
Towards Solving Essence With Local Search: a
Proof of Concept Using Sets and Multisets

Saad Attieh, Christopher Jefferson, Ian Miguel, and Peter Nightingale

School of Computer Science, University of St Andrews, St Andrews, UK
{sa74,caj21,ijm,pwn1}@st-andrews.ac.uk

Abstract. We propose a local search solver that operates directly on the
high level structures found in the Essence abstract constraint specifi-
cation language. High quality neighbourhoods are automatically derived
from the structured variable types such as set, multiset, set of sets etc.
The solver we present is distinguished from other local search solvers
as it can operate directly on the high level types in Essence without
refining such types into low level representations. This provides a major
scalability advantage for problems with nested structures such as set of
set, since the solver dynamically adds and deletes constraints as the sizes
of these structures vary during search. The Essence language contains
many abstract variable types. In this paper, we present an implementa-
tion that supports multi sets and sets as a proof of concept. We outline
the framework required to perform local search on Essence expressions,
covering incremental evaluation, dynamic unrolling and neighbourhood
construction. The solver is benchmarked against other constraint pro-
gramming and local search solvers on three problem classes: Sonet, The
Knapsack Problem, and The Golomb Ruler Problem. Future work will
focus on broadening the range of types supported by the local solver.

1 Introduction

Constraint modelling languages, such as MiniZinc [17] or Essence [9,10,11] offer
to users a convenient means of expressing a constraint problem without concern-
ing themselves with the specific details of a particular constraint solver. We focus
herein on the Essence language, which is characterised by its support for ab-
stract type such as set, multiset, function and partition, and particularly by
its support for nesting of these types, such as set of multisets, or multiset of
functions. To illustrate, consider the Essence specification of the Synchronous
Optical Networking Problem (Sonet, problem 56 at www.csplib.org. See also
[12,25]) in Figure 1. An Essence specification identifies: the input parame-
ters of the problem class (given), whose values define an instance; the com-
binatorial objects to be found (find); the constraints the objects must satisfy
(such that); identifiers declared (letting); and an (optional) objective func-
tion (min/maximising). In this example, the single abstract decision variable
network is a multiset of sets, representing the rings on which communicating
nodes are installed.

2 Attieh, Jefferson, Miguel, Nightingale

1 given nnodes, nrings, capacity : int(1..)
2 letting Nodes be domain int(1..nnodes)
3 $ connections that must be achieved between the nodes
4 given demand : set of set (size 2) of Nodes
5
6 find network :
7 mset (size nrings) of set (maxSize capacity) of Nodes
8
9 such that
10 $All connections between nodes are achieved
11 forAll pair in demand .
12 exists ring in network .
13 pair subsetEq ring
14
15 $ objective: minimise total number of connections to rings.
16 $ i.e. minimise sum of the size of each ring.
17 minimising sum ring in network . |ring|

Fig. 1: Essence specification of the Synchronous Optical Networking problem.
A set of rings is used to facilitate to communication between nodes. A node may
be installed onto multiple rings. The task is to ensure that all pairs of nodes that
require to communicate, given in demand, are able to do so while minimising
the total number of installations onto the rings.

The Conjure automated constraint modelling system [1,2,4,5] refines an
Essence specification into a solver-independent constraint model in the Essence
Prime modelling language [19], where the abstract decision variables are repre-
sented as constrained collections of primitive variables, such as integer or Boolean
variables. The Savile Row system [18,19,20] then transforms and prepares the
Essence Prime model for input to a particular constraint solver, such as Min-
ion [13], or SAT.

Refinement obscures the abstract structure apparent in the original Essence
specification, which is a particular problem for constructing neighbourhoods for
local search. In recent work [3], we presented Structured Neighbourhood Search
(SNS), a method for generating neighbourhoods in Essence (i.e. pre-refinement)
and then refining them along with the problem specification. In this paper, we
describe a proof-of-concept solver Athanor that takes an alternative approach:
operating directly on an Essence specification, performing local search on the
abstract variables. We motivate this approach below.

1.1 Solving Essence Directly

Our hypothesis is that there are two principal benefits of performing local search
directly over the high level variables in an Essence specification: the guidance
provided by the structure apparent in the abstract types in Essence, and scal-

Towards Solving Essence 3

ability. Both advantages hold over approaches that generate neighbourhoods
starting from a lower level representation. The scalability advantage holds over
the SNS approach of refining neighbourhoods generated from an Essence spec-
ification.

First, the type information in the Essence specification is a significant ad-
vantage in generating effective neighbourhoods for local search automatically. In
the Sonet example, it is clear directly from the specification that the problem
requires us to find a multiset of sets of nodes. Hence, neighbourhoods related to
sets and multisets, such as to add to or remove from a (multi)set or to exchange
elements between sets (i.e. neighbourhoods that preserve the multiset/set struc-
ture), can be generated straightforwardly. By contrast, an equivalent constraint
model in MiniZinc [17] or Essence Prime [19] must represent this abstract de-
cision variable with a constrained collection of more primitive variables, such as
the matrix models [7,8] presented by Smith [25]. In this context, it is significantly
more difficult to recognise the structure (i.e. the multiset of sets) in the problem
and generate the equivalent neighbourhoods.

