
A Transducer-Based Model for Representing
Functional Constraints on Integer Sequences

Ekaterina Arafailova1, Nicolas Beldiceanu1, Mats Carlsson2, Rémi Douence3,
Maŕıa Andréına Francisco Rodŕıguez5, Helmut Simonis6

1 TASC (LS2N), IMT Atlantique, FR – 44307 Nantes, France
FirstName.LastName@imt-atlantique.fr

2 SICS, P.O. Box 1263, SE – 164 29 Kista, Sweden
Mats.Carlsson@sics.se

3 GALINETTE (LS2N), IMT Atlantique, FR – 44307 Nantes, France
Remi.Douence@imt-atlantique.fr

4 School of Computing, National University of Singapore, 117747, Singapore
andreina@comp.nus.edu.sg

5 Insight Centre for Data Analytics, University College Cork, Ireland
helmut.simonis@insight-centre.org

Abstract. We extend a transducer-based computational model, origi-
nally introduced to express functions over time series concisely, to func-
tions over integer sequences that arise in the context of constraint pro-
gramming. A transducer now only depends on the regular expression
whose maximal occurrences it has to find, and not any more on any
quantitative aspect. Also, the parameters that express the quantitative
aspect allow one to associate many more functions to the same trans-
ducer. The new model preserves the main advantages of the previous
model, namely that transducers are still independent of the sequence
size and still take time linear in the sequence size for evaluating the cor-
responding functions. Finally, we show how to generate automatically
such a transducer from the regular expression.

1 Introduction

Motivated by representing a large number of sequence constraints, such as [7,13,14],
we extend an initial work [5,2] that uses a manually designed transducer [16] on
the way to automatically inducing a decomposition of a time-series constraint.
Our aim is a concise normalised representation that is expressive enough to
capture declaratively many sequence constraints, namely those constraining an
aggregation of integer features of all maximal occurrences of a regular expression
within an integer sequence, such as the minimal width of all its plateaus.

Our contribution is a regular-expression-based representation for such con-
straints. From such a representation, we automatically generate a transducer. We
not only extend the set of time-series constraints of [5,2], but also cover most
sequence constraints of the Global Constraint Catalogue [6], such as [7,13,14].

From a transducer, a register automaton describing the computation of the
function can be synthesised [5]. From a register automaton, a decomposition of
the represented constraint in terms of basic constraints can be induced [4].

Section 2 provides some background. Section 3 defines our regular-expression-
based representation of the considered sequence constraints. Section 4 gives an
operational view of such constraints, using for the regular expression a transducer
whose output alphabet is a set of instructions denoting the computations for each
phase of recognising all maximal occurrences of the regular expression within a
sequence. The instructions use registers for recording information about past
maximal occurrences of the regular expression, the current possibly unfinished
maximal occurrence, and the hypothetical next maximal occurrence. Section 5
shows how to generate automatically such a transducer from a regular expression.
Finally, Section 6 summarises our contributions and concludes.

2 Background

We assume the reader is familiar with regular expressions and automata [12].
The empty word is denoted by ε. The concatenation of two words w1 and w2

is denoted by w1w2. A word w is a factor of a word x if there exist two words
v and u such that x = vwu; if either v 6= ε or u 6= ε, then w is a proper
factor of x; if v = ε, then w is a prefix of x; if u = ε, then w is a suffix of
x. The concatenation L1L2 of two languages L1 and L2 is the language of all
words w1w2 where w1 ∈ L1 and w2 ∈ L2. For a regular expression σ, let Lσ
denote its regular language, let −→σ denote the set of all prefixes of all words in
Lσ, let ←−σ denote the set of all suffixes of all words in Lσ, and let ←→σ denote the
set of all factors of all words in Lσ.

Definition 1 (regular-expression overlap [11]). Given a regular expres-
sion σ and three words w, x, y such that xw ∈ Lσ, wy ∈ Lσ, and xwy /∈ Lσ,
the length of w is called the word overlap of xw and wy. The maximum word
overlap between all pairs of such words xw and wy in Lσ is called the σ-overlap
and denoted by oσ. If the word overlap is never defined for any pair of words
in Lσ, then the σ-overlap is 0.

For example, for the σ1 = ‘ >>∗ ’ regular expression, the value of oσ1
is 0

since the maximum word overlap is never defined for any pair of words in Lσ1
.

Definition 2 (mismatch overlap [11]). Given a regular expression σ over an
alphabet Σ, a word w ∈ −→σ \Lσ, and a symbol z ∈ Σ, if wz /∈ −→σ , then the length
of the longest y, such that y is a suffix of wz and y ∈ −→σ , is called the mismatch
overlap of w and z. The maximum mismatch overlap of all words in −→σ \Lσ and
all symbols in Σ is called the mismatch overlap of σ and denoted by µσ.

For example, for the σ2 = ‘ <+=<+=> ’ regular expression, the value of µσ2

is infinite since for any word w in the language of ‘ <+=<+ =’ and the symbol
z = ‘ < ’, the mismatch overlap is one plus the length of the longest suffix of w
that is in L<+=. This value is not bounded.

2

3 Defining Functions over Integer Sequences

To define a function over integer sequences, we introduce the notion of an ab-
stract pattern, which is a regular expression defined over an abstract alphabet,
and we present the notion of a concrete pattern that can be associated with an
abstract pattern. We then describe the parameters of a function over integer se-
quences, one of which isa concrete pattern. Later on, we restrict the values of the
parameters describing a function wrt the considered pattern, as to locate unam-
biguously each pattern occurrence and to avoid overlapping pattern occurrences.
Finally, we define the evaluation of a function over integer sequences.

