
A Study of Evacuation Planning for Wildfires

Christian Artigues1, Emmanuel Hebrard1, Yannick Pencole1, Andreas
Schutt2,3, and Peter J. Stuckey2,3

1 LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
2 Decision Sciences, Data61 CSIRO, Melbourne, Australia

3 Department of Computing and Information Systems, The University of Melbourne,
Melbourne, Australia

Abstract. The GEO-SAFE project gathers researchers and fire emer-
gency practitioners from EU and Australia with the aim to design inno-
vative models and efficient response tools based on optimization methods
for fighting wildfires. In this paper, we consider an evacuation planning
problem issued from discussions with practitioners, where a wildfire is
threatening a region with intermediate populated centers. As in earlier
approaches in case of a flood, we use a constraint optimization model in-
volving malleable tasks to represent the evacuation of a population and a
cumulative constraint per route segments. Indeed, in order to mitigate
congestion risks, the authorities may delay the start of the evacuation but
they may also affect the rate of evacuation by modulating the method
used to raise the alarm. However, we consider a different objective: we
maximize the minimum “safety margin”, weighted by the population,
over every road segment. We introduce a new heuristic and a global flow
constraint propagator. Moreover, we also propose an instance generator
based on a random generation of road networks and basic fire propaga-
tion models. This generator produces challenging benchmarks even with
very few evacuation tasks. Finally, we report the results of extensive
computational experiments done using CP Optimizer.

1 Introduction

In EU and Australia, every year thousands of square miles of forests and other
lands burn due to wildfires. These fires cause important economic and ecological
losses, and often, human casualties as for instance during the Black Saturday
bushfires across the Australian state of Victoria in February 2009 [13]. The
overall objective of the GEO-SAFE project [7] is to develop methods and tools
enabling to set up an integrated decision support system to assist authorities in
optimizing the resources during the response phase to a wildfire (fire suppression,
life and goods protection). One critical and crucial part of this integrated decision
support is the ability to perform large-scale evacuation planning. As detailed
in [14], there are commonly three categories of evacuees: the ones that leave
early, the ones that shelter in refuge and the ones who stay at their properties
and fight. This work focuses on the evacuation of this third group (late evacuees)
which is called the late evacuation planning problem.

While in practice most evacuation planning is principally designed by experts
using simple heuristic approaches or scenario simulations [16], more recently op-
timization approaches to evacuation planning have been addressed, using a va-
riety of optimization technology [2]. The usual test case for most of this work
is flood evacuation planning [11, 5, 8]. Given accurate measurements of rainfall
and topology, flood evacuation planning can make use of very accurate predic-
tions of future water levels, and therefore, has a very accurate model of what
infrastructure will be available at each stage of the evacuation.

Evacuation planning in case of wildfires is much harder. Wildfire propagations
are inherently less predictable than floods. While flood levels mostly rely on the
fixed topology of the area and rainfalls, wildfire mainly depends on the wildland
fuels [12, 1], on the slope of the burning ground and more importantly on the
speed and direction of the wind that can suddenly change at any time [17, 15].
Therefore, evacuation planning dedicated to wildfires must be much more robust
to different future scenarios. A good evacuation plan in case of wildfire must
not only minimize the evacuation time of the population but also maximize
the spatial and temporal safety margin between the evacuees and the actual or
potential wildfire front.

In this paper, we consider that the authorities already identified the accessible
routes and shelters and estimated the population of the late evacuees. Evacua-
tion takes place in individual vehicles and each center has a known population
and a single predefined suggested evacuation route. All routes issued from each
center converge toward a safe place, so congestion may appear on route segment
shared by several evacuation paths. The interest of convergent evacuation plans
has been underlined by several studies such as in [4] since it avoids congestion
issued by driver slow-downs at forks. Furthermore, fire propagation models give
a deadline on each route segment beyond which taking this segment comes at
a high risk. To mitigate these risks, the authorities may delay the evacuation
start time and rate for each center. Indeed, in practice, besides the possibility
of assigning a start time to each evacuated zone, the authorities can also mo-
bilize different levels of resources to increase the evacuation rate (e.g. number
of agents knocking on people’s door), to which people answer according to a
behavioral model abstracted by a response curve [10]. Based on these concepts,
the evacuation planning model is close to the one proposed in [5] called the non-
preemptive evacuation planning problem (NEPP) in the context of a flood. In
contrast with previously proposed models, the NEPP considers non-preemptive
evacuation. Once the evacuation of a zone has started, it cannot be interrupted.
Indeed, considering preemptive evacuation would make the problem much easier
to solve but is hard to implement in practice. In case of wildfire, this would
notably cause undesirable stress on evacuees. The major difference of the model
considered in this paper with the NEPP model lies in the objective function. In
[5], the main objective was to maximize the number of evacuees, and a secondary
objective was to minimize the makespan, i.e. the total evacuation time, while
enforcing deadlines on route segments. In case of a wildfire, the high variability
in the fire propagation makes it necessary to avoid taking a route segment close

to the expected deadline. Hence, we consider a single objective by maximizing
the minimum gap for all evacuated zones and all route segments between the
deadline and the time by which the last evacuee leaves a route segment, weighted
by the population of the evacuated zone.