Second, there is a great scalability advantage due to the fact that the values
of the abstract types in Essence can vary significantly in size. As a simple illus-
trative example, consider the Essence type set of int(1..n). A natural
model is to employ n Boolean variables indicating which of the n integers are
in the set. However, all values of the set domain that participate in solutions
may have much smaller cardinality. Furthermore, a quantified expression requir-
ing a constraint to be posted per element of the set will result in n (guarded)
constraints to support the possibility of all of the integers 1 . . . n being in the
set. In contrast, a solver that natively understands Essence types can support
a dynamically sized set where values and constraints are introduced or deleted
as the cardinality of the set changes during search. For nested types, such as
set of set of int or multiset of partition, the difference in size between the min-
imum and maximum value of the domain of the Essence variable (and hence
its representation in a constraint model) can be dramatic.

1.2 Overview

This paper presents the framework that has been constructed to support solving
Essence specifications directly in the Athanor prototype. Though we make
mention of several Essence types, Athanor currently supports only set and
multiset type constructors, which can be arbitrarily nested. The same method-
ology that is described in the following sections will be applied to the rest of
the Essence types in future work. Following a discussion of the overall solver
architecture in Section 2, Section 3 describes the implementation of an incre-
mental evaluator for constraints. Section 4 briefly discusses constraint violations
and how they have been integrated with high level structured types. Section 5
describes the method of dynamically adding and removing constraints as items
are added and removed from set variables. After the search process is outlined in
Section 6, three case studies on Sonet, the Knapsack Problem, and the Golomb

4 Attieh, Jefferson, Miguel, Nightingale

Ruler Problem are presented to demonstrate the operation of Athanor in prac-
tice and test our research hypotheses.

2 Solver Architecture

Many constraint solvers perform a complete search of the search space and hence
are able to prove optimality for constrained optimisation problems, or the ex-
istence or absence of a solution for satisfaction problems. Local search solvers
sacrifice completeness in order to focus on finding good quality solutions quickly.
They employ a selection of heuristics (moves) that are iteratively applied to an
assignment to the decision variables (the active solution) with the aim of finding
a better assignment. Given a set of heuristics or moves, a metaheuristic is used
to select the heuristic to apply at each step of the search. A metaheuristic is
a search procedure such as Hill Climbing [24, Chapter 4], Simulated Anneal-
ing [16] or Tabu Search [14]. A neighbourhood is the search space that can be
explored by a given move. In this paper, we present a method of automatically
deducing good quality neighbourhoods from the abstract types in the Essence
language. We show how even a simple search procedure (Hill Climbing) is able
to achieve high-quality solutions quickly using the automatically constructed
neighbourhoods.

There are other local search methods that are able to generate neighbour-
hoods from the set of constraints and decision variables, however they operate
on a low-level description of a problem instance where the nested structure of
Essence types (for example a set of sets) has already been lost. For example
there are two Large Neighbourhood Search (LNS) methods, Propagation-Guided
LNS [21] and Explanation-Based LNS [23] that are able to generate neighbour-
hoods dynamically from the constraints and the state of search. Constraint-
Based Local Search (CBLS) methods such as OscaR/CBLS [6] can also derive
neighbourhoods automatically from the set of constraints and variables. We com-
pare with all three in our experiments.

In our earlier work on Structured Neighbourhood Search [3] we generated
neighbourhoods from Essence specifications (as we do in this paper) then ap-
plied Conjure and Savile Row to refine them (alongside the model) into the
input language of a backtracking constraint solver. We used an adapted ver-
sion of the Minion solver that applies the neighbourhoods in a similar way to
LNS. This approach contrasts with the work described in this paper where the
neighbourhoods are applied directly to the Essence variables.

3 Incremental Evaluation

In order to decide whether or not to accept a move, the search procedure must
be able to evaluate whether or not the move has resulted in a solution better
than the active solution. The process by which this is done is described in this
and the following sections. If the search procedure accepts the change, the new
set of assignments becomes the active solution. Otherwise, the active solution is

Towards Solving Essence 5

left unchanged and a new move is selected. To evaluate a move efficiently, we
must update the state of the solver in an incremental way, avoiding the need to
recompute the entire state of the solver.

The solver represents an Essence specification as a pair of abstract syntax
trees (ASTs), one representing the constraints in the specification, the other rep-
resenting the objective function. The leaves of these trees represent the abstract
variables in the specification assigned to a particular value from their respective
domains. Hence the constraint AST can be evaluated to a single Boolean value
and the objective AST can be evaluated to a single integer. However, the ASTs
are maintained so that they support incremental evaluation. Incremental evalu-
ation takes advantage of the fact that if a variable is reassigned to a new value
only its ancestors, the nodes on the path from the associated leaf back to the
root, must be reevaluated.