Definition 3 (abstract/concrete alphabets and pattern). The abstract
alphabet A of k letters is the set {0, 1, . . . , k − 1}. A concretisation of A is a
bijection from A to a set {a0, a1, . . . , ak−1}, called the concrete alphabet. An
abstract pattern over a finite abstract alphabet A is a regular expression over A.
A concrete pattern is obtained from an abstract pattern over an abstract alphabet
A by applying a concretisation of A.

For example, consider the abstract alphabet A = {0, 1} and its concretisation
C mapping 0 to ‘ /∈ ’ and 1 to ‘ ∈ ’. The concrete pattern ‘ ∈∈∗ ’ is obtained by
applying C to the abstract pattern ‘11∗’.

Definition 4 (parametrised function over integer sequences). A function
over integer sequences F is parametrised by 〈ψ, siga〉, 〈f, g, h〉, 〈before, after〉,
〈balance〉, and 〈skip〉, where:

– ψ is a concrete pattern over a concrete alphabet Σ, and siga is a total sur-
jective function of arity a ∈ N∗ mapping Za to Σ;

– f , g, and h are respectively one of the features one, width, surface, max,
min, one of the primary aggregators Sum, Max, Min, and one of the secondary
aggregators Id, Max, Min defined in Table 1;

– before and after are non-negative integers, whose role is to trim the left and
right borders of maximal occurrences of the pattern ψ in an integer sequence;

– balance ∈ {0, 1} indicates whether, for computing the feature value, we use
only f (value 0) or both f and −f (value 1);

– skip ⊂ Σ is the subset of possibly skipped symbols when computing the value
of f depending on the phase of recognising ψ when computing function F on
an integer sequence.

Before defining the result value of a function over integer sequences, we extend
the notion of signature sequence [5] of an integer sequence to an arbitrary arity,
and the notion of e-occurrence, which now depends on the new parameter skip,
which allows us to skip some positions inside a pattern occurrence. The presented
notions will be further illustrated in Example 1.

Definition 5 (signature sequence). Consider an integer sequence X = 〈X1,
. . . , Xn〉 and a function F over integer sequences whose function siga is of arity
a. The signature sequence of X wrt siga is the sequence 〈S1, S2, . . . , Sn−a+1〉,
where every Si (with i ∈ [1, n− a + 1]) is equal to siga(Xi, Xi+1, . . . , Xi+a−1).

3

f value idf minf maxf

one 1 0 n/a n/a
width j − i+ 1 0 0 n+ 1

surface
j∑
k=i

Xk 0 −∞ +∞

max max
k∈[i,j]

Xk−∞ −∞ +∞

min min
k∈[i,j]

Xk+∞ −∞ +∞

g value idfg

Sum
m∑
k=1

fk 0

Max max
k∈[1,m]

fk minf

Min min
k∈[1,m]

fkmaxf

h value idf,gh

Id idfg idfg
Maxmax(max

k∈[1,m]
gk, id

f
g) idfg

Minmin(min
k∈[1,m]

gk, id
f
g) idfg

Table 1: Left: features, their values computed from an integer subsequence
〈Xi, . . . , Xj〉, their identity, minimum, and maximum values. Centre (resp.
Right): primary aggregators (resp. secondary aggregators), their values com-
puted from a sequence 〈f1, . . . , fm〉 (resp. 〈g1, . . . , gm〉), and their identities.

Definition 6 (s-occurrence). Consider a concrete pattern ψ over an alpha-
bet Σ, a sequence S = 〈S1, S2, . . . , Sm〉 over Σ, and a subsequence 〈Si, Si+1, . . . , Sj〉,
with 1 ≤ i ≤ j ≤ m, forming a maximal word that matches ψ. The s-occurrence
of S is the index sequence 〈i, i+ 1, . . . , j〉, denoted by (i..j).

Definition 7 (found index, e-occurrence, i-occurrence). Consider a func-
tion F over integer sequences whose function siga is of arity a, a concrete
pattern ψ, two integer constants ‘before’ and ‘after’, and an integer sequence
X = 〈X1, X2, . . . , Xn〉 whose signature sequence is S = 〈S1, S2, . . . , Sn−a+1〉
wrt siga . For any s-occurrence (i..j) of ψ in S:

– the found index is the smallest index k in the interval [i, j] such that the
word SiSi+1 . . . Sk belongs to Lψ;

– the e-occurrence is the set of indices {i+ before, . . . , j + a − 1− after} such
that an index m belongs to the e-occurrence iff the following condition holds:
if m < k and Sm ∈ skip, then there exists a signature symbol St /∈ skip with
m < t < k;

– the i-occurrence is the index sequence 〈i+ before, i+ before + 1, . . . , j + a − 1〉,
denoted by [(i+ before)..(j + a − 1)].

Definition 8 (well-formed function). A function F parametrised by 〈ψ, siga〉,
〈f, g, h〉, 〈before, after〉, 〈balance〉, and 〈skip〉 is well-formed iff:

balance = 1⇒ (f = width ∨ f = surface) ∧ after = 0 (1)

before < min
w∈Lψ

|w| ∧ before + after < min
w∈Lψ

|w|+ a − 1 (2)

before ≥ oψ (3)

∀p ∈
−→
ψ , ∀w ∈ Lψ,∃v1, v2 ∈ Σ∗ (p = v1wv2 ⇒ v1w ∈ Lψ) (4)

∃c ∈ Z (µψ ≤ c) (5)

ε ∈ Lψ ⇒ ∀e ∈ Σ (e ∈ Lψ) ∧ after = a − 1 (6)

4

Abstract
alphabet

Abstract
pattern

Arity Concrete
alphabet

Concrete
pattern

Concrete
function

№

〈0, 1〉 11∗ 2 〈≤, >〉 >>∗ 〈one, Sum, Id, 0, 0, 0, ∅〉 ¬
1 〈/∈,∈〉 ∈∈∗ 〈width, Max, Id, 0, 0, 0, ∅〉 ­

