern that takes into account different levels of demand on each
weekday.

In this paper, we define the Demand-based Delivery Staff Rostering Prob-
lem (DD-SRP), and present a mathematical model for the proposed prob-
lem, and solve the problem formulated in MiniZinc with a MIP solver
and a CP solver and present results on different demand level scenarios.

1 Introduction

This paper both presents and addresses the problem of creating a cyclic
staff roster for delivery drivers such that the staff availability matches
demand. The use of rotational staff rosters is common in industry, and yet
this problem is not well addressed in the academic literature. The lack of
effort on this particular problem domain may be due to the complexity of
the problem—it builds yet more requirements into an already challenging
problem. In this paper, we show that the problem is tractable for realistic
sized instances we base on our experience working on industrial problems.
Supply chain operations are performed by delivery companies that supply
customers with goods. The goods are typically delivered with vans that
are operated by drivers who work in a fixed shift pattern.



2

Rendl and Burt

A shift pattern is a fixed rota that determines, over a fixed set of weeks,
when and how many hours a driver will work on each weekday. For
instance, a shift pattern may span over two weeks, and state that on the
first Monday, the working hours are from 8am to 5pm, and the second
Monday is a day off. Since the shift pattern is regularly repeated, this
means that drivers on this pattern have every second Monday off.

A shift pattern is typically associated with a subset or group of drivers
to simplify the operations and make up for days off of other drivers.
For instance, if group-1 is on a two-week shift pattern where every first
Monday is a day off, then it is common to have another group with
another shift pattern, where the first Monday is a working day (see Fig. 1
as an example).

Shift patterns are typically designed with constant demand in mind.
In other words, the shift patterns assume that the work load on each
weekday is always the same. The reality is often very different. Delivery
companies need to deal with a lot of variation in demand in many sectors.
The variations can be seasonal, such as an increase of demand before
seasonal holidays like Christmas. However, for many delivery companies,
the variations are more constant and can be observed on a regular basis.
For instance, for home deliveries, it is not uncommon to observe low
demand on Mondays, but an increase of demand towards the weekend,
when customers are more likely to be at home.

The variation in demand poses a huge problem for delivery companies.
On one hand, there are high demand days, where the company is lacking
staff and resources (vans) to perform all requested deliveries. These days
require hiring contractors that perform the additional deliveries which
increases the operational costs and often reduces customer satisfaction,
since the contractors often do not provide the same quality of service as
the company’s own staff. On the other hand, there are low demand days
where the drivers are under-employed and work shorter hours, often for
the same pay as a full working day. These days also put a burden on
the delivery company. We therefore propose to design shift patterns that
optimally match the regular variation in demand.

We introduce the Demand-based Shift Design Problem (DSDP) that is
concerned with finding a shift pattern that maximally aligns with the
expected variations in demand.

1.1 Related Work

Staff rostering is a well studied topic. However, shift pattern schedul-
ing, or line of work scheduling, as a holistic problem is less well studied
(c.f in the literature review paper, [5] describe the problem but present
only two examples), and incorporating demand is also not well studied
[1]. Typically, the literature addresses the problem of allocating staff to
existing shift patterns, which is typically formulated as a set covering
problem (see, for example [2]). [8] described an application in airport
staff scheduling where they first simulated demand in order to obtain
the demand parameters for their integer programming model. They first
generate staff number to shift allocations using a set covering model, and
then the cyclic roster was constructed by hand. [3] combined the shift
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pattern scheduling problem with the problem that generates demand in
order to create better schedules for staff in a hospital nurse application.
They formulate the staff to shift pattern problem as a set covering prob-
lem, and use branch-and-price to generate new feasible shift patterns
to be considered. [1] allocate staff based on demand, but do not con-
sider shift patterns. [6] study an SMT approach for building train crew
rosters. They study three different techniques but only manage to solve
small instances with SMT. The train crew rostering problem is similar to
the problem we study in that it also involves finding rosters for drivers.
However, the roster has to match the requirements of the train lines,
and not a specific varying demand, as in the problem considered in this
paper. To the best of our knowledge, solving the complete shift pattern
problem as described in this paper has not been addressed.