At the start of search, the solver begins by assigning a random value to each
of the variables and performing a full evaluation of the AST. Afterwords, in order
to facilitate incremental evaluation, every node in the AST attaches a trigger to
each of its children, a call back which is invoked notifying the parent of changes
to the child nodes that might affect the value yielded by the parent. Every type
of node (integer returning, set returning, etc.) can trigger at least two types of
events:

– possibleValueChange(), notifying the parent that the value yielded by
the child may change. It allows the parent to record any properties of the
child before its value is altered. This event must precede any change to the
child but it is legal for no change to actually take place.

– valueChanged(), notifying the parent that the value yielded by the child
has changed.

However, for higher level types such as set and multi set, simply indicating
that a value has changed can greatly hinder incremental evaluation since these
types are composed of many elements. Such an event gives no indication as to
how many of the elements in the set need reevaluating. Therefore, high level
types can make use of more descriptive events. For example, a set also has:

– valueAdded(),
– valueRemoved(),
– possibleMemberValueChange(),
– memberValueChange().

Of course, memberValueChange() can be formed by composing valueRemoved()
and valueAdded() but as shown in the next section, it can be useful to con-
sider these two events as one. Also note that a constraint may choose to attach
triggers to a set as a whole or trigger on the items within.

Figure 2 gives an example AST state during incremental evaluation, using
the expression describing the objective of the Sonet problem in Figure 1.

The process that takes place when adding the number 3 to the set ring2 is
as follows:

6 Attieh, Jefferson, Miguel, Nightingale

1 sum ring in network .
2 |ring|

Fig. 2: Incremental evaluation. |x| means size of x

– ring2 triggers the event possibleValueChange() and this is echoed all
the way to the root.

– When sum receives the possibleValueChange() event, it caches the
value of the operand that triggered the event, size:v=1.

– The integer 3 is then added to ring2. Its value is now ring2:v={1,3},
– the event valueAdded() is sent to the parent.
– size updates its value to size:v=2, the event valueChanged() is sent

to its parent.
– sum updates its value by subtracting the old value size:v=1 and adds the

new value size:v=2. The old value was cached when the sum received the
possibleValueChange() event at the start.

– The node now has the value sum:v=4, the event valueChanged() is for-
warded to its parent...

4 Violation counts

In Figure 2 we showed how the values of integers and sets are incrementally
updated. A similar procedure is used for Boolean expressions, which have been
extended to store a violation count. A violation count is an integer, a heuristic
that gives an indication as to the magnitude of the change necessary to the set
of assignments such that the constraint is satisfied. Our methods of calculating
violations are inspired by van Hentenryck and Michel [15]. For example, given
two integers x and y and the constraint c(x = y), the violation on c v(c) = |x−y|.
A violation count is also attributed to the variables in the scope of a constraint.
These variable violation counts are a heuristic used to give an indication as to
what extent each variable contributes towards the violating constraints. The
violation count on a variable u is the sum of violations attributed to u by the
constraints posted on u. This helps to guide the solver when selecting which
variables to modify when searching for a feasible solution. However, previous
work on violation counts have only made reference to variables with integer or
boolean types. We must examine how to extend the method to variables with
nested types. Consider the example shown in Figure 3 in which a constraint is
posted on to the integers contained within a set.

Towards Solving Essence 7

1 find s : set of int...
2 such that forAll i in s . c(i)

Fig. 3: Constraint on a nested type, c(i) is some arbitrary constraint on i

We must consider how violations are attributed when elements in s violate
the constraint c. As mentioned, the violation counts on variables are supposed
to guide the solver towards identifying the cause of violating constraints. Hence,
the rules for attributing violations to nested types are as follows:

– When a violation is attributed to an element i of a structure s such as a set
or sequence, the same violation is added to s and successively the structure
that contains s and so on to the outmost structure.

– However, if i is itself a containing structure, the violation is not attributed
to any of the elements in i. Neither is the violation propagated to any of the
siblings of i, that is, other elements contained in s.

– Hence, the violation on any containing structure s is the sum of violations
attributed to s plus the sum of violations attributed to the elements in s.

Consider the constraint |s| = 1 (the size of s is 1). If this constraint is violated,
all the elements in s are all equally to blame. Therefore, there is no benefit in
attributing the violation to the elements in s, rather s as a whole is assigned a
violation. However, if the constraint is like that shown in Figure 3, it makes sense
to assign a violation to only those elements in s that are causing the violation,
so that the solver may be biased towards altering their value. The set s itself
inherits the violation of its elements so that it may be distinguished from other
variables; it is natural to consider a set with two violating elements to have a
larger violation than a set with one violating element.

5 Dynamic unrolling of quantifiers

Although an Essence specification has a fixed number of abstract variables,
these variables are usually of container types (set, sequence, multi set, and so
on). The values of such variables can vary considerably in size and hence new
elements can be introduced or deleted during search. Essence also allows the
quantification over such containers attaching a constraint to each of the elements
within. Therefore, it must be possible to add and delete constraints in accordance
with the changes in size of the values of the variables being quantified over.