〈0, 1, 2〉 0(1|0)∗(2|1)∗2 2 〈<,=, >〉 < (= | <)∗(> | =)∗ > 〈surface, Max, Id, 0, 0, 1, {=}〉 ®
2 〈>,=, <〉 > (= | >)∗(< | =)∗ < 〈width, Sum, Id, 1, 1, 0, ∅〉 ¯

〈0, 1〉 1∗0|1∗ 2 〈=, 6=〉 =∗ 6= | =∗ 〈one, Sum, Id, 0, 1, 0, ∅〉 °

〈0〉 0 1 〈>〉 > 〈surface, Sum, Min, 0, 0, 0, ∅〉 ±

〈0, 1〉 1 k 〈/∈,∈〉 ∈ 〈one, Sum, Id, 0, 0, 0, ∅〉 ²

Table 2: Examples of functions, where F¬,F­, . . . ,F² stand for nb strictly de-

creasing sequence, max width group, max surf balance peak,
sum width valley, nb stretch, min sum surf true and nb in.

Condition (2) forces every i-occurrence of ψ to be non-empty. Condition (3)
imposes disjointness of any two i-occurrences of ψ. By Condition (4), there is
discontinuity in the recognition of ψ, allowing us to avoid any regular expression
ψ whose language contains words v, w such that v is a proper factor of w, and
after consuming a prefix of w whose suffix is v we cannot decide whether v or w
is a maximal occurrence of ψ. While extracting an occurrence of a pattern ψ for
any possible mismatch, we need to know in advance the length of the suffix keep,
which is ensured by Condition (5). Condition (6) is motivated by the fact that,
if ε ∈ Lψ, then every sequence contains at least one occurrence of ψ, even if the
the sequence is smaller than a. Definition 9 shows how to use Condition (6).

We now define the result value of a function F over integer sequences.

Definition 9 (function evaluation). Consider a function F parameterised by
〈ψ, siga〉, 〈f, g, h〉, 〈before, after〉, 〈balance〉, 〈skip〉. For any integer sequence X,
the result of F from X is (R1, R2) if h 6= Id, R1 otherwise, where R1 (resp.
R2) is obtained by applying the aggregator g (resp. h) to the list 〈f1, f2, . . . , ft〉
(resp. 〈g1, g2, . . . , gt〉), where every gi is equal to g(f1, f2, . . . , fi), and every fi
is computed from to the e-occurrence i {i1, . . . , i`} as follows:

– If balance is 0, then fi is equal to f(Xi1 , Xi2 , . . . , Xi`).
– If balance is 1, then fi is equal to |f(Xi1 , Xi2 , . . . , Xik−1

,−Xik+a−1
, . . . ,−Xi`)|,

where ik is the found index of the s-occurrence i of ψ.

If the signature of X does not contain any s-occurrences of ψ, then R1 (resp.

R2) is equal to idfg (resp. idf,gh) according to Table 1. Note that when ε ∈ Lψ,
we add a sequence of a − 1 arbitrary integers at the end of the input sequence.

Example 1. Table 2 provides seven examples of well-formed functions. In ex-
amples ¬ and ­ the same abstract alphabet is associated with several con-
crete alphabets, with even signatures of different arities: in ¬, sig2(Xi, Xi+1) =
‘ ≤ ’ ⇔ Xi ≤ Xi+1 ∧ sig2(Xi, Xi+1) = ‘ > ’ ⇔ Xi > Xi+1, while in ­,

5

f φf δif

one 1 1
width λx, y.x+ y 1
surface λx, y.x+ y Xi
max λx, y.max(x, y) Xi
min λx, y.min(x, y) Xi

g φg

Max λx, y.max(x, y)
Min λx, y.min(x, y)
Sum λx, y.x+ y

h φh

Max λx, y.max(x, y)
Min λx, y.min(x, y)
Id λx, y. y

Table 3: (Left) Features and their operators φf and δif . (Center) (resp. Right)
Aggregators (resp. secondary aggregators) and their operators φg (resp. φh).

sig1(Xi) = ‘ /∈ ’ ⇔ Xi /∈ V ∧ sig1(Xi) = ‘ ∈ ’ ⇔ Xi ∈ V where V is a set
of integers. F¬(〈1, 1,0 , 0, 1,0 , 0, 1〉) = 2 since we have two maximal occur-

rences of ‘ >>∗ ’ (highlighted in grey), and F­(〈0, 1 , 0, 1,1 〉) with V = {1}
is equal to 2 since the maximum number of consecutive ones is 2 (also high-
lighted). The patterns associated with ® and ¯ correspond to the peak and
valley patterns. F®(〈 0,1,1,1 , 2, 1,0 , 0,1 , 2, 2, 1,1,0 〉) = 2, i.e. the maximum

difference max(| 3 − 1 |, | 1 − 2 |) of the surface located before/after each peak
with 5 (resp. 11) being the found index of the first (resp. second) s-occurrence.
F¯(〈0, 1, 0 , 1, 1, 1, 0,0,0 , 1〉) = 4, the sum of the widths 1 + 3 of the 2 valleys.

F°(〈 0 , 1,1,1 , 0 , 1 , 0 , 1 〉) = 6 since we have 6 maximal groups of con-

secutive identical values. Note that F°(〈0〉) = 1 since, from Condition (6) of Def-
inition 9, when ε ∈ L=∗ 6=|=∗ and the arity of the signature is 2, we add one integer
value at the end of the input sequence. In ±, sig1(Xi) = ‘>’ means that every
index i of the signature sequence of any input sequence X is an e-occurrence.
F±(X) = 〈0, 0〉, where Xi = 1 (resp. Xi = −1) represents an opening (resp. clos-
ing) parenthesis models well formed expressions with parentheses. In ², given

low , up in Z, sigk(Xi, Xi+1, . . . , Xi+k−1) = ‘ ∈ ’ ⇔
∑i+k−1
α=i Xα ∈ [low , up].