2 The evacuation planning problem

We are given a tree G = (E ∪T ∪{r},A) rooted in r standing for the evacuation
routes from evacuation nodes E (leaves) to the safe node r through transit nodes
T . Every leaf/evacuation node v ∈ E is associated with a population count wv.
Every arc u, u′ has a length luu′ and a capacity non-ambiguously denoted qu as
G is a tree. Moreover, the length of the path from a node u to a node u′ is also
written luu′ .

LetH = [0, H] be the time span of the evacuation. We want to associate every
leaf/evacuation node v ∈ E to a real sv representing the delay of the evacuation
notice and to a “response curve” φv describing the evacuation flow out of node
v over time (starting from sv). Population flows out of leaf/evacuation node v
at rate φv(t) that is zero before time sv ≥ 0, and such that:∫ H

0

φv(t)dt = wv

Let p(u) denote the parent of u in G, p̂(u) its ascendants, C(u) its children,
Ĉ(u) its descendants and L(u) those of its descendants that are leaves of G. We
assume that the evacuees never stop, so the flow in the downstream arcs can be
computed by summing the flows in the incoming arcs and the flow φu(t) for any
arc ∈ E ∪ T at any time t ∈ H is

φu(t) =
∑

v∈L(u)

φv(t− luv − sv)

In this paper, we consider as in [5] a simple response curve. The flow out of
an evacuation node v ∈ E is a continuous decision variable and remain constant
during the evacuation process, that is, the flow out of node v ∈ E is equal to hv
within the time interval [sv, ev], with ev = sv+ wv

hv
and zero otherwise. Therefore,

the flow out of a node u ∈ E ∪ T at time t ∈ H is:

φu(t) =
∑

v∈L(u),sv+luv≤t<sv+luv+
wv
hv

hv

It follows that the considered evacuation planning problem can be formally
defined as the following constraint optimization problem.

Variables: We have a set of |E| non-preemptive tasks, one for every evacuation
node. For every task standing for an evacuation node v ∈ E we need two variables,
one for the constant rate hv ∈]0, qv] at which the evacuation will proceed and
one for its start time sv ∈ [0, H − wv

qv
] at which the evacuation will start.

Constraints: We have a single type of constraints to avoid “jams”, i.e., flow
exceeding the capacity of an arc. For each node u ∈ T , we have a cumulative

resource constraint of capacity qu ensuring that φu(t) ≤ qu, which is written:∑
v∈L(u),sv+luv≤t<sv+luv+

wv
hv

hv ≤ qu, ∀u ∈ T ,∀t ∈ H

Objective: A due date du standing for the time at which the next road portion
becomes unsafe is associated to every transit node u. The objective is to minimize
the maximum lateness of any task, i.e., the difference between the time at which
it leaves a node u and du, weighted by the population. Hence the objective is:

min max
u∈T ,v∈L(u)

sv + hv/wv + luv − du

Dominance rules and problem formulation A first observation is that we can
simplify the objective function by retaining the transit node u minimizing du −
luv. Let dv = minu∈T {du − luv} denote this value.

The objective can therefore be rewritten as the maximum of |E| expressions:

min max
v∈E

sv + hv/wv − dv

The second following observation, also made in [5], allows to reduce the num-
ber of cumulative constraints to consider.

Observations 1 For any two transit nodes u, u′ ∈ T , if qu ≤ qu′ and u′ ∈ Ĉ(u),
then a jam in u′ entails a jam in u.

We thus only need to check jams in nodes u such that ∀v ∈ p̂(u), qv > qu.
In practice, it means that given an evacuation node v ∈ E we can explore the
nodes in the route from v to r in reverse order, and for every stretch of road
without branch, keep only the arc of minimal capacity, called the critical arc.
Let T̃ denote the reduced set of critical transit nodes to consider. The problem
can thus be formulated as follows.

minimize max
v∈E

wv{sv + hv/wv − dv} (1)

subject to:
∑

v∈L(u),sv+luv≤t<sv+luv+
wv
hv

hv ≤ qu, ∀u ∈ T̃ ,∀t ∈ H (2)

hv ∈]0, qv], sv ∈ [0, H − wv
qv

], ∀v ∈ E (3)

3 Baseline approach using cumulative constraints

In [5], the NEPP was modeled using standard cumulative constraints. We con-
sider this model for our problem as the baseline approach. Let x (resp. x) denote

the largest (resp. smallest) value in the domain of a variable x. Given a set of
tasks J with start time variable si ∈ [si, si], processing time variable pi ∈ [pi, pi],
height variable hi ∈ [hi, hi] and a resource r of constant capacity qr, recall that
cumulative((si, pi, hi)i∈J , qr) enforces the relations

∑
i∈J|si≤t<si+pi

hi ≤ qr ∀t ∈ H

Consequently, to model the problem, it suffices to associate a task v to each
evacuation node v ∈ E , with height variable equal to the rate hv ∈]0, qv], start
time variable sv ∈ [0, H − wv

qv
], completion time variable ev ∈ [wv

qv
, H], and to

duplicate and translate this task for each critical transit node u on its path
towards the safe node. For each critical arc u ∈ T̃ , let iuv denote the duplicate
for evacuation node v ∈ L(u). A resource is defined per critical arc u ∈ T̃ , with
capacity qu.