Consider Figure 4, for example. In the AST representation, s is an operand
of the forAll node. The forAll node also has one operand for each item in
s. The forAll node also stores the expression (i%2=0) that is to be applied
to each element in the set. This expression is a template, meaning that it is
represented by an incomplete AST. The AST is incomplete as i in the expres-
sion does not refer to one variable instance. Rather, it is used to refer to each

8 Attieh, Jefferson, Miguel, Nightingale

1 find s : set of int(1..5)
2 such that
3 forAll i in s. i % 2 = 0

Fig. 4: Quantifying over a set

value in the set. We call this the iterator. When s changes from being empty to
having one element, an operand is added to the forAll node, the expression
template is copied in and made complete by assigning the iterator to the newly
added element. The AST subtree representing the copied expression is than fully
evaluated much like the evaluation of the entire AST at the start of search. The
nodes in the subtree then begin triggering on their children as per Section 3.

However, as more elements are added, rather than copying the unevaluated
expression template, the expression subtree most recently added to the forAll
node is copied. This is because the expression would have already been evaluated.
All that is necessary is to assign the iterator to point to a new element and
a valueChanged() event passed up the subtree. As might be expected, as
elements are deleted from the set, their corresponding subtrees are also removed.

6 Search

As demonstrated in the following case studies, the solver uses the variable types
present in the problem to derive a set of neighbourhoods: actions that may be
performed on variables in order to improve either the violation count or the ob-
jective. A simple search strategy is built upon the set of derived neighbourhoods:
procedure athanor

σ ← available neighbourhoods
Assign all variables to random value repair . Move to feasible solution
w ← 1 . Used in calls to explore, controls violation allowed
while time limit not reached do

climb
w ← 1
repeat

w ← ceiling(1.5w)
explore(w)
repair

until better feasible solution
end while

end procedure

Towards Solving Essence 9

procedure explore(w)
o← current objective
v ← total violation
i← 0 . iterations spent without improving
σ ← available neighbourhoods
while i ≤ limit do . limit is a tunable parameter

select a random neighbourhood n ∈ σ
(o2, v2)← runNeighbourhood(n)
if v2 ≤ w ∧ o2 < o then

(o, v)← (o2, v2) . New solution accepted
else

i← i+ 1
Undo application of neighbourhood n

end if
end while

end procedure
procedure repair

o← current objective
v ← total violation
i← 0 . iterations spent without improving
σ ← available neighbourhoods
while i ≤ limit do . limit is a tunable parameter

select a random neighbourhood n ∈ σ
(o2, v2)← runNeighbourhood(n)
if v2 ≤ v then

(o, v)← (o2, v2) . New solution accepted
else

i← i+ 1
Undo application of neighbourhood n

end if
end while

end procedure
procedure climb

o← current objective
v ← total violation
i← 0 . iterations spent without improving
σ ← available neighbourhoods
while i ≤ limit do . limit is a tunable parameter

select a random neighbourhood n ∈ σ
(o2, v2)← runNeighbourhood(n)
if v = 0 ∧ o2 ≤ o then

(o, v)← (o2, v2) . New solution accepted
else

i← i+ 1
Undo application of neighbourhood n

10 Attieh, Jefferson, Miguel, Nightingale

end if
end while

end procedure
The solver runs in a loop: for each iteration, a random neighbourhood is

executed and the change to the total constraint violation and objective are ex-
amined. If the violation count is decreased or if the objective is improved, the
new solution is accepted. Otherwise, the change is reversed. This means that
until the set of assignments form a feasible solution, the solver will accept any
change to the objective (better or worse) provided that the set of assignments is
brought closer to a feasible solution. As mentioned previously, the distance from
a feasible solution is a heuristic. It is the total constraint violation count.

Once a feasible solution is found (the violation count reaches 0), the solver
may only make progress by making changes that do not worsen the objective. If
after a number of iterations 1 no improvement is observed, the solver relaxes the
restriction on the violation count; accepting solutions if they improve the objec-
tive and allowing some constraints to be violated. In general, this procedure can
be considered as being similar to hill climbing search procedures commonly found
in local search solvers. Future work would focus on extending the set of search
strategies to include other popular methods such as Simulated Annealing [16] or
Tabu Search [14].

7 Case Studies

Wwe present experiments on three problem classes. Referring to our hypothesis
in Section 1.1, our experiments show the performance of Athanor against other
local search solvers that also automatically derive neighbourhoods:

– OscaR/CBLS [6]. Like Athanor, this approach derives neighbourhoods au-
tomatically through analysis of the input problem. However, the input in this
case is a constraint model rather than an abstract Essence specification.

– Two variants of large neighbourhood search (LNS), propagation guided [21]
and explanation based [23] (referred to as PG-LNS and EB-LNS respec-
tively). These dynamically derive neighbourhoods by tracing either propa-
gations or failures during the search for a solution to a constraint model.

– SNS [3]. This approach also derives neighbourhoods from an Essence spec-
ification, but refines the specification and the derived neighbourhoods to a
lower level representation before search.

