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Abstract. SAT solvers have achieved remarkable successes in solving
various combinatorial problems. Nevertheless, it remains a challenge to
find an efficient SAT encoding for the Hamiltonian Cycle Problem (HCP),
which is one of the most well-known NP-complete problems. A central is-
sue in encoding the HCP into SAT is how to prevent sub-cycles, and one
well-used technique is to map vertices to different positions. The HCP
can be modeled as a single-agent path-finding problem. If the agent oc-
cupies vertex i at time t, and occupies vertex j at time t+ 1, then vertex
j’s position must be the successor of vertex i’s. In this paper, we compare
three encodings for the successor function, namely, the unary encoding,
the binary adder encoding, and the LFSR encoding that uses a linear-
feedback-shift register. We also propose a preprocessing technique that
rules out a position from consideration for a vertex and a time if the
agent cannot occupy the vertex at the time. Our study has surprisingly
revealed that, with optimizations and preprocessing, the binary adder
encoding is a clear winner: it solved some instances of the knight’s tour
problem that had been beyond reach for eager encoding methods, and
solved more instances of the Flinders HCP challenge set than other en-
codings.

1 Introduction

The Hamiltonian Cycle Problem (HCP) is one of the most well-known NP-
complete problems. Given a graph, which is either directed or undirected, the
goal of the HCP is to find a cycle in the graph that includes each and every vertex
exactly once. As the HCP occurs in many combinatorial problems, the global
constraint circuit(G) has become indispensable in constraint programming
(CP) systems. Given a graph G represented by a list of domain variables, the
constraint ensures that any valuation of the variables constitutes a Hamiltonian
cycle.

SAT solvers have achieved remarkable successes in solving combinatorial
problems, ranging from formal methods [9, 19, 24], planning [22, 33], answer set
programming [4, 12], to general constraint satisfaction problems (CSPs) [2, 17,
20, 30, 35, 36, 38]. The key issue in encoding the HCP into SAT is how to prevent
sub-cycles. A naive encoding, which bans sub-cycles in every subset of vertices,
requires an exponential number of clauses. One common technique used in SAT
encodings for the HCP is to map vertices to different positions so that no sub-
cycles can be formed during search. The direct encoding of the mapping, which



requires O(n3) clauses for a graph of n vertices in the worst case, does not scale
well for large graphs [16, 26, 31]. In order to circumvent the explosive code size of
the eager encoding approach, researchers have proposed lazy approaches, such as
satisfiability modulo acyclicity [1] that incorporates reachability checking dur-
ing search, and incremental SAT solving that incrementally adds clauses to ban
sub-cycles [34]. Recently inspired by the log encoding [18], Johnson proposed a
compact encoding for the HCP, which employs a linear-feedback-shift register
(LFSR) for the successor function [21].

This paper continues the pursuit of an efficient SAT encoding for the HCP.
The HCP can be modeled as a single-agent path-finding problem. Given a graph
of n vertices, the agent resides at the start vertex at time 1, moves to a neigh-
boring vertex in each step, and at time n + 1 be back at the start vertex after
having visited all the vertices. Each vertex is mapped to a distinct position. If
the agent occupies vertex i at time t, and occupies vertex j at time t + 1, then
vertex j’s position must be the successor of vertex i’s. We call this encoding
distance encoding. In this paper, we compare three encodings for the successor
function, namely, the unary encoding, the binary adder encoding, and the LFSR
encoding. We also propose a preprocessing technique that rules out a position
from consideration for a vertex and a time if the agent cannot occupy the vertex
at the time.

The experimental results show that, with optimizations and preprocessing,
the binary adder encoding outperforms the unary and the LFSR encodings. The
binary adder encoding solved some instances of the knight’s tour problem that
had been beyond reach for eager encoding methods, and solved more instances
of the Flinders HCP challenge set1 than other encodings.

2 Preliminaries

2.1 The circuit Constraint

A well-known representation of a directed graph in CP is to use a domain variable
for each vertex in the graph, where the domain represents the set of neighboring
vertices. For example, Figure 1 gives a directed graph and its representation
using domain variables, where vertex i is represented by the domain variable Vi

(i = 1,2,3,4), and the domain of Vi indicates the outgoing arcs from vertex i.
Let G = [V1, V2, . . . , Vn] be a list of domain variables representing a graph.