The baseline constraint program for the evacuation planning problem is ob-
tained by replacing constraints (2) in the problem formulation by:

cumulative((siuv
, eiuv

− siuv
, hiuv

)v∈L(u), qu) ∀u ∈ T̃ (4)

wv = hv(ev − sv) ∀v ∈ E (5)

siuv
= sv + luv ∀u ∈ T̃ ,∀v ∈ L(u) (6)

eiuv = ev + luv ∀u ∈ T̃ ,∀v ∈ L(u) (7)

hiuv
= hv ∀u ∈ T̃ ,∀v ∈ L(u) (8)

In the model above, the information that tasks have a fixed energy is lost to
the cumulative constraint propagator. Given a task v with energy wv start time
sv, completion time ev and rate hv, the algorithm will consider a task of duration
wv

hv
and height wv

ev−sv
. When the upper bounds on consumption and duration are

large, these values tend to 0, thus greatly hindering constraint propagation.

Example 1. Consider a resource of capacity 4 and four tasks as shown in Table 1.
Given the total energy (second column) possible ranges for the rates, minimum
start times and maximum completion times (3rd to 5th columns), bounds con-
sistency on the duration and demand variables yields the ranges shown in the
6th and 7th columns, respectively.

Therefore, a standard cumulative constraint will use the lower bounds and
consider four tasks of durations and consumptions 2, 32 , 1 and 1, respectively. The
classic cumulative constraint will not adjust the domains further, as shown in
Figure 1. The set of 3 solutions illustrated in this figure shows that every bound
of every one of the eight variables (start times and height for each of the four
evacuation tasks) is consistent.1

1 Tasks v4 and v3 are symmetric so we omit the bounds for v4

Table 1: Task parameters
wi qi si ei duration height

v1 6 3 0 3 [2, 3] [2, 3]
v2 6 4 1 5 [3

2
, 4] [3

2
, 4]

v3 4 4 1 5 [1, 4] [1, 4]
v4 4 4 1 5 [1, 4] [1, 4]

0 1 2 3 4 5

v1

v3

v2

v4

(a)

0 1 2 3 4 5

v1

v3

v2

v4

(b)

0 1 2 3 4 5

v1

v3v2
v4

(c)

Fig. 1: Some feasible schedules

4 The energetic cumulative constraint

The standard cumulative constraint is weak for this class of problems since it
is unable to reason about total energy of each task. We can take advantage of
the knowledge that the product (duration × rate) is a constant by using a more
global constraint.

Given a set of tasks J with start time si ∈ [si, si], completion time ei ∈
[ei, ei], height hi ∈ [hi, hi], constant energy wi and a resource r of constant
capacity qr, energetic cumulative((si, ei, hi, wv)i∈J , qr) enforces the relations:

∑
i∈J|si≤t≤ei

hi ≤ qr ∀t ∈ H

wi = hi(ei − si) ∀i ∈ J

Finding a support for this constraint is NP-hard since the particular case
where the variables hi are fixed is a cumulative constraint. However, because
of the malleable nature of the tasks, the problem becomes easier under some
assumptions. In particular, we consider here that we do not have minimum
values on the height variable hi of any task i, and we denote this particular case
energetic cumulative\{h}. We consider three further relaxations:

Let “r” denote the release dates, whose relaxation means that si = 0 for every
task i ∈ J ; “d” denote the due dates whose relaxation implies ei = H for every
task i ∈ J and some constant H; “h” denote the maximum height whose relax-
ation implies hi = qr for every task i ∈ J . We write energetic cumulative\{S}
for the case where the subset of constraints S ⊆ {h, h, r, d} are relaxed.

Theorem 1. energetic cumulative\{h, x, y} is in P for any x 6= y ∈ {r, d, h}

Proof (sketch). Because of the lack of space, we give only the algorithm for
energetic cumulative\{h, r, d} as the other two are trivial: without bound on
the height, we can vertically slice the tasks as thin as possible while satisfying
the capacity qr and stack them w.r.t. their release or due dates (depending on
which was relaxed). Algorithm 1 schedules the tasks so that every task starts at
time 0 and the latest completion time is minimum while satisfying hi ≤ hi ∀i ∈ J
Thus, the constraint is satisfiable iff this latest completion time is less than H.

Algorithm 1: UsageSorted

W.L.O.G, let J = {1, . . . , n} be such that i < j =⇒ wi
qi
≥ wj

qj
;

K ←
∑n

i=1 wi;
Q← qr;
foreach i ∈ [1, n] do

si ← 0;

hi ← min(qi,
Qwi
K

);
K ← K − wi;
Q← Q− hi;

When Algorithm 1 ends the completion time of a task i is wi

hi
. Moreover, it

can be shown that i < j =⇒ wi

hi
≥ wj

hj
(we omit that part of the proof).

Therefore, 1 has the latest completion time. There are two cases, either this

completion time is w1

q1
(in which case it cannot be reduced) or it is

∑n
i=1 wi

qr
(in

which case the resource is fully used). ut

Theorem 2. energetic cumulative\{h, x} is NP-complete for any x ∈ {r, d, h}

Proof. Membership: checking the energy equation is trivial and checking the
resource equation is not more difficult than for the cumulative constraint.

We first prove hardness of energetic cumulative\{hd} by reduction π from
an instance x = {x1, . . . , xn} of the SubsetSum problem of deciding the follow-
ing proposition: ∃I |

∑
i∈I xi = s.

Let K =
∑n
i=1 xi. For every i ∈ [1, n] we create a task i with wi = xi, qi = 1

and ri = 0. Then, we create three tasks L,M and R with qL = wL = 2K−s, qR =
wR = s+K, qM = wM = 2K and rL = 0, rM = 1, rR = 2. Finally, we set q = 2K
and we ask if all the tasks can be scheduled with H ≤ 3.