Input to OscaR/CBLS was produced by using Conjure to refine Essence spec-
ifications, Savile Row to transform the models into MiniZinc [17], and MiniZinc
2.1.7 to specialise for OscaR/CBLS’s Flatzinc backend. The two variants of LNS
were implemented using the Choco 4.0.6 solver using models that were produced
by hand. Care was taken to match the SNS, Choco and OscaR/CBLS models as
closely as possible. Details are included with each case study.
1 this is a tunable parameter to the solver

Towards Solving Essence 11

Table 1: Minimising objective, after 10 seconds and 600 seconds. Best results for
each instance and time period are given in bold.

Instance Athanor SNS EB-LNS PG-LNS OscaR/CBLS
10s 600s 10s 600s 10s 600s 10s 600s 10s 600s

sonet1 66.5 62.5 170.0 60.5 72.5 65.0 85.0 72.5 75.5 72.5
sonet2 182.5 117.0 578.5 126.0 216.5 143.5 281.0 123.5 546.0 157.5
sonet3 115.5 91.5 348.0 95.5 132.5 104.5 153.0 101.0 256.5 121.5
sonet4 184.0 132.0 578.0 124.5 234.0 148.5 283.5 133.5 531.5 167.0
sonet5 258.5 166.5 833.5 171.0 394.5 199.0 474.5 176.0 843.0 227.5
sonet6 294.0 178.0 796.5 191.0 391.5 227.0 490.0 188.0 829.5 259.5
sonet7 370.5 212.0 1102.5 282.5 534.0 285.5 956.0 253.5 1152.5 319.0
sonet8 355.5 197.0 1334.0 274.0 704.5 261.5 1236.5 236.0 1379.0 295.0

For each problem class, we present a table of results for a selection of in-
stances, some randomly generated and some from benchmarking libraries. For
each solver, the objective achieved after ten seconds and after ten minutes is
shown, and these values are the median of 10 runs.

7.1 Case Study 1: SONET

As mentioned previously, the strength of operating directly on Essence types is
that the Essence type constructors can convey information on the structure of
the problem being solved. Referring to the Sonet problem presented in Figure 1,
notice there is only one abstract variable.

1 find network :
2 mset (size nrings) of set (maxSize capacity) of Nodes

However, this variable has a very descriptive type which would be hard to
reconstruct from the myriad representations that may be used to encode this
abstract variable for input to a low level CP or local search solver. The size
attribute on the outermost type (multiset) forces the multiset to have a fixed
size. Athanor creates the multiset with the correct size, and maintains the size
as an invariant, which allows Athanor to drop all neighbourhoods that would
change the size of the multiset. Athanor only generates neighbourhoods that
manipulate the elements of the multiset. Since the inner type is a set of variable
size, the neighbourhoods setAdd, setRemove are used. Athanor also uses the
neighbourhoods setSwap, which exchanges one element in a set for another and
setAssignRandom, which assigns an entire set to a new value. The setSwap
and setRemove neighbourhoods are biased towards selecting the sets which are
most violating, and then the most violating elements of those sets. When refining
the model for input to the low level solvers, a standard representation was chosen.
Each set in the multiset was encoded using the occurrence representation; a
matrix of Booleans determining whether or not each item was present in the

12 Attieh, Jefferson, Miguel, Nightingale

set. The multiset was encoded explicitly, one matrix of booleans for each set in
the multiset. Symmetry breaking constraints were not included as Prestwich [22]
suggests that such constraints can harm the performance of local search.

Table 1 shows the median optimisation value found after ten seconds and ten
minutes. As can be seen in Table 1 our solver always achieves the best perfor-
mance after ten seconds, and is best or second after Structured Neighbourhood
Search (SNS) [3] when ten minutes have elapsed.

Figure 5 shows the median objective of each solver against time. This demon-
strates how Athanor rapidly climbs towards solutions despite the simple hill-
climbing search procedure. In the figure, black represents Athanor, blue rep-
resents explanation guided LNS, red represents propagation guided LNS, green
represents SNS and orange represents OscaR/CBLS.

Fig. 5: Plot of progress solving instance sonet2, showing progress on minimizing
the objective against time. Lines indicate the median objective value and the
shaded region around each line indicates the interquartile range.

7.2 Case Study 2: The Knapsack Problem

Figure 6 shows an Essence specification of the Knapsack problem. The variable:

1 knapsack : set of object

has less structure than the network variable from Sonet, discussed in Sec-
tion 7.1. The simplicity of the variable structure and constraints in the Knapsack

Towards Solving Essence 13

1 given object new type enum
2 given weight, value : function (total) object --> int(1..)
3 letting maxWeight be max([w | (_,w) in weight])
4
5 find knapsack : set of object
6 maximising sum i in knapsack . value(i)
7 such that sum i in knapsack . weight(i) <= maxWeight

Fig. 6: An Essence specification of the Knapsack Problem

problem mean that other solvers that only accept primitive (integer or Boolean)
variables are at less of a disadvantage. Despite this, Athanor still performs
extremely well, finding the best result in most experiments. Once again, the
standard low level occurrence representation was chosen for input to the other
solvers. Table 2 shows the performance of the different solvers on knapsack in-
stances of size 1000 and 5000, given ten seconds and ten minutes. Athanor
scales well, always winning on the largest instances.