2 Demand-based Delivery Staff Rostering

In this section we define the Demand-based Delivery Staff Rostering
Problem (DD-SRP) in the context of a delivery company that has a fleet
of vans and a set of drivers that deliver goods to customers. The aim
of the DD-SRP is to find a shift pattern for the drivers that matches
the varying estimated demand per weekday. More specifically, the shift
pattern determines, for a fixed number of weeks, when and how many
hours the drivers (who are assigned to the shift pattern) work.
Typically, there are several shift patterns, and an equally-sized set of staff
are assigned to each shift pattern. Fig. 1 shows an example of two shift
patterns (one in red and the other in blue) that span over two weeks. For
instance, we see that for shift pattern 1, the first week has six working
days (Mon-Sat), while shift pattern 2 has only four working days (Tue-
Fri). The shift patterns are symmetric which means that the first week
in shift pattern 1 is the same as the second week in shift pattern 2. This
is an important feature that renders the overall patterns as simple and
more acceptable to the staff. This also means that the full shift pattern
is already given by the first week, since the following weeks are given by
shifting the patterns from the first week.

The shift patterns are applied in a cyclic fashion, which means that they
are repeated over and over again. This means that in the example above,
the drivers/vehicles assigned to the first shift pattern will always have
Monday off on every even week.

The shift patterns have to meet legal working requirements, such as
maximal working hours, mandatory resting days after each shift, or lunch
breaks.

Definition 1 (Demand-based Delivery Staff Rostering Problem).

Determine a shift pattern for delivery drivers that matches demand such
that:

— shift patterns are cyclic, no matter how many are created;

— legal working requirements are met (e.g. mazimum work hours).

We define in detail all constraints in the next section, when we formulate
the mathematical problem model.
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Fig. 1. Two shift patterns (in red and blue) that span over two weeks. For instance, in
shift pattern 1, the Monday shift in week 1 starts at 8am and ends at 4pm. Note that
the shift patterns are symmetric: for shift pattern 2, the Monday shift in week 2 is the
same as the Monday shift in shift pattern 1 on week 1.

2.1 Mathematical Formulation

We have a fleet of v vans V' that represent the workforce of drivers.
In fact, in our mathematical model we build a shift pattern for the vans
rather than the staff, assuming that a driver is assigned to each van. This
is common practice in the delivery sector and makes it easier for the staff
scheduler to account for holidays or sick leave. For instance, schedulers
often assign an additional staff member to each shift to accommodate
for sudden sick leave or holidays.

The set of week days D = {1,...,7} represents the seven week days
Monday to Sunday. For each weekday, we know the expected customer
demand in number of orders, which we denote, for each weekday, O =
{Omon, - --,Osun}, where O; € N. Furthermore, we denote o € R as
the number of orders that a van can deliver on average per hour. This
parameter will be used to map the demand per orders to the number of
vehicles necessary to match the demand.

We represent time in time units of 1/7 hours, where 7 is our time factor
that determines the granularity of time. This means that for 7 = 2, we

discretize time into half hours {1, ..., 48}, and the time unit 12 represents
the time 6am (12 half hours). The set of available time units is T' =
{1,...,24x7}.

Using the time units, we describe various features that arise in delivery.
‘We have the lunch break duration t;ynch, the stem time ts¢en, which corre-
sponds to the average time between the depot and the first/last delivery,
the maximal working hours per day f4qy, and the maximal working hours
per week fweek, and finally, the paid working hours ¢,4i¢ which are the
number of hours that drivers are paid to work every week, on average.