F²(X) returns the number of sliding sequences of k consecutive values of X,
whose sum is located in the interval [low , up]. 4

4 Operational View of Functions Over Integer Sequences

To evaluate a function F wrt an integer sequence X, i.e. see Definition 9, we
need to 1) find all s-occurrences of the pattern ψ of F in the signature sequence
of X, and 2) obtain the corresponding e-occurrences to compute the feature
values and aggregate them. The qualitative (resp. quantitative) part 1) (resp.
part 2)) is called the recognition (resp. computational) aspect of F . Note that
the recognition aspect of F is only related to its pattern ψ and its alphabet Σ.

We describe in Section 4.1 a specific transducer, called seed transducer, for
dealing with the recognition aspect of F . Then we show in Section 4.2 how the
computational aspect of F is handled by a reduced set of instructions based on
the output alphabet of the seed transducer. This set of instructions is param-
eterised by all the parameters of F , except the pattern ψ, and it allows us to

6

synthesise a register automaton with a constant number of registers, which re-
turns the value of F from X after consuming the signature sequence of X. Hence
it takes linear time in the length of X to compute the value of F from X.

4.1 Handling the Recognition Aspect: Seed Transducer

To find all s-occurrences of a pattern in an integer sequence, in the correspond-
ing signature sequence, we introduce the notion of seed transducers: first, we
describe a seed transducer of an abstract pattern, and show how to obtain the
seed transducer of any concrete pattern from the seed transducer of the corre-
sponding abstract pattern. Second, we give the conditions of well-formedness of
a transducer wrt any given pattern, as well as wrt a given abstract pattern.

Describing the Seed Transducer of an Abstract Pattern Consider an
abstract pattern σ, i.e. a regular expression over an abstract alphabet A. A seed
transducer of σ is a deterministic transducer where each transition is labelled
with (1) a symbol in the input alphabet A, called the input symbol, and (2) a
word made from symbols in the output alphabet Ω, called the output word.
Hence, a transducer consumes an input sequence of symbols in A and produces
an output sequence where each element in Ω is called a phase letter. Consider
different possibilities of the produced output symbols when consuming a symbol
Si of some input signature sequence 〈S1, S2, . . . , Sn−a+1〉.

• [out]: corresponds to no occurrence of σ.
• [maybekr with k being an integer constant]: indicates the potential new

occurrence of σ that has at least k transitions.
• [maybeb]: indicates the continuation of a potential new occurrence of σ.
• [outr]: reflects the fact that the previous potential occurrence of σ is not a

true occurrence of σ.
• [found]: denotes the discovery of a new occurrence of σ.
• [maybea]: indicates the potential extension of the latest occurrence of σ.
• [in]: corresponds to the extension of the latest discovered occurrence of σ.
• [end]: corresponds to the end of the latest discovered occurrence of σ.

Besides the phase letters in and maybea whose meaning was left unchanged
compared to [5], we have the following modifications:

• Some transitions that were labelled with out are now labelled with maybeb.
For example, in [5], given the pattern ‘ >><>> ’ this was the case for the
two transitions recognising the first two occurrences of ‘ > ’; but to make the
transducer independent from before they are now labelled with maybeb.
• The letter maybekr was not in the output alphabet of [5]. It has been added

in order to capture patterns that require to restart from a small fixed suffix
after a mismatch. It also replaces the first occurrence of maybeb.
• Furthermore, since in [5], any seed transducer could only produce a single

phase letter per transition, we had to introduce the letter founde, which was

7

a combination of found and end. In our new model, this phase letter has
disappeared since it is no longer needed. In fact, the same transition may
now be labelled with more than one phase letter. For example, given the
pattern σ = ‘ >><>> ’, the transition associated with the recognition of σ
is labelled by the input symbol ‘ > ’, i.e. the last symbol of σ, and the output
word ‘found end maybe2

r ’: found indicates that a new occurrence of σ was
found, end denotes that this new occurrence ended, and maybe2

r indicates
that potentially there is a next occurrence of σ whose prefix corresponds to
the last two encountered input symbols, i.e. ‘ >> ’.

From the seed transducer of an abstract pattern we obtain the seed trans-
ducer of a concrete pattern by the concretisation of the alphabet A.

Well-Formed Transducer We describe the structural properties a seed trans-
ducer must have. Condition (1) implies that it is always possible in the future to
have an occurrence of pattern σ, Condition (2) defines a partial order between
the different phase letters of the same pattern occurrence, Condition (3) forbids
the sequence maybekr maybek+1

r , which can be replaced by maybekr maybeb.

Definition 10 (necessary conditions
for a well-formed transducer).
A seed transducer S is well-formed
if all the following conditions hold:

1. There is a path from each transition
to each transition labelled by a found.

2. The output language is accepted by the
automaton at the right.

3. For any state q we cannot have simul-
taneously a transition labelled by
maybekr entering q, and a transition
labelled by maybek+1

r exiting q.

?/∈

∈

o

out

maybe1
r

fou
n
d

maybeb maybekr

outr

fo
u
n
d

in maybea

en
d

fo
u
n
d

maybekr

out

Well-formed output language

state semantics

/∈: outside a pattern

? : potentially inside

∈: inside a pattern

o: pattern end

Well-Formed Transducer wrt an Abstract Pattern We introduce the
notion of a well-formed transducer wrt an abstract pattern σ, which guarantees
that a transducer recognises all maximal occurrences of an abstract pattern. We
first present the notion of t-occurrence as an interval of indices of specific words
in the output sequence of the transducer. Finally, we state that, for any path
p leading to a state q, the length of the longest suffix in −→σ of the sequence
of input symbols of the transitions of p is either 1) a constant and is smaller
than beforeσ + 1, or 2) is greater than or equal to beforeσ + 1, where beforeσ is
the largest value of before of a well-formed function whose concrete pattern is
obtained from the abstract pattern σ. Note that, by Definition 8, such beforeσ
always exists and depends only on σ.