Although LNS performed well with the Sonet problem, it performs signifi-
cantly worse than OscaR/CBLS and our solver with the Knapsack problem on
larger instances. However, though OscaR/CBLS performed less well on the Sonet
problem, it is clearly able to leverage the simplicity of the Knapsack problem.
Despite this, Athanor is competitive and is able to find better objectives in
seven out of the ten instances tested.

7.3 Case Study 3: The Golomb Ruler Problem

1 language Essence 1.3
2
3 given n : int(1..)
4 letting bound be 2 ** n
5
6 find Ticks : set (size n) of int(0..bound)
7 minimising max(Ticks)
8
9 such that
10 0 in Ticks,
11 forAll {i, j} subsetEq Ticks .
12 forAll {k, l} subsetEq Ticks .
13 {i, j} != {k, l} -> i - j != k - l

Fig. 7: An Essence specification of the Golomb Ruler Problem

14 Attieh, Jefferson, Miguel, Nightingale

Table 3 shows that Athanor does not perform well with this model of the
Golomb Ruler. There are two main reasons for this poor performance. Firstly, the
only variable in the model is a fixed size set. The lack of a nested structure means
that Athanor’s advantage over other solvers is limited. In the current version
of Athanor only one neighbourhood is used, which selects the most violating
integer and randomly changes it. An explicit representation was chosen for the
low level refinements given to the other solvers due to the set having a large
domain, exponential relative to the size of the Golomb ruler.

Secondly, as explained in Section 5, the AST template representing the ex-
pression under a quantifier is copied for every element that is unrolled. The ex-
pression forAll {i, j} subsetEq Ticks unrolls to approximately n2 ex-
pressions. The further nested quantifier forAll {k, l} subsetEq Ticks
also unrolls to approximately n2 expressions. This results in approximately n4
copies of the innermost expression {i, j} != {k, l} -> i-j != k-l and
hence, around n3 parents triggering whenever any element of the set is changed.
This results in the relatively poor performance observed.

This can be greatly improved. Note that once i, j, k, l are instantiated with
values across the n4 expressions, there are around n2 duplicates of each copy
of j − i and k − l. Rather than having many AST nodes representing i − j for
the same values of i and j, a single AST node ought to be reused. This optimi-
sation is used in the models used in the other solvers. The difficulty compared
to the other solvers is that the duplication must be detected while loops are
dynamically unrolled. Even if all duplicate expressions were eliminated, there
would still be n2 parents that would need to be triggered on every change to
the set. This is due to the clique of disequalities that is enforced on all the
tick differences i - j != k - l. Further replacing these disequalities with
a single allDifferent constraint would reduce the number of parents (and
consequently the number of trigger events per element change) to n. Both of
these improvements are targets for future work.

8 Conclusion

We have presented the benefits of having a solver operate directly on the abstract
variables present in an Essence specification. The solver is able to utilise the
type system to construct effective neighbourhoods and is able to model the
abstract types directly without having to resort to refinements into primitive
types that may be very large. We have presented a framework for incremental
evaluation of Essence ASTs as the values taken by the abstract variables change
during search. This includes the dynamic unrolling of quantifiers as the size of
containers (such as sets) changes during search. We benchmarked the proof of
concept solver Athanor using three problem classes containing the Essence
types multiset and set.

Acknowledgements We thank EPSRC for grants EP/P015638/1 and EP/P026842/1.
Jefferson holds a Royal Society University Research Fellowship.

Towards Solving Essence 15

T
ab

le
2:

K
na

ps
ac
k
P
ro
bl
em

:M
ax

im
is
in
g
ob

je
ct
iv
e,

af
te
r
10

se
co
nd

s
an

d
60
0
se
co
nd

s.
B
es
t
re
su
lt
s
fo
r
ea
ch

in
st
an

ce
an

d
ti
m
e

pe
ri
od

ar
e
gi
ve
n
in

bo
ld
.

In
st
an

ce
A
t
h
a
n
o
r

SN
S

E
B
-L
N
S

P
G
-L
N
S

O
sc
aR

/C
B
L
S

10
s

60
0s

10
s

60
0s

10
s

60
0s

10
s

60
0s

10
s

60
0s

10
00
-1

55
07

91
.0

55
07

91
.0

33
76
99
.0

49
62
82
.0

36
13
45
.5

45
56
80
.5

34
94
76
.5

40
05
70
.0

34
10
29
.5

34
10
29
.5

10
00
-2

20
75

20
.5

20
95

83
.0

16
89
21
.5

20
67
56
.0

17
37
83
.5

19
28
08
.0

17
10
55
.5

18
14
23
.0

16
57
26
.0

16
57
26
.0

10
00
-3

34
42

96
.0

34
99
68
.0

31
59
76
.0

34
72
83
.0

29
62
69
.0

36
98
69
.0

28
69
26
.0

34
17
46
.0

32
77
95
.0

37
71

24
.0

10
00
-4

13
79
01
.0

14
00
15
.0

11
09
04
.5

14
88
02
.0

10
35
26
.0

15
44
80
.5

97
97
8.
0

13
64
09
.5

14
45

88
.5

16
27

15
.0

10
00
-5

31
59
20
.0

31
89
20
.0

22
54

52
.0

33
72

68
.0

21
41
14
.0

33
36
84
.0

20
00
38
.0

31
44
28
.0

31
77
72
.0

33
72

68
.0

50
00
-1

92
20

18
.5

92
20

18
.5

33
76
99
.0

49
62
82
.0

92
17
65
.0

92
18
70
.0

92
17
24
.5

92
19
90
.0

92
12
94
.0

92
12
94
.0

50
00
-2

11
64

51
6.