The binary parameter vv,, states if vehicle v is assigned to shift pattern
s. Since all vans (or drivers) are considered equal, we simply assign the
first f drivers to shift pattern 1, the next f drivers to shift pattern 2,
etc, where f = |V|/|S] is the number of vans (drivers) divided by the
number of shift patterns. All parameters are summarized in Table 1.
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Parameter description

D=A{1,...,7} the seven days in a week

O ={Owmon,---,Osun} estimated average demand per day in orders
o€ R orders delivered per hour per van

S the set of shift patterns with |S| patterns

fday eT maximal working hours per day

tiunch €T duration of the lunch break

tpaia €T paid working hours per week

tstem €T average stem time

tweer € T maximal working hours per week

T time factor for discretizing time, we use 7 = 2
T={1,...,24x71} time units representing 24 hours in a day
V={v1,...,0} vans (equivalent to drivers)

vu, € {0,1} states if vehicle v is assigned to shift pattern s

Table 1. Problem parameters in alphabetical order

Decision Variables The integer variables s3 represent the start time
of shift s € S on weekday d € D, and similarly, variables e represent
the shift end. The integer variables [j represent the shift length as the
number of working hours on weekday d in shift s. Binary variables w;
are 1 if weekday d in shift pattern s is a working day, and 0 otherwise.
The integer variables vhg represent the number of hours all vans in the
fleet are working on weekday d, over all shift patterns. The float variables
aq represent the average number of serviced orders over all shift patterns
for weekday d. Finally, the float variables u4 represent the unmet demand
per weekday d. This includes both cases, where the demand is either too
high or too low and therefore cannot be met by the van-hour capacity of
the fleet. All decision variables are summarized in Table 2.

Decision variables description

aq € RT the average orders delivered on day d

e;eT end of shift in shift pattern s on day d

5T length of shift in shift pattern s on day d

sy eT start of shift in shift pattern s on day d

ug € RT the unmet demand on day d

vhg € {1..Tmaz} the number of hours all vans are working on weekday d
wy € {0,1} is 1 if day d is a working day in shift pattern s

Table 2. Decision variables in alphabetical order

Constraints In our formulation we have the following hard constraints.
The first four constraints cover the shift constraints. Constraint (1) states
that shift s on weekday d may not start before the earliest start time.
Similarly, Constraint (2) states that shift s on weekday d may not end
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later than the latest end time. Constraint (3) requires that the start of
shift s is smaller or equal to the end time of the shift. Note that if day d
in shift s is a day off, then sj is equal to e;. Constraint (4) restricts the
length of shift pattern s.

sy > earliestStarty,Vs € S,d € D (1)
ey < latestEndg,Vs € S,d € D (2)
ey > s5,Vse S, de D (3)
l5=e;—s3,VseS,deD (4)
15 < M*wy,Vs € S,d € D, M > taay (5)
Z 15— Z Wy * tiynch = tpaid * |9 (6)
s€S,deD s€8,deD
Z 15— Z WY * tunch < tweek, Vs € S (7)
deD deD
(What + Wun = 0) + (Wiun + wiign = 0)
(Wi Wit =0) =1,Vs €5~ 1 (8)
(Wsar + Wean = 0) + (W + Whton = 0)
+(Witon + Wrue = 0) = 1 (9)
vhg = Z vvﬁ*l;—ZwZ* Zvvﬁ*tlumh,Vde D (10)
seSweV ses vev
ad:o*(vhde*tstem*Z{wj*Zvvi}),VdED (11)
s€S vEV

ud:|Od—ad\,Vd€D (12)

Constraint (5) uses the big-M formulation to set wj to 1 whenever the
shift length is larger than zero, for shift pattern s on day d, and to 0
otherwise (when it is not a working day). Constraint (6) states that the
average number of working hours over all shift patterns must be equal
to the number of hours that are paid, minus the lunch break if the day
is an actual working day. Note that this constraints considers only the
average number of working hours since it is allowed that shift patterns
differ in working hours for each week. In other words, a shift pattern that
has 40 paid working hours may have one week with 35 working hours
and another week with 45 working hours. Constraint (7) assures that for
each shift pattern, the maximal number of working hours is not exceeded.
Constraint (8) makes sure that there is a two day break between each
shift (except the last shift). Similarly, Constraint (9) states the same
constraint for the very last shift, linking it with the first week shift pat-
tern. The van hours, which represent the number of hours worked by all
vans, are determined by Constraint (10): the van hours consist of the
sum of working hours (shift length [j}) over all vans v and shift patterns
s, and subtracting the lunch breaks for all vans that were working on the
respective shift.