We show first that a solution of x entails a solution of π(x). We set sL = 0,
sM = 1, sR = 2, hL = wL, hM = wM and hR = wR. Now, let I be the subset
of {1, . . . , n} such that

∑
i∈I xi = s. For all i ∈ I, we set si = 0 and for all

i ∈ {1, . . . , n} \ I we set si = 2 and for all v ∈ {1, . . . , n} we set hi = 1.
Now suppose that there is a solution of π(x). Observe first that in any so-

lution, we have sR = 2 and hR = wR because sR ≥ 2 and hR ≤ wR and

any solution such that sR > 2 or hR < wR implies eR > 3. Now, suppose
that hM < wM , since eR ≤ 3 then M and R must overlap, and therefore,
hM ≤ q − wR = 2K − (s + K) = K − s. So we have pM = 2K

K−s > 1. By
contradiction, we have hM = wM and therefore, sM = 1. By a similar reasoning
we have sR = 0 and hR = wR. The remaining tasks are therefore distributed
so that they exactly fill two disjoint areas of size s and K − s. The sum of the
energies of the tasks in the leftmost area is therefore equal to s.

The proof is the same for energetic cumulative\{hr} except that the con-
straints rL = 0, rM = 1 and rR = 2 are replaced by dL = 1, dM = 2 and dR = 3,
and for every other task i, we have di = 3.

The proof is the same for energetic cumulative\{hh} except that the con-
straints ∀i, qi = 1 are relaxed, the constraints qL = wL, qR = wR, qM = wM are
replaced by dL = 1, dM = 2 and dR = 3, and for 1 ≤ i ≤ n, we have di = 3. ut

5 Flow global constraints

Note that a global constraint similar to energetic cumulative, called the con-
tinuous energy constraint, has been proposed in [9]. In this variant the rate of the
activity is no longer constant and may vary over time. A flow-based propagator
proposed for this constraint can be adapted for the energetic cumulative. The
propagator works by building a flow network relaxation f(D) of the problem,
before it propagates, using the current domain D.

Given current domain D, let TJ = {si, ei, si, ei | i ∈ J} be the set of O(|J |)
minimum or maximum start and completion times of the tasks of J and let tq
be the q-th largest element of TJ . We partition the time line into the set of
consecutive intervals I(J) = {[tq, tq+1] | 1 ≤ q < |TJ |}

Next, we create a flow f(D) network as follows. We have source node S and
a first layer of task nodes J , the flow from S to i is wi for each i ∈ J . We create
a second layer of time interval nodes Iq = [tq, tq+1], 1 ≤ q ≤ |J | − 1. There is an
edge from i to Iq if [tq, tq+1] ⊆ [si, ei]. The edge is bounded by 0..(tq+1−tq)×hi.
If, in addition, [tq, tq+1] ⊆ [si, ei], the lower bound of the edge can be increased
to hi. We create a final layer to a sink node E. There is an edge from each
interval node Iq to E with capacity bounded by (tq+1 − tq)× qr.

Theorem 3. Any solution to energetic cumulative((si, ei, hi, wi)i∈J , qr) given
current domain D, is extendible to a solution of the flow network f(D).

Proof. Given a solution of the constraint we extend it to a solution of the flow
network f(D) as follows. The flow from S to each node i is set to wi. The flow
from each node i to Iq is set to (min(ei, tq+1)−max(si, tq))× hi The flow from
each node Iq to E is given by the sum of the incoming flows to Iq. We show that
these flows obey the bounds and flow balance equations. Examining each node i,
the flow in is wi and the flow out is hi×(ei−si). These must be equal by equation
(5). Examining each node Iq the flow in is

∑
i∈E(min(ei, tq+1)−max(si, tq))×hi

but by equation (4) at no time is there more than qr resource being used, hence

this is no more than (tq+1 − tq)× qr, the capacity of the outgoing arc. The flow
balance at Iq holds by construction. ut

Example 2. If we consider the circumstances explained in Example 1, the con-
straint energetic cumulative generates the flow network shown in Figure 2.

While the standard propagator can determine nothing, the flow network is
infeasible, so the energetic cumulative propagator immediately fails.

S

v2

v1

v3

v4

[0, 1]

[1, 3]

[3, 6]

E

6

8

6

4

2..3

3..6

0..8

0..8

0..6

0..6

0..6

0..6

0..4

0..8

0..12

Fig. 2: Flow network for the tasks given in Table 1.

The natural way to implement this propagation for the evacuation plan-
ning problem at hand is to define one energetic cumulative constraint per
critical transit node u ∈ T̃ . The special structure of the evacuation planning
problem allows us to consider simultaneously all energetic cumulative con-
straints and to integrate the flow propagators of each critical transit node into
a single global flow propagator. The basic remark is that all vehicles passing in
an interval [tq, tq+1] on a transit node u of an evacuation path will appear on
an ascendant transit node u′ ∈ p̂(u) exactly luu′ time units later, i.e. in interval
[tq + luu′ , tq+1 + luu′]. Considering the evacuation tree reduced to the evacuation
nodes and the critical transit node, the global network flow gf(D) is built as fol-
lows. We create the source S and one layer of nodes for the evacuation nodes
E , the flow from S to v ∈ E being wv. Let Tv = {sv, ev, sv, ev} the time events
associated to evacuation node v ∈ E and let I(v) = {[tvq , tvq+1] | 1 ≤ q < |Tv|}
the corresponding consecutive intervals. We connect node v to each interval
Ivq ∈ I(v) by an edge of capacity bounded by 0..hv × (tvq+1 − tvq) (or with a
lower bound of hv under the conditions described above). We assume that the
critical nodes are sorted in the topological order from direct successors of the
evacuation nodes to the direct predecessors of the safe nodes. Then, for each
critical node u ∈ T̃ taken in this order, we build recursively the set of events Tu
from the events of its parent nodes in the evacuation tree and the corresponding
consecutive interval set I(u): Tu = ∪u′∈p(u){tu