0
11

64
57

6.
0

16
89
21
.5

20
67
56
.0

11
64
49
6.
5
11
64
66
3.
0
11
64
46
6.
5
11
64
72
0.
0
11
64
23
5.
5
11
64
23
5.
5

50
00
-3

14
14

44
1.

5
14

14
54

2.
0

31
59
76
.0

34
72
83
.0

12
51
06
7.
5
12
64
28
4.
0
12
47
83
6.
5
12
53
82
9.
0
12
77
57
7.
0
14
14
38
6.
0

50
00
-4

16
67

82
3.

0
16

67
89

5.
0

11
09
04
.5

14
88
02
.0

12
54
74
8.
5
12
68
28
6.
0
12
57
78
3.
0
12
63
60
9.
0
12
86
33
5.
5
16
67
56
5.
0

50
00
-5

18
89

28
1.

5
18

89
35

5.
0

22
54
52
.0

33
72
68
.0

12
37
03
8.
0
12
50
97
7.
5
12
37
56
0.
0
12
43
00
5.
0
12
88
67
4.
0
18
88
88
1.
0

T
ab

le
3:

G
ol
om

b
R
ul
er

P
ro
bl
em

:
M
in
im

is
in
g
ob

je
ct
iv
e,

af
te
r
10

se
co
nd

s
an

d
60
0
se
co
nd

s.
B
es
t
re
su
lt
s
fo
r
ea
ch

in
st
an

ce
an

d
ti
m
e
pe

ri
od

ar
e
gi
ve
n
in

bo
ld
.

In
st
an

ce
A
t
h
a
n
o
r

SN
S

E
B
-L
N
S

P
G
-L
N
S

O
sc
aR

/C
B
L
S

10
s

60
0s

10
s

60
0s

10
s

60
0s

10
s

60
0s

10
s

60
0s

n1
0

10
9.
0

66
.5

83
0.
0

57
7.
5

64
.0

64
.0

81
.5

77
.0

70
.0

60
.0

n1
1

21
7.
0

90
.0

15
96
.0

12
41
.0

85
.5

79
.5

10
5.
0

10
5.
0

95
.0

78
.5

n1
2

81
0.
0

13
2.
5

32
78
.0

24
70
.5

27
5.
5

10
3.
0

12
2.
0

12
0.
5

11
9.

0
10

0.
5

n1
3

50
87
.0

19
1.
5

68
07
.5

54
46
.5

43
32
.0

13
3.

5
13
87
.5

15
1.
0

16
4.

5
13
4.
5

n1
4
13
82
3.
0

30
6.
5

16
38
4.
0

16
38
4.
0

11
20
9.
0

16
0.

0
10
43
6.
0

18
5.
5

19
2.

5
17
4.
0

n1
5
28
64
1.
5

63
4.
5

32
76
8.
0

32
76
8.
0

23
56
9.
5

20
8.

0
28
05
3.
0

24
6.
0

22
0.

0
22
0.
0

n1
6
61
66
0.
0
37
01
.0

65
53
6.
0

65
53
6.
0

62
37
1.
0
52
23
2.
5

62
37
1.
0

56
4.
5

25
0.

5
25

0.
5

n1
7

In
f

In
f1

31
07
2.
0
13
10
72
.0

12
52

17
.5

61
85
1.
5

12
52

17
.5

36
32

5.
0

In
f

In
f

16 Attieh, Jefferson, Miguel, Nightingale

References

1. Akgün, Ö.: Extensible automated constraint modelling via refinement of abstract
problem specifications. Ph.D. thesis, University of St Andrews (2014)

2. Akgün, Ö., Frisch, A.M., Gent, I.P., Hussain, B.S., Jefferson, C., Kotthoff, L.,
Miguel, I., Nightingale, P.: Automated symmetry breaking and model selection
in Conjure. In: International Conference on Principles and Practice of Constraint
Programming. pp. 107–116. Springer (2013)

3. Akgün, O., Gent, I.P., Jefferson, C., Miguel, I., Nightingale, P., Salamon, A.,
Spracklen, P.: A framework for constraint based local search using Essence. In:
IJCAI. pp. 1242–1248 (2018)

4. Akgün, Ö., Gent, I.P., Jefferson, C., Miguel, I., Nightingale, P.: Breaking con-
ditional symmetry in automated constraint modelling with Conjure. In: ECAI.
pp. 3–8 (2014)

5. Akgün, Ö., Miguel, I., Jefferson, C., Frisch, A.M., Hnich, B.: Extensible automated
constraint modelling. In: Proceedings of the Twenty-Fifth AAAI Conference on
Artificial Intelligence. pp. 4–11. AAAI Press (2011)