A valuation Vi = j of the domain variables represents a subgraph of G that con-
sists of arcs (i, j) (i ∈ 1 . . . n, j ∈ 1 . . . n). The circuit(G) constraint enforces
that the subgraph represented by a valuation of the domain variables forms a
Hamiltonian cycle. For example, for the graph in Figure 1, [2,4,1,3] is a solu-
tion because 1→2, 2→4, 4→3, 3→1 is a Hamiltonian cycle, but [2,1,4,3]

is not because the graph 1→2, 2→1, 3→4, 4→3 contains two sub-cycles. In
the following, we assume that n > 1, the vertices are numbered from 1, and the
graph is anti-reflexive, meaning Vi 6= i for i ∈ 1 . . . n.

1 http://fhcp.edu.au/fhcpcs
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Fig. 1. A directed graph and its representation using domain variables

2.2 Direct Encoding of Domain Variables

Let X :: {a1, a2, . . . , an} be a domain variable. The direct encoding [8] introduces
a Boolean variable Bi for Bi ⇔ X = ai (i ∈ 1..n), and generates the constraint
exactly-one(B1, B2, . . . , Bn), which is converted to a conjunction of an at-least-
one constraint and an at-most-one constraint. The at-least-one(B1, B2, . . . , Bn)
is encoded as the clause B1∨B2∨ . . .∨Bn. The at-most-one(B1, B2, . . . , Bn) can
be naively encoded as ¬Bi∨¬Bj , for i ∈ 1..n, j ∈ 1..n, and i 6= j. The 2-product
encoding [5] for at-most-one is more compact than the naive encoding, but it
introduces temporary Boolean variables.

2.3 Log Encoding of Domain Variables

The log encoding [18] is more compact than the direct encoding. The sign-and-
magnitude log encoding uses a sequence of Boolean variables for the magnitude.
If there are values of both signs in the domain, then the encoding uses another
Boolean variable for the sign. Each combination of values of the Boolean variables
represents a value for the domain variable.

Under the log encoding, each domain variable can be treated as a truth table,
and a logic optimizer can be utilized to find CNF clauses for it. The Quine-
McCluskey (QM) algorithm [32, 27] is popular for two-level logic optimization.
A product is a conjunction of literals. Given a truth table, each tuple is a product,
called a minterm, that involves all the inputs. A minterm is in the on-set if its
output is required to be 1, in the off-set if the output is required to be 0, and
in the don’t-care-set, otherwise. A product of literals is an implicant of a truth
table if it entails no minterms in the off-set. A prime implicant is an implicant
that is not implied by any other implicant. For a truth table, the QM algorithm
first computes all the prime implicants of the table, and then finds a minimal set
of prime implicants that covers all the minterms in the on-set and none of the
minterms in the off-set. The second step of the QM algorithm requires solving
the minimum set-covering problem, which is NP-hard [10]. The Espresso logic
optimizer [3] only computes a partial set of prime implicants based on heuristics,
and therefore a smaller set-covering problem.

For example, consider the domain variable X :: [−2,−1, 2, 1]. The log encod-
ing uses one Boolean variable, S, to encode the sign, and two variables, X1 and
X0, to encode the magnitude. A naive encoding with conflict clauses [11] for the
domain requires four clauses:
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¬S ∨ ¬X1 ∨ ¬X0 (X 6= −3)
¬S ∨X1 ∨X0 (X 6= −0)
S ∨X1 ∨X0 (X 6= 0)
S ∨ ¬X1 ∨ ¬X0 (X 6= 3)

Each of these clauses corresponds to a no-good value in {−3,−0, 0, 3}, where −0
denotes the negative 0. The logic optimizer Espresso only uses two clauses:

X0 ∨ X1

¬X0 ∨ ¬X1

Note that the sign variable is optimized away.

3 The Distance Encoding for HCP

The circuit(G) constraint, where G = [V1, V2, . . . , Vn], enforces the following:
(1) each of the vertices has exactly one incoming arc and exactly one outgoing
arc; (2) each of the proper subgraphs of G is a tree, meaning that the subgraph
is connected and the number of vertices is 1 greater than the number of arcs. A
SAT encoding based on these properties does not use any extra variables, but
requires an exponential number of clauses.

The distance encoding for HCP employs a matrix of Boolean variables H of
size n × n for the Hamiltonian cycle. The entry Hij is 1 if and only if the arc
(i, j) occurs in the resulting Hamiltonian cycle.

The following channeling constraints connects the matrix H and the original
domain variables [V1, V2, . . . , Vn]:

For each i ∈ 1..n, j ∈ 1..n, i 6= j: Hij ⇔ Vi = j (1)

Since each variable Vi takes only one value, constraint (1) entails that each vertex
has exactly one outgoing arc. The following degree constraints ensure that each
vertex has exactly one incoming arc:

For each j ∈ 1..n:
∑n

i=1 Hij = 1 (2)

For each pair of vertices (i, j) (i ∈ 1..n, j ∈ 1..n), if the arc (i, j) is not in the
original graph G, then the entry Hij is set ot 0. Therefore, the number of Boolean
variables in H equals the number of arcs in G.