8

Definition 11 (t-occurrence). Given a seed transducer S of some abstract
pattern over an abstract alphabet A and an input sequence of length n − 1
of symbols of A, the t-occurrence of S for s, denoted by [[i..j]], consists of
the indices i, i + 1, . . . , j of the phase letters of a maximal word TiTi+1 . . . Tj
within the transduction 〈T1, T2, . . . , Tn−1〉 of s that matches the regular expres-
sion ‘ (ε|maybekr maybe∗b)found(maybe∗ain)∗ ’, where k is a natural number.

Definition 12 (maybeb-degree of a path). Consider an abstract pattern σ,
and a path p, a sequence of consecutive transitions, wrt its transducer Tσ.

• The maybeb-suffix of p is the maximal suffix of the sequence of output
symbols of the transitions of p that matches ‘(maybekr |ε)maybe∗b’.

• The maybeb-degree of p is min(beforeσ + 1, `), where ` is the length of the
maybeb-suffix of p plus k−1, the degree of maybekr , if the suffix starts with
maybekr .

Definition 13 (maybeb-degree of a state). Consider an abstract pattern σ
and its transducer Tσ. For every state q of Tσ, if every path from the initial state
of Tσ to the state q has the same maybeb-degree d, then the maybeb-degree of
q is equal to d; otherwise, the maybeb-degree of q is undefined.

Property 1 (necessary conditions for a well-formed transducer wrt a pattern). A
seed transducer S is well-formed wrt an abstract pattern σ over an alphabet A
if all the following conditions hold:

1. It is well-formed in the sense of Definition 10.
2. For any state of S, its maybeb-degree is defined.
3. For any input sequence S of symbols of A, for any t-occurrence [[i..j]] of S,

there exists an s-occurrence (i− k + 1..j) of σ in S, where k is the degree of
maybekr , if the t-occurrence [[i..j]] has one, and is 1, otherwise.

Example 2. Figures 1(A)–1(E) respectively give the seed transducer for the pat-
terns ‘ >=+> ’, ‘ >><>> ’, ‘ =∗ 6= | =∗ ’ (the stretch pattern in °), ‘ ∈+ ’
(the group pattern in ­) and ‘ <+ | >+ ’. The minimum and maximum values
of before and after are set up according to Conditions 2 and 3 of Definition 8.
In Figure 1(A) the maybeb-degree of states s, r, t and t′ is respectively equal
to 0, 1, 2 and 3. Note that states t and t′ cannot be merged since, according to
Definition 13, the maybeb-degree of the merged state would be undefined. In
Figure 1(B) the maybeb-degree of states s, r, t, u and v is respectively equal
to 0, 1, 2, 3 and 4. In Figures 1(C)–1(E) the maybeb-degree of all states is 0,
since the corresponding transducers mention neither maybeb nor maybekr . 4

4.2 Handling the Computational Aspect: Reduced Instruction Set

For a well-formed function F whose concrete pattern is ψ, and an integer se-
quence X, if we know where the s-occurrences of σ in X are located, we can com-
pute the value of F . In a single pass, we aim to both 1) detect all s-occurrences

9

s r t

v

u

<,= : out

> : maybe1
r

<,= : outr

> : maybeb

> : maybe2
r

= : outr

<
:
m
ay
b
e b

<
,=

:
o
u
t
r

>
:
m

a
y
b
e
b

<,=
: outr

>
: fo

un
d en

d may
be

2
r

(B)

s

rt

= : out

<
: fou

n
d

>
: f
ou
n
d

=
: en

d
=
: e
n
d

< : in> : in

> : end found

< : end found

(E)

s r

= : found

6= : found end = : in

6= : in end

(C)

s r
∈ : found

/∈ : out ∈ : in

/∈ : end

(D)
s

t

r

t′

>
:
m

a
y
b
e
1r

<,= : out

> : maybe1
r

=
: m

ay
b
e b

<
:
o
u
t
r

>
:
fo
u
n
d
en

d
m
ay
b
e

1
r

<
: ou

t
r

< : outr

= : maybeb

= : maybeb

> : fo
und

end
mayb

e
1
r

(A)

Fig. 1: Seed transducers for (A) ‘ >=+> ’ with before ∈ [1, 2], after ∈ [0, 2] and
the alphabet {<,=, >}, (B) ‘ >><>> ’ with before ∈ [0, 4], after ∈ [0, 2] and
the alphabet {<,=, >}, (C) ‘ =∗ 6= | =∗ ’ with before = 0, after = 1 and the
alphabet {=, 6=}, (D) ‘ ∈+ ’ with before = 0 = after = 0 and the alphabet {∈, /∈},
(E) ‘ <+ | >+ ’ with before = 0, after ∈ [0, 1] and the alphabet {<,=, >}.

of ψ in X, and 2) compute F from the subsequences of X corresponding to
e-occurrences. To do so, we describe a reduced instruction set for computing F ,
which is associated to the phase letters. The reduced instruction set manipulates
registers, whose values are updated by performing micro instructions. When the
seed transducer consumes the next symbol of an signature sequence, a sequence
of micro instructions, called a macro instruction, is executed.

• In our model, we consider 5 registers described in Part (a).
• The reduced instruction set has 4 micro instructions described in Part (b).
• The macro instructions corresponding to the phase letters of the seed trans-

ducer of ψ are described in Part (c).

(a) Registers of the Reduced Instruction Set The evaluation of a well-for-
med function can be decomposed into at most five levels of computations organ-
ised in the following three layers:

• [Past] Level 4 (resp. 3) records the aggregation wrt the aggregator h
(resp. g) of the pattern occurrences already completed.
• [Present] Level 2 records the feature value of the current not already com-

pleted pattern occurrence.
• [Future] Levels 1 and 0 record the feature value of an hypothetical occur-

rence of pattern that must be confirmed or invalidated later on, depending
of what will be read next. Level 0 is called the bottom level.