′

q + luu′ | 1 ≤ q < |Tu′ |} and
I(u) = {[tuq , tuq+1] | 1 ≤ q < |Tu|}. We add an edge between each interval of

the parent node Iu
′

q′ = [tu
′

q′ , t
u′

q′+1] ∈ I(u′) and each interval of the child node

Iuq = [tuq , t
u
q+1] ∈ I(u) such that tu

′

q′ + luu′ ≤ tuq and tu
′

q′+1 + luu′ ≥ tuq+1 with a
capacity bounded by 0..(tuq+1 − tuq)× qu. Finally, we build an edge of unlimited
capacity from each interval of each parent node u ∈ p(r) of the safe node to the
target E. The global flow has O(|E|+

∑
u∈T̃ L(u)) nodes. The following theorem

shows that if there is no feasible global flow, then energetic cumulative fails.

Theorem 4. Any solution to the conjunction of
energetic cumulative((siuv

, eiuv
, hiuv

, wv)v∈L(u), qu) for all u ∈ T̃
given current domain D, is extendible to a solution of the flow network gf(D).

Proof. The proof uses similar arguments as in the proof of Theorem 3. ut

6 Heuristic upper bound

We propose a simple compression heuristic to find an initial upper bound. As-
sume w.l.o.g. that the evacuation rate initial domain is D(hv) = [1, qv] for all
evacuation node The heuristic is based on the assumption that scheduling all
evacuation tasks at time 0 with the minimum evacuation rate yields a feasible
solution, with a high cost. Starting from this solution (∀v ∈ E , sv := 0, ev = wv,
hv := 1), the set of minimum and maximum start and end time events Tu is built
for each transit node, as well as the corresponding consecutive intervals I(u) as
for the global flow constraint. In addition, the resource consumption profile Γu
where ρqu ∈ Γu denotes the resource consumption level right after time tuq is also
computed for each transit node u.

At each iteration, the heuristic finds the critical task v∗, i.e. the one that
sets the objective, as well as the second most critical task v′. The principle is to
left shift the end of the critical task enough so that v′ becomes the new critical
task with an absolute gap of ε below the new cost of v∗. This yields a target
completion time e∗ := cv′−ε

wv∗
− dv∗ for v∗.

However, a left shift of ev∗ means an increase of its height. On a transit node
u, the evacuation task v ends at time ev∗ + luv∗ . Let Iuq+ denote the interval
starting with the evacuation completion time on u: tuq+ = ev∗ + luv∗ . Let Iuq−
denote the interval starting with the evacuation start time on u: tuq− = sv∗+luv∗ .

The maximum height ∆h increase is equal to ∆h = minq=q−,··· ,q+−1(qq − ρqu).
Left shifting the completion time of the critical task v∗ on u to the beginning of
the preceding interval tuq+−1 is possible if ww

tu
q+−1

−sv∗−luv∗
≤ hv∗+∆h. Otherwise,

the critical task v∗ can only be shifted to sv∗ + luv∗ + ww

hv∗+∆h
∈]tuq+−1, t

u
q+] and

the maximum left shifted end time on transit node u has been found. In the
first case, the process can be iterated by tentatively ending the task in interval
tuq+−2 till the maximum left shifted end time on u is found. Repeating this check
on each resource yields a minimum possible left shifted completion time e. If
e ≤ e∗, then the left shift to e∗ is possible and v′ becomes the new critical task.
The compression process restarts with v∗ := v′. Otherwise, the left shift is only
performed to e. v∗ is still critical and the heuristic stops. Due to the possibility of
only left shifting a task by ε at each iteration, the heuristic is pseudo polynomial.

7 Generating a realistic data set

Catastrophic wildfire requiring large population evacuation are, thankfully, rare
events. However, it means that obtaining useful data is difficult, and indeed, this
is a key problem within the GEO-SAFE project. A significant part of the project
revolves around simulation tools such as EXODUS [6], however, even simulated
data was hard to come by.

Therefore, we opted for taking advantage of the project environment to con-
tribute to this effort by generating our own “realistic” dataset. On the one hand,
this approach may introduce biases since we must use models to generate realis-
tic road networks and simulate wildfires. On the other hand, we believe that it
will make it much more convenient for benchmarking algorithms in the future.
As it turns out, the generated instances are challenging even though relatively
modest in size, thus being interesting from an academic viewpoint as well.