Finally, we determine the average number of serviced orders aq with
Constraint (11), where we multiply the overall van hours vhy with the
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average number of serviced orders per hour, a4, after subtracting the
time during which no orders are performed: the average stem time to
the first order and from the last order, for all vans that worked on the
respective day d. Furthermore, in Constraint (12), the unmet demand
ug is set to the absolute value of the expected demand Dy for day d
subtracted by the average serviced orders a4 through the shift pattern.

Objective We consider two objective variants. The first considers min-
imizing the maximal unmet demand. The second objective minimizes the
sum over all unmet demands, and allows to use weights for each day, in
case delivery companies prefer matching the demand on some weekdays
more than others.

Minimising mazimal unmet demand For the maximal unmet demand
we introduce the float variable p which represents the maximal unmet
demand.

p>0.0 (13)

p < max({Onon, - --,Osun}) (14)
p>ugVdeD (15)

min p (16)

Constraints (13) and Constraints (14) set the lower and upper bound of
the maximal unmet demand variable p. Constraint (15) restricts p to be
greater than the unmet demand wug of every day d. Finally, the objective
in (16) is to minimise the maximal unmet demand p.

Minimising weighted unmet demand The second objective is to meet
the estimated demand, in other words, to minimise the sum of unmet
demand ugq of all days d:

min Z Cd * Uq 1)

deD

where each day is weighted by the weights cq € [0.0..1.0]. This allows the
scheduler to choose which days have highest priority in meeting demand.

3 Preliminary experimental results

In this section we present preliminary experimental results to evaluate
our problem model. We formulate our mathematical model in MiniZ-
inc [9] and provide the model and input data online under the MIT
license *. For solving, we use two solvers as backend solvers in MiniZinc:
first, the CP solver Gecode [7] and the MIP solver COIN-OR cbc [4].
We choose these solvers since they are both open-source solvers that can
deal with both integer and floating point variables.

! available at: https://github.com/angee/demand-shift-pattern
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3.1 Problem instances

We assess our models on several different dimensions which we summarize
in Table 3. First, we create instances of different sizes, covering different
number of vans and different number of shift patterns. Second, we assess
the models on different estimated demand scenarios. For simplicity, we
only use the first, unweighted version of our objective. Each instance is
named after the features discussed above, for instance, v12_s4_peak-
thu-fri.dzn represents an instance with 12 vans, 4 shift patterns, the
demand scenario that peaks on Thursdays and Fridays.

lFeature HRange Description ‘
Vans/Drivers (|12, 24, 60 |the number of vans/drivers

Shift Patterns||2, 4, 6 the number of shift patterns

Demand linear linearly increasing demand with low Sat
Scenarios peak-thu-frildemand peak on Thu-Fri

Table 3. Features of the problem instances

We set the problem constants as follows: the time factor 7 = 2, the lunch
break is set to one hour, the maximal working hours per day are 12 hours,
the maximal number of weekly working hours is 48 hours, the stem time
of 30 minutes, and the average number of orders delivered per hour to
1.2 orders per hour. Note that these are very conservative settings that
however reflect the standard in the industry.

3.2 Experiments

All experiments were conducted on the same machine, with 4 cores on a
2.30GHz Intel Core i5-6200U, and Ubuntu 16.04. We use the MiniZinc
version 2.1.7 and the bundled versions of Gecode and cbc within it. The
timeout was set to 300 seconds.

CP Search Strategy We have tested several search heuristics for the CP
solver. However, none of the search strategies was able to outperform the
default search setting for Gecode/fzn-gecode. The default search strategy
of Gecode 6.0.1 selects the variable with largest accumulated failure count
divided by domain size with decay factor d = 0.99, and a min-domain
value selection. At the point of publication, we were not able to specify
and test this exact type of search directly in MiniZinc. We therefore
omit the search strategy in our MiniZinc model, and this way use the
default-strategy of fzn-gecode in our experimental setup.