With each level ` ∈ [0, 4] we associate a register V` and a function φ` defined
according to Table 3 as follows:

10

• φ4 is φh (with h ∈ {Max, Min, Id}) and the initial value of V4 is idf,gh .

• φ3 is φg (with g ∈ {Max, Min, Sum}) and the initial value of V3 is idfg .

• φ0, φ1 and φ2 correspond all to φf (with f ∈ {max, min, one, surface, width}),
and the initial value of V0, V1 is idf , while the initial value of V2 is idfg .

(b) Micro Instructions of the Reduced Instruction Set The next table
describes the available micro instructions for modifying register values:

• compute the (potential or not) feature value of a pattern occurrence,

• reset all registers from the bottom to a given level to their identity values,

• transmit the register content of a level to the register of the next level,

• set the feature value of the next potential pattern occurrence after a mis-
match.

micro instruction register updates

compute(`, b, v) : if b = 0 then V` ← φ`(V`, v) else V` ← φ`(V`,−v)
reset(`) : for k ∈ [0, `] do Vk ← idk

transmit(c, b, `) : if c = 1 then V`+1 ← V`

else if b = 1 then V`+1 ← φ`+1(V`+1, |V`|)
else V`+1 ← φ`+1(V`+1, V`)

set(`, k) : if before + 1− k > 0 then V` ← id`

else if before + 1− k = 0 then V` ← δif
else V` ← φ`(δ

i−k+1+before
f , . . . , δif)

Note that all values φ`(δ
i−k+1+before
f , . . . , δif), where k are the integer values

occurring in the maybekr phase letter of a seed transducer and i ∈ [k−before, n−
a + 1] is the index of the signature symbol we are processing, used in the ‘set’
micro instruction, are computed in advance in an initialisation phase in linear
time wrt the sequence length so that they are directly available. Also, like in [5],
each micro instruction can be turned into a constraint to induce a reformulation
of the original constraint. This is not developed here for space reasons.

(c) Macro Instructions of the Reduced Instruction Set Given a well-
formed function F and its concrete pattern ψ, we describe the macro instructions
associated with each phase letter of the seed transducer of ψ. A macro instruction
may depend on the maybeb-degree, denoted d in Table 4, of the end state of a
transition labelled by the corresponding phase letter. Table 4 defines the macro
instructions where the function κ is defined just after. The precondition of a
macro instruction must hold in order to execute its corresponding code.

Depending on which of the following conditions holds, a − 1 − after < 0 ∧
balance = 0, a − 1 − after = 0 ∧ balance = 0, a − 1 − after > 0 ∧ balance = 0,
balance = 1, the function κ used in found is respectively defined as idf , δif ,

φf (δif , . . . , δ
i+a−1−after
f), δi+a−1

f , where i is the index of the current signature
symbol we are processing.

11

letter precondition macro instruction code

maybeb :

(
s /∈ skip ∧
d > before

)
compute

(
1, 0, δif

)
, transmit(0, 0, 0), reset(0)(

s ∈ skip ∧
d > before

)
compute

(
0, 0, δif

)
maybek

r : reset(1), set(1, k)
outr : reset(1)
found : compute(1, balance, κ), transmit(1, 0, 1), reset(1)

maybea : compute
(

1, balance, δi+a−1−after
f

)
in : compute

(
1, balance, δi+a−1−after

f

)
, transmit(0, 0, 1), reset(1)

end : transmit(0, balance, 2), transmit(0, 0, 3), reset(2)

Table 4: Macro instructions of the reduced instruction set, where d denotes the
maybeb-degree of the end state of a transition labelled by the corresponding
phase letter.

x

s

q

τ

V1

V2

V3

variables

signature variables

states

phase letters

future

present

past

micro-instructions

(φ1 = width)

(φ2 = width)

(φ3 = Max)

/∈ ∈ /∈ ∈ ∈
s s r s r r

out found end found in

0

0

0

0

0

0

1

0

0

1

1

0

0

1

0

c t r

0

1

1

0

1

1

0

0

1

t t r

1

0

1

1

1

1

0

1

1

c t r

1

1

1

1

2

1

0

2

1

c t r

0

2

2

0

2

2

0

0

2

t t r

0 1 0 1 1

r
e
g
i
s
t
e
r
s

︷
︸︸

︷

compute

reset

transmit

:

:

:

Fig. 2: Trace for the max width group constraint, i.e. Example ­ of Table 2
on the sequence 〈0, 1, 0, 1, 1〉: evolution of the register values V1, V2, V3 while
executing the micro-instructions compute, reset and transmit leading to the
result 2 shown in bold on the right upper corner (since they are not relevant for
this example, registers V0 and V4 are not shown).

(d) Value Returned by the Function After consuming a signature sequence,
the function performs the macro instruction of the end phase letter. If h different
from Id, then the function returns the last values of the registers V3 and V4. If
h equal to Id, then the function only returns the last value of the register V3.

Figure 2 shows the evaluation of the function in Example ­ of Table 2. It
provides the phase letters produced by transducer (D) of Figure 1, and the cor-
responding sequence of micro-instructions updating the registers V1, V2 and V3.

5 Generation of Seed Transducers

We present an algorithm to generate a well-formed seed transducer as specified in
Definition 10 from a well-formed function and its regular expression. We present
in Section 5.1 the modifications made to the algorithm of [11] for generating

12

seed transducers so as to generate seed transducers satisfying Definition 10. In
Section 5.2 we present a new transducer disambiguation algorithm that takes
into account both the new output alphabet of seed transducers and the fact that
the transitions in our seed transducers can have more than one output symbol.