7.1 Generation of road networks

The first step is to generate a graph standing for the road network. To this end,
we used the quadtree model described in [3]. In a nutshell, this model starts with
a single square formed by four nodes and four edges. At each iteration, a square
is chosen and five nodes are added, one in the center of the square, and one on
each edge connected by a perpendicular edge to the center node. A parameter
r controls the sprawl, that is, the preference for splitting larger squares (r < 1)
or smaller squares (r > 1). The graphs generated in this manner share many
features with real road networks: they are planar, embedded in an Euclidean
plane, have similar density distributions, path lengths are within a constant
factor of the Euclidean distance, and the number of turns is logarithmic with
high probability. An example of random quadtree network is shown in Figure 3a.
The colors on the edges correspond to road capacity. To allocate capacities, we
first compute a minimum Steiner tree spanning three randomly chosen nodes in
high density areas (“cities”) and connect these cities to the nearest corner of the
outer square. The corresponding set of edges are given the highest capacity and
are coloured in blue in Figure 3a. A second set of edges, forming a grid are given
an intermediate capacity, they are coloured in green.

7.2 Simulating wildfire

The second step consists in determining safety due dates for every edge of the
evacuation tree, that is, a time after which the edge become unsafe. To this
purpose we use a relatively simple fire propagation model. We chose to use a
simple model based on two parameters: a constant intensity γ representing the
type of fuel material as well as the temperature, and a wind direction. Indeed,
the goal is not so much to accurately predict fire propagation, as it is to generate
safety due dates consistent with a wildfire. Of course, should the authorities use

(a) road network (b) simulated wildfire (c) evacuation plan

Fig. 3: An example of generated instance

this type of planning tools during a real event, then correctly predicting fire
propagation would be among the most important factors.

The land area is discretized into squares of fixed size (we use another pa-
rameter to control this size) which can be in three states: untouched, burning
and burned. The fire starts as a single burning square, then at each iteration,
any untouched square adjacent of a burning square catches fire with probability
γ(π−Aπ)2, where γ stands for the intensity of the fire, and A is the angle between
the wind and a vector going from the center of burning square to the center
of the untouched square. Moreover, any burning square that did not propagate
stop burning with probability γ2. Figure 3b illustrate the state of the simulated
wildfire, with burning squares in red and burned squares in black.

7.3 Generating evacuation plans

The third step consists in generating the actual evacuation plan, that is, an
embedded tree connecting a set of evacuation nodes E to a safe node r. Here
again, the goal is not to compute the best evacuation plans, however, they must
be representative of what would be actual plans.

We first randomly pick a predefined number of evacuation nodes among the
nodes of the graph that are in the state burned or burning of the simulated fire.
Then we use the convention that the safe zone is the furthest corner from the
center of the fire. The evacuation tree is computed simply by using a shortest
paths algorithm, however, with respect to an arc labeling taking into account
first the safety due date of the arc, and only then its length and its capacity.

At this point we have all the information we need to define a fire evacuation
problem as defined in Section 2. However, we use Observation 1 to remove re-
dundant arcs. For every evacuation path, we explore the arcs from the safe node
r to an evacuation node v. For any section of the path on which nodes have
single child, all the nodes of that section have the same set of descendant leaves
in the tree. Therefore, the same set of evacuees will go through these nodes with

the same relative delay. It follows that we conserve only the arc of minimum
capacity in that section, and only if this capacity is strictly smaller than that
of the previous section. It follows that an instance with n evacuation tasks has
at most O(n) “jam” constraints. Moreover, the objective can be stated as the
maximum of O(n) expressions as shown in Section 2.

The tools we developed as well as the benchmarks instances we used in this
paper can be accessed at anonymized for the blind review process.

8 Experimental results

We generated 240 benchmark instances following the protocol described in Sec-
tion 7. They are organized into three types of road networks: Dense, Medium and
Sparse where the density refers to the number of intersections (respectively 400,
800 and 1200) in the land area. Notice that the graph has always 4 edges per
node, so this corresponds to graph size. The impact on the instance is that larger
graphs allow more choices for the shortest paths and therefore, longer indepen-
dent paths. For every type of road network, we generated 4 classes of instances,
with respectively 10, 15, 20 and 25 evacuation nodes. Finally, for every class
we simulated 20 random wildfires and the subsequent evacuation trees. We used
CPLEX to solve the flow formulation, which turned out to be extremely costly.
Therefore, we did not systematically call the propagator at each node. Instead
we implemented a heuristic method to decide whether we should solve the flow
using two criteria:

The first criterion that we use is the total load Ω(r) of a resource r or capacity
qr on the tasks J :

Ω(r) =

∑
i∈J wi

qr(maxi∈J ei −mini∈J si)

We only call the flow when maxu∈T̃ Ω(u) ≥ 0.95, this value was empirically cho-
sen. Moreover, observe that when Ω(r) > 1 the constraint is trivially infeasible.
In this case, we can return an early failure.

The second criterion is the size of the remaining search space. Indeed, solving
the flow might not be worthwhile even it is infeasible, if brute-force search would
have been faster. Here we empirically chose 250 as a minimal search space, defined
as the product of the ranges of all start time and height variables. That is, we
solve the flow only when:

∑
i∈E log |D(si)|+ log |D(hi)| ≥ 50.

However, even with this approach, using the global flow constraint made CP
Optimizer about one order of magnitude slower (measured by number of fails per
second). Therefore, we also tested a version that never solves the flow, and only
fails when the overall load is too large for the resource’s capacity (Ω(r) > 1).

We ran every method on every instance of the dataset with a time limit of 45
minutes on 4 cluster nodes, each with 35 Intel Xeon CPU E5-2695 v4 2.10GHz
cores running Linux Ubuntu 16.04.4.