Results Our results are summarized in Table 4. Each row represents a
problem instance, and the columns show the runtime and the solution
quality. All objective results that are labelled with an asterisk * have
been proven to be optimal by the solver. We see that the MIP solver,
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Instance Runtime (sec) Objective
vans shift p. demand ‘ Gecode cbc|Gecode cbe
vi2  s6 linear 300.000 300.000 —  3.81728
v24 82 linear 0.027 0.353| *27.0 *27.03456
v24 s4 linear 300.000 10.006 — *27.03456
v60  s6 linear 300.000 241.377 — *17.0864
v60  s2 linear 0.026 0.328| *68.0 *68.0864
v60  s4 linear 300.000 11.444 — *68.0864
v24  s6 linear 300.000 300.000 — 18.23456
v12 s2 linear 300.000 0.317 38.2 *13.01728
v12 s4 linear 300.000 17.668 — *13.01728
v60 s4  peak-thu-fri||300.000 2.404 —  *42.0864

vl2 82 peak-thu-fri]| 0.013 0.292| *17.0 *17.01728
v60  s2 peak-thu-fri| 0.014 0.327| *84.0 *84.0864

vl2 s4 peak-thu-fri|[300.000 2.161 — 8.01728
v24 52 peak-thu-frif| 0.047 0.284| *33.0 *33.03456
v60  s6 peak-thu-fri[300.000 0.728 — *12.0864
vl2 s6 peak-thu-fri|[300.000 1.16 — *2.41728
v24  s4  peak-thu-fri||300.000 5.765 — *17.03456
v24  s6 peak-thu-fri[300.000 0.962 —  *5.43456

COIN-OR cbe, can solve most problem instances to optimality using
very little time. The CP solver, Gecode, can also solve some instances to
optimality, and we notice that when it proves optimality, it outperforms
the MIP solver in terms of runtime. However, the CP solver also struggles
with several instances for which it cannot find a solution within the 300
seconds timeout.

We presume that there are several reasons for the MIP solver outper-
forming the CP solver. First, the current model is formulated rather in
MIP-style and a formulation that involves e.g. global constraints might
also provide a better performance of the CP solver. Second, we cannot ex-
ploit the full power of the CP solver, since we cannot specify customized
search heuristics on MiniZinc level that are tailored to the problem and
the instance. For instance, we cannot specify a value selection heuristic
for the van hour variables vhy that searches for values that try to match
the demand for each day. At the moment it is only possible to formulate
such specific heuristics on solver library level.

Optimal solutions. We also observe that none of the solutions can com-
pletely match the demand, even the optimal solutions have some amount
of unmet demand, in some cases even as high as 84 unmet orders. A rea-
son for this might be the very conservative constant settings that do not
allow for much flexibility. For instance, the low number of allowed work-
ing hours per week (currently 48 hours) might be too low to achieve a
shift pattern that has zero unmet demand.

9

Table 4. Preliminary results with a timeout of 300 seconds. Solutions for which the
solver proved optimality are marked with an asterisk *.
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4 Conclusions

In this paper we have presented a novel problem that arises in the supply
chain industry when designing a shift pattern for drivers in a delivery
company that matches the demand. We gave a formal problem descrip-
tion and an initial mathematical model that we implemented in MiniZinc
and evaluated on two different types of solvers, a CP solver and a MIP
solver. We see that the MIP solver outperforms the CP solver, however
we note that the comparison between the two solvers is not completely
fair, since we evaluate the CP solver on a MIP-style model and cannot
exploit its full power on Minizinc level.

For future work, we want to improve and extend our model with op-
tional constraints, formulate a CP-style variant, and thoroughly assess
the model on a large benchmark set. This way we will be able to evaluate
the impact of the conservative constant settings on the results, and test
if there are scenarios in which we can achieve zero unmet demand.
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