5.1 Generating a Seed Transducer from a Regular Expression

Recall that a deterministic finite automaton (DFA) is a tuple 〈Q,Σ, δ, q0, Qa〉,
where Q is the set of states, Σ is the alphabet, δ : Q × Σ → Q is the transition
function, q0 ∈ Q is the start state, and Qa ⊆ Q is the set of accepting states.
For any regular expression σ that satisfies the conditions given in Definition 8,
given a minimal DFA M = 〈Q,Σ, δ, q0, Qa〉 accepting Lσ, a transducer can be
generated by means of the following algorithm:

1. ExpandM using Algorithms 1 and 2 of [11], with the difference that instead
of using the exact value of before as an input for Algorithm 2, here we use a
constant β equal to the minimum value of before that satisfies Definition 8.

2. As in [11], divide Q into three disjoint sets: Qa, the set Q− of states reachable
from q0 without passing through an accepting state, and the set Q+ of states
that can be reached from an accepting state, excluding the accepting states.
After applying Algorithm 1 of [11] we know that Q+ = Q \Qa \Q−.

3. Set the output symbol of every transition in M as in the algorithm of [11]
except for the following cases:
(a) For each accepting state q: if q has no outgoing transitions, then set the

output symbol of all transitions from states in Q− to q to found end.
(b) For each accepting state q: if q has no outgoing transitions, then set the

output symbol of all transitions from states in Q+ to q to in end.
(c) For every transition on a path of length β leaving the initial state: we

now set the output symbol to maybekr , where 1 ≤ k ≤ β is the length
of the path. This will not overwrite the symbols already set, because of
the expansion performed in Step 1 by Algorithm 2 of [11].

(d) For all remaining transitions in M leaving q0: set the output symbol to
maybe1

r . If there is a loop in q0, then first expandM using Algorithm 2
in [11] and the value 1.

4. As in [11], concatenate M to a transducer for Σ∗ where all the output se-
quences are set to out, creating a non-deterministic finite transducer for Σ∗Lσ.

5. Using our own disambiguation algorithm described in Section 5.2, deter-
minise the transducer for Σ∗L(σ).

6. Replace output symbols so that the transducer is well-formed as specified in
Definition 10 using the following rules:
(a) For every transition t from a state q in Qa ∪ Q+ to a state in Q−: if q

has incoming transitions with the output symbols in or maybea, then:
• If the output symbol of t is out, then replace it with end.
• If the output symbol of t is maybeb, then replace it with end maybe1

r .
(b) For every transition from a state in Qa ∪ Q+ with the output symbol

found: replace the output symbol by end found.

13

(c) For every transition t from a state q in Q− with the output symbol
out: if q has incoming transitions with the output symbol maybeb or
maybekr , then replace the output symbol of t by outr. Note that we do
not need to expand the transducer by following Algorithm 3 in [11].

(d) For every transition t from the initial state q0 with the output symbol
maybe1

r , replace the output symbol of t by maybeb.
(e) For every state q, if q has incoming transitions with the output sym-

bol maybekr , the if q has outgoing transitions with the output symbol
maybek+1

r replace it with the symbol maybeb.
7. Mark all states as accepting and minimise the transducer [10].
8. For every state q, compute its maybeb-degree by enumerating paths ending

in q. If there are p > 1 different maybeb-degrees of such paths, i.e. the
maybeb-degree of q is undefined, then replace q with p states corresponding
to p different maybeb-degree of paths ending in q and adjust the transitions
accordingly. Repeat the whole step for the transducer with the duplicated
states until the maybeb-degree of every state is defined.

Example 3. Consider the regular expression σ = ‘ >=+> ’. The minimum-state
automaton M accepting Lσ is in Figure 3(A). The expansion algorithms in
Step 1 do not modify M. The set of states Q = {s, r, t, u} of M is divided into
the subsets Qa = {u}, Q− = {s, r, t}, and Q+ = ∅. We then proceed to set
the output symbols of the transitions in order to build the transducer for σ.
After Step 3a, we have the transducer in Figure 3(B). After Step 3c, we have
the transducer in Figure 3(C). After finishing Step 3, we have the transducer in
Figure 3(D). After concatenating the transducer for Σ∗ in Step 4 we have the
transducer in Figure 3(E). After determinising the transducer in Step 5, we have
the transducer in Figure 3(F). After Step 7, once all the states are made accepting
and the obtained transducer is minimised, we have the minimal transducer in
Figure 3(G). Finally, after Step 8 we have the transducer in Figure 1(A). 4

5.2 Disambiguation Algorithm

Our disambiguation algorithm is an extension of the one in [11], which is in
turn based on the powerset construction [15] used for the determinisation of
automata. In the transducer case, [11] redefines the transition function of the
powerset construction so that for any transition between two states of the deter-
ministic transducer, only the maximum output symbol among all the possible
ones is kept, that is, δ′(q, a) = 〈{u | 〈u, ∗〉 ∈ T}, (max(b) | 〈∗, b〉 ∈ T)〉, where
T = {δ(r, a) | r ∈ q}. Here transitions can have more than one output symbol,
and so we define the transition function as in [11], except that we choose the
output sequence that is lexicographically larger. Moreover, when comparing the
sequences found end and maybekr , we merge them into found end maybekr .