Table 2 shows results of running CP Optimizer with the strategy Depth first
search (DFS). We use ‘h’ to denote the use of the heuristic upper bound described
in Section 6, ‘+’ to denote the use of the overall load check described above, and

Table 2: Depth first search: upper bound and optimality ratio

DFS DFSh DFS+ DFSh+ DFSf DFShf

#s ub #s ub #s ub #s ub #s ub #s ub

dense 10 (20) 1.00 26469 1.00 26469 1.00 25485 1.00 25573 1.00 25485 1.00 25573
dense 15 (20) 1.00 179099 1.00 176391 1.00 189864 1.00 188238 1.00 194737 1.00 195631
dense 20 (20) 1.00 365596 1.00 367030 1.00 406828 1.00 407116 1.00 486971 1.00 447924
dense 25 (20) 0.95 697661 1.00 663314 0.85 1093784 1.00 759437 0.85 1201755 1.00 881494
medium 10 (20) 1.00 49294 1.00 49294 1.00 49567 1.00 49567 1.00 49567 1.00 49567
medium 15 (20) 1.00 148513 1.00 143999 1.00 153372 1.00 149243 1.00 169840 1.00 170785
medium 20 (20) 0.95 339103 1.00 339370 1.00 376395 1.00 384381 1.00 507420 1.00 427572
medium 25 (20) 0.90 1291811 1.00 659269 0.80 1461162 1.00 722167 0.75 1286011 1.00 790511
sparse 10 (20) 1.00 4474 1.00 4759 1.00 4464 1.00 5951 1.00 4464 1.00 5951
sparse 15 (20) 1.00 131229 1.00 129276 1.00 135192 1.00 134420 1.00 146487 1.00 146917
sparse 20 (20) 0.90 293930 1.00 312834 1.00 320080 1.00 323449 1.00 388194 1.00 364291
sparse 25 (20) 0.95 598501 1.00 574534 0.80 593962 1.00 732975 0.80 684041 1.00 767851

avg (20) 0.97 333506 1.00 287212 0.95 369874 1.00 323543 0.95 395298 1.00 356172

‘f ’ for the flow propagator. The columns “#s” give the ratio of instances for
which the method found a feasible solution, the columns “ub” the mean upper
bound, and we highlight the best outcomes using colors. We can see that DFS

does not find a feasible solution in every case, whereas our upper bound heuristic
always finds one. Moreover, starting from a good quality solution pays off and the
best solutions are significantly better than that of the baseline method. However,
the flow propagator (DFSf) and even the simple load checking rule (DFS+) do
not help and in fact decrease the performance of CP Optimizer.

Table 3: Default search: upper bound and optimality ratio

CPO CPOh CPO+ CPOh+ CPOf CPOhf

ub opt ub opt ub opt ub opt ub opt ub opt

dense 10 (20) 23294 0.95 23567 0.80 23354 0.95 23681 0.85 23503 0.90 23807 0.80
dense 15 (20) 161100 0.70 161700 0.75 162856 0.60 162751 0.55 164524 0.45 165025 0.45
dense 20 (20) 311676 0.45 312501 0.45 312697 0.15 313114 0.15 317035 0.10 316596 0.00
dense 25 (20) 531016 0.00 529889 0.00 530749 0.00 530975 0.00 539192 0.00 564722 0.00
medium 10 (20) 48591 1.00 48591 0.80 48591 0.95 48591 0.75 48776 0.90 48979 0.70
medium 15 (20) 124921 0.70 125195 0.50 125559 0.60 125110 0.60 126011 0.40 127421 0.40
medium 20 (20) 276101 0.25 276094 0.25 277545 0.10 277485 0.10 279654 0.05 278723 0.10
medium 25 (20) 488282 0.10 488555 0.10 491794 0.00 491423 0.00 493682 0.00 507275 0.00
sparse 10 (20) 3747 1.00 3880 0.90 3747 1.00 3880 0.90 3946 0.85 3880 0.85
sparse 15 (20) 120173 0.65 120151 0.65 120162 0.60 119803 0.55 120895 0.55 120576 0.55
sparse 20 (20) 235771 0.35 253807 0.35 237503 0.15 236920 0.20 238300 0.20 240112 0.15
sparse 25 (20) 437618 0.00 437219 0.05 439699 0.00 438160 0.00 441707 0.00 448979 0.00

avg (240) 230191 0.51 231762 0.47 231188 0.42 230991 0.39 233102 0.37 237175 0.33

In fact, the results are even more negative when using CP Optimizer’s default
strategy. Table 3 shows the results in this setting, using the same conventions.
The number of feasible solution is here replaced by the number of optimality
proofs, since a feasible solution was found in every case. Here we can see that
again the extra propagation does not improve the results. Moreover, the impact

Table 4: Ratio of failures due to the propagator

method #sol
#nodes (total) #fails (flow) fails/node speed

avg avg avg avg

CPOf 1.00 525793 2371 0.01161 5324
CPO+ 1.00 3042714 2376 0.00137 30157
CPO 1.00 3084572 0 0.00000 34508

of the heuristic upper bound is milder: it helps finding better solutions in some
cases, but overall it is actually slightly worse than not using it.

We find the empirical results puzzling. In the case of the flow propagator,
we expect a tradeoff, not necessarily positive, between the extra pruning and
the computational overhead. However, it is much more surprising that the load
checker and the heuristic, which are both almost computationally free do not
help at all, let alone hinders CP Optimizer. Table 4 shows the average number
of nodes required to solve an instance, the average number of fails due to the
flow, the ratio of fails per node and the “speed” in number of branches explored
per second. On the one hand, we observe that the flow propagator decreases
the speed by a factor 6, while failing in only about 1% of the calls. Recall,
however, that the flow is solved only when the remaining search space is large
enough, so these fails are likely to cut a relatively large subtree. On the other
hand, we can see that the impact of the load checker on the search speed is
rather limited, although visible, and that is does causes early failures (though
admittedly rarely).