6. Björdal, G., Monette, J.N., Flener, P., Pearson, J.: A constraint-based
local search backend for MiniZinc. Constraints 20(3), 325–345 (2015).
https://doi.org/10.1007/s10601-015-9184-z

7. Flener, P., Frisch, A., Hnich, B., Kiziltan, Z., Miguel, I., Walsh, T.: Matrix mod-
elling. In: Proc. of the CP-01 Workshop on Modelling and Problem Formulation.
p. 223 (2001)

8. Flener, P., Frisch, A.M., Hnich, B., Kiziltan, Z., Miguel, I., Walsh, T.: Matrix mod-
elling: Exploiting common patterns in constraint programming. In: Proceedings of
the International Workshop on Reformulating Constraint Satisfaction Problems.
pp. 27–41 (2002)

9. Frisch, A.M., Grum, M., Jefferson, C., Hernández, B.M., Miguel, I.: The Essence of
Essence. Modelling and Reformulating Constraint Satisfaction Problems pp. 73–88
(2005)

10. Frisch, A.M., Grum, M., Jefferson, C., Hernández, B.M., Miguel, I.: The design of
Essence: A constraint language for specifying combinatorial problems. In: IJCAI.
pp. 80–87 (2007)

11. Frisch, A.M., Harvey, W., Jefferson, C., Martínez-Hernández, B., Miguel, I.:
Essence: A constraint language for specifying combinatorial problems. Constraints
13(3), 268–306 (2008)

12. Frisch, A.M., Hnich, B., Miguel, I., Smith, B.M., Walsh, T.: Transforming and refin-
ing abstract constraint specifications. In: International Symposium on Abstraction,
Reformulation, and Approximation. pp. 76–91. Springer (2005)

13. Gent, I.P., Jefferson, C., Miguel, I.: Minion: A fast scalable constraint solver. In:
ECAI. vol. 141, pp. 98–102 (2006)

14. Glover, F., Laguna, M.: Tabu search. In: Handbook of combinatorial optimization,
pp. 2093–2229. Springer (1998)

15. Hentenryck, P.V., Michel, L.: Constraint-based local search. The MIT press (2009)
16. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing.

science 220(4598), 671–680 (1983)
17. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc:

Towards a standard CP modelling language. In: CP. pp. 529–543. LNCS 4741,
Springer (2007)

https://doi.org/10.1007/s10601-015-9184-z

Towards Solving Essence 17

18. Nightingale, P., Akgün, Ö., Gent, I.P., Jefferson, C., Miguel, I.: Automatically im-
proving constraint models in Savile Row through associative-commutative common
subexpression elimination. In: CP. pp. 590–605. LNCS 8656, Springer (2014)

19. Nightingale, P., Akgün, O., Gent, I.P., Jefferson, C., Miguel, I., Spracklen, P.:
Automatically improving constraint models in Savile Row. Artificial Intelligence
251, 35–61 (2017). https://doi.org/10.1016/j.artint.2017.07.001

20. Nightingale, P., Spracklen, P., Miguel, I.: Automatically improving SAT encoding
of constraint problems through common subexpression elimination in Savile Row.
In: CP. pp. 330–340. LNCS 9255, Springer (2015)

21. Perron, L., Shaw, P., Furnon, V.: Propagation guided large neighborhood search.
In: CP. pp. 468–481. LNCS 3258, Springer (2004). https://doi.org/10.1007/978-3-
540-30201-8_35, https://doi.org/10.1007/978-3-540-30201-8_35

22. Prestwich, S.: Negative effects of modeling techniques on search per-
formance. Annals of Operations Research 118(1), 137–150 (Feb 2003).
https://doi.org/10.1023/A:1021809724362, https://doi.org/10.1023/A:
1021809724362

23. Prud’homme, C., Lorca, X., Jussien, N.: Explanation-based large neighborhood
search. Constraints 19(4), 339–379 (2014). https://doi.org/10.1007/s10601-014-
9166-6, https://doi.org/10.1007/s10601-014-9166-6

24. Russell, S., Norvig, P.: Artificial Intelligence A Modern Approach, Third Edition.
Pearson (2014)

25. Smith, B.M.: Symmetry and search in a network design problem. In: International
Conference on Integration of Artificial Intelligence (AI) and Operations Research
(OR) Techniques in Constraint Programming. pp. 336–350. Springer (2005)

https://doi.org/10.1016/j.artint.2017.07.001
https://doi.org/10.1007/978-3-540-30201-8_35
https://doi.org/10.1007/978-3-540-30201-8_35
https://doi.org/10.1007/978-3-540-30201-8_35
https://doi.org/10.1023/A:1021809724362
https://doi.org/10.1023/A:1021809724362
https://doi.org/10.1023/A:1021809724362
https://doi.org/10.1007/s10601-014-9166-6
https://doi.org/10.1007/s10601-014-9166-6
https://doi.org/10.1007/s10601-014-9166-6

	Towards Solving Essence With Local Search: a Proof of Concept Using Sets and Multisets