6 Conclusion, Related Work, and Future Work

Our contributions over related work can be summarised as follows:

14

s r t u
> = >

=

(A)
s r t u

> =
> :

found
end

=

(B)

s r t u
> : maybe1

r =
> :

found
end

=

(C)
s r t u

> : maybe1
r = : maybeb

> :
found
end

= : maybeb

(D)

s r t u
> : maybe1

r = : maybeb > : found end

= : maybeb
< : out = : out

> : out

(E)

s sr st

sru

> : maybe1
r = : maybeb

>
: f

ou
nd

en
d

m
ay

be
1

r

= : maybeb< : out

= : out

> : maybe1
r< : out

< : out

<
: out

=
: m

ay
be
b

>
:
m

a
y
b

e
1 r

(F) s sr

st

> : maybe1
r

=
: m

ay
be b

>
: f

ou
nd

en
d

m
ay

be
1
r

= : maybeb

<,= : out > : maybe1
r

< : outr

<
:
o
u

t

(G)

Fig. 3: (A) The minimal automaton recognising L‘>=+>’. Intermediate trans-
ducer for ‘ >=+> ’ after applying (B) Step 3a, (C) Step 3c, (D) Step 3,
(E) Step 4, (F) Step 5, and (G) Step 7 of the algorithm in Section 5.1

1. We have extended the qualitative aspect of the transducer-based compu-
tational model of [5]. The input alphabet of transducers is not fixed to
{<,=, >}, that is the binary topological comparison operators that are use-
ful for time-series constraints, but can be any set of operators, including
unary ones (such as {∈, /∈} with fixed sets, used in [1]) and k-ary ones (as
frequently used in the Global Constraint Catalogue [6]). The output alpha-
bet of transducers is augmented by mayber and simplified, since transducers
can output more than one letter for each input letter.

2. We have parametrised the quantitative aspect of the computation:

• The model of [5] had parameters for trimming the borders of a maxi-
mal occurrence of a regular expression, with the major drawback that
transducers were dependent on these parameters devoted to the quan-
titative aspect of the computation. In the new model, transducers are
independent of such trimming parameters.

• Within a maximal occurrence of a regular expression, based on the cur-
rent recognition phase, a function f or its opposite −f may now be used
for computing the contribution of an input letter to the feature value.

While regular expressions and transducers are already used in the context
of frequent sequence mining [3], they are focussed on the qualitative aspect,
i.e. they do not compute a value for each pattern occurrence.

3. We upgraded the automatic transducer generator of [11].

4. The small number of phase letters and the very small set of micro instructions
allow a compact implementation of checkers and reformulation.

15

While learning from a large collection of examples can be done with neu-
ral networks without assuming any bias, learning from very few examples still
requires a proper bias. Hence, future work may exploit the canonical form intro-
duced here to learn constraint models having functional constraints on integer
sequences both from very few samples [8] and with few queries [9].

References

1. Alur, R., Fisman, D., Raghothaman, M.: Regular programming for quantitative
properties of data streams. In: Thiemann, P. (ed.) ESOP 2016. LNCS, vol. 9632,
pp. 15–40. Springer (2016)

2. Arafailova, E., Beldiceanu, N., Douence, R., Carlsson, M., Flener, P., Fran-
cisco Rodŕıguez, M.A., Pearson, J., Simonis, H.: Global Constraint Catalog, Vol-
ume II, Time-Series Constraints. CoRR abs/1609.08925 (2016), http://arxiv.
org/abs/1609.08925

3. Beedkar, K., Gemulla, R.: Desq: Frequent sequence mining with subsequence con-
straints. In: 2016 IEEE 16th International Conference on Data Mining (ICDM).
pp. 793–798 (Dec 2016). https://doi.org/10.1109/ICDM.2016.0092

4. Beldiceanu, N., Carlsson, M., Debruyne, R., Petit, T.: Reformulation of global
constraints based on constraints checkers. Constraints 10(4), 339–362 (2005)

5. Beldiceanu, N., Carlsson, M., Douence, R., Simonis, H.: Using finite transducers for
describing and synthesising structural time-series constraints. Constraints 21(1),
22–40 (January 2016)

6. Beldiceanu, N., Carlsson, M., Rampon, J.X.: Global constraint catalog, 2nd Edition
(revision a). Tech. Rep. T2012:03, Swedish Institute of Computer Science (February
2012), http://soda.swedish-ict.se/view/sicsreport/

7. Beldiceanu, N., Contejean, E.: Introducing global constraints in CHIP. Mathemat-
ical and Computer Modelling 20(12), 97–123 (1994)

8. Beldiceanu, N., Simonis, H.: Modelseeker: Extracting global constraint models from
positive examples. In: Data Mining and Constraint Programming - Foundations of
a Cross-Disciplinary Approach, pp. 77–95 (2016)

9. Bessière, C., Daoudi, A., Hebrard, E., Katsirelos, G., Lazaar, N., Mechqrane, Y.,
Narodytska, N., Quimper, C., Walsh, T.: New approaches to constraint acquisi-
tion. In: Data Mining and Constraint Programming - Foundations of a Cross-
Disciplinary Approach, pp. 51–76 (2016)

10. Choffrut, C.: Minimizing subsequential transducers: A survey. Theoretical Com-
puter Science 292(1), 131–143 (2003)

11. Francisco Rodŕıguez, M.A., Flener, P., Pearson, J.: Automatic generation of de-
scriptions of time-series constraints. In: Virvou, M. (ed.) ICTAI 2017. IEEE Com-
puter Society (2017)

12. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley, 3rd edn. (2007)

13. Pachet, F., Roy, P.: Automatic generation of music programs. In: Jaffar, J. (ed.)
CP 1999, LNCS, vol. 1713, pp. 331–345. Springer (1999)

14. Pesant, G.: A filtering algorithm for the stretch constraint. In: Walsh, T. (ed.)
CP 2001. LNCS, vol. 2239, pp. 183–195. Springer (2001)

15. Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM Journal
of Research and Development 3(2), 114–125 (1959)

16. Sakarovitch, J.: Elements of Language Theory. Cambridge University Press (2009)

16

http://arxiv.org/abs/1609.08925
http://arxiv.org/abs/1609.08925
https://doi.org/10.1109/ICDM.2016.0092
http://soda.swedish-ict.se/view/sicsreport/

	A Transducer-Based Model for Representing Functional Constraints on Integer Sequences