9 Conclusion

We have introduced a variant of the flood evacuation planning problem, where
the objective function is adapted to the context of wildfires. We have designed a
generator of challenging and realistic instances for this problem. We have intro-
duced a new type of cumulative constraint where tasks have flexible duration
and height, but a constant energy. We have analyzed the complexity of this con-
straint, and proposed several solution approaches, including an effective greedy
upper bound and a global propagation method.

However, the experimental results we carried out suggests that these tech-
niques tend to degrade CP Optimizer’s performances. One possible insight that
we can draw from these experiments is that the amount of tuning, sophisticated
techniques, and the overall black-box nature of CP Optimizer, although making
it extremely efficient in practice is also a problem when trying to test preliminary
ideas on how to best tackle a problem. In order to improve over the results of CP
Optimizer, it is therefore probable that we will need to use more refined algo-
rithms and in particular dedicated flow algorithms which would be incremental
and from which we could propagate bounds.

Acknowledgement

This work is partially funded by the H2020-MSCA-RISE-2015 European project
GEO-SAFE (id 691161)

References

1. Hal E. Anderson. Aids to determining fuel models for estimating fire behavior.
Technical Report 122, United States Department of Agriculture- Forest Service,
Intermountain Forest and Range Experiment Station Ogden, UT 84401, April 1982.

2. Vedat Bayram. Optimization models for large scale network evacuation planning
and management: A literature review. Surveys in Operations Research and Man-
agement Science, 2016. DOI: 10.1016/j.sorms.2016.11.001.

3. David Eisenstat. Random road networks: the quadtree model. CoRR,
abs/1008.4916, 2010.

4. Caroline Even, Victor Pillac, and Pascal Van Hentenryck. Convergent plans for
large-scale evacuations. In Proceedings of the Twenty-Ninth AAAI Conference on
Artificial Intelligence, January 25-30, 2015, Austin, Texas, USA., pages 1121–
1127, 2015.

5. Caroline Even, Andreas Schutt, and Pascal Van Hentenryck. A constraint pro-
gramming approach for non-preemptive evacuation scheduling. In Principles and
Practice of Constraint Programming - 21st International Conference, CP 2015,
Cork, Ireland, August 31 - September 4, 2015, Proceedings, pages 574–591, 2015.

6. Edward R. Galea, Mathew Owen, and Peter J. Lawrence. The EXODUS Model.
Fire Engineers Journal, pages 26–30, 1996.

7. Geo-safe - geospatial based environment for optimisation systems address-
ing fire emergencies, MSCA-RISE-2015 - Marie Sk lodowska-Curie Research
and Innovation Staff Exchange (RISE) European projet – id 691161.
http://fseg.gre.ac.uk/fire/geo-safe.html. Accessed: July 8, 2018.

8. Kanal Kumar, Julia Romanski, and Pascal Van Hentenryck. Optimizing infras-
tructure enhancements for evacuation planning. In Proceedings of the Thirtieth
AAAI Conference on Artificial Intelligence, February 12-17, 2016, Phoenix, Ari-
zona, USA., pages 3864–3870, 2016.

9. Margaux Nattaf, Christian Artigues, and Pierre Lopez. Cumulative scheduling
with variable task profiles and concave piecewise linear processing rate functions.
Constraints, 22(4):530–547, 2017.

10. Victor Pillac, Manuel Cebrián, and Pascal Van Hentenryck. A column-generation
approach for joint mobilization and evacuation planning. Constraints, 20(3):285–
303, 2015.

11. Victor Pillac, Caroline Even, and Pascal Van Hentenryck. A conflict-based path-
generation heuristic for evacuation planning. Transportation research part B,
(83):136–150, 2016.

12. Richard C. Rothermel. A mathematical model for fire spread predictions in wild-
land fuels. Technical Report 115, USDA For. Serv., lntermt. For. and Range Exp.
Stn., Ogden, Utah, USA, 1972.

13. Shahrooz Shahparvari. Enhancing Emergency Response in Short-notice Bushfire
Evacuation. PhD thesis, RMIT University, 2016.

14. Shahrooz Shahparvari, Prem Chhetri, Babak Abbasi, and Ahmad Abareshi. En-
hancing emergency evacuation response of late evacuees: Revisiting the case of
australian black saturday bushfire. Transportation Research Part E: Logistics and
Transportation Review, 93:148 – 176, 2016.

15. Alexander Stepanov and James MacGregor Smith. Modeling wildfire propagation
with delaunay triangulation and shortest path algorithms. European Journal of
Operational Research, 218(3):775 – 788, 2012.

16. Anand Veeraswamy, Edwin R Galea, Lazaros Filippidis, Peter J Lawrence, and
Robert J Gazzard. The simulation of urban-scale evacuation scenarios: Swinley
forest fire. In Proceedings 6th Int Symp Human Behaviour in Fire, pages 221–232,
2015.

17. David R. Weise and Gregory S. Biging. A qualitative comparison of fire spread
models incorporating wind and slope effects. Forest Science, 43(2):170–180, 1997.