Graph H that satisfies constraints (1) and (2) may contain sub-cycles. In
order to ban sub-cycles, the distance encoding maps each vertex to a distinct
position. Let p(i) be the position of vertex i, s(p) denote the successor of position
p,2 and sk(p) be the kth successor of p. Assume that vertex 1 is visited first,
and it is mapped to position 1.3 The following constraints ensure that the cycle
starts at 1 and ends at 1:

2 The successor function may generate a different sequence of numbers from the natu-
ral number sequence. So the successor of 1 may not be 2, depending on the encoding
of the successor function.

3 A good heuristic is to start with a vertex that has the smallest degree [37].
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For each i ∈ 2..n:
H1i ⇒ p(i) = s(1) (3)
Hi1 ⇒ p(i) = sn−1(1) (4)

Constraint (3) ensures that if there is an arc from vertex 1 to vertex i then i’s
position is the successor of 1. Constraint (4) ensures that if there is an arc from
vertex i to vertex 1 then i’s position is the (n− 1)th successor of 1.

In addition to the above constraints, the following constraints ensure that
the arcs are connected and the vertices are positioned successively:

For each i ∈ 2..n, j ∈ 2..n, i 6= j:
Hij ⇒ p(j) = s(p(i)) (5)

Constraint (5) ensures that vertex j is positioned immediately after vertex i if
arc (i, j) is in the Hamiltonian cycle.

Theorem 1. Constraints (1) - (5) guarantee that the graph represented by H
is Hamiltonian.

Proof. Constraints (1) and (2) entail that each vertex in graph H has exactly
one incoming arc and exactly one outgoing arc, and therefore they guarantee
that graph H is cyclic. Assume that the cycle in which vertex 1 occurs is:

1→ v2 → v3 → . . .→ vk → 1

According to constraints (3) - (5), the following conditions hold:

p(v2) = s(1)
p(vi) = s(p(vi−1)) for i ∈ 3..k
p(vk) = sn−1(1)

These conditions entail k = n. Therefore, graph H includes all the vertices and
is Hamiltonian.

The final code size of the distance encoding depends on how the successor
function is encoded. We analyze here the code size of constraints (1) and (2),
which is not dependent on the successor function. The number of Boolean vari-
ables in H equals the number of arcs in G. Constraint (1) mimics the direct
encoding of domain variables. Both constraint (1) and constraint (2) are en-
coded as exactly-one constraints. Let d be the maximum degree in G. If the
2-product encoding [5] is used for at-most-one, then constraints (1) and (2) in-
troduce O(n×

√
d) new Boolean variables and require O(n× d) clauses.

4 Three Encodings of the Successor Function

There are several different ways to encode the successor function p(j) = s(p(i))
used in constraint (5). This section gives three such encodings, namely, the
unary encoding, the binary adder encoding, and the linear-feedback-shift-register
(LFSR) encoding.
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4.1 Unary Encoding

The unary encoding of the successor function employs a matrix U of Boolean
variables of size n × n, where Uip = 1 iff vertex i’s position is p for i ∈ 1..n
and p ∈ 1..n. Since vertex 1 is visited first, U11 is initialized to 1. Each vertex
is visited exactly once, so we have:

For each i ∈ 1..n:
∑n

p=1 Uip = 1 (6)

For each vertex i (i ∈ 1..n), there is exactly on position p (p ∈ 1..n) for which
Uip is 1.

Constraints (3)-(5) given in the previous section are translated into the fol-
lowing under the unary encoding:

For each i ∈ 2..n:
H1i ⇒ Ui2 (3’)
Hi1 ⇒ Uin (4’)

For each i ∈ 2..n, j ∈ 2..n, i 6= j, p ∈ 2..(n− 1):
Hij ∧ Uip ⇒ Uj(p+1) (5’)

Constraint (3’) ensures that if there is an arc from vertex 1 to vertex i then
vertex i’s position is 2. Constraint (4’) ensures that if there is an arc from vertex
i to vertex 1 then vertex i’s position is n. Constraint (5’) ensures that if arc (i, j)
is in the Hamiltonian cycle, and vertex i’s position is p, then vertex j’s position
is p + 1. The constraints (3’)-(5’) entail that for each position there is exactly
one vertex mapped to it (

∑n
i=1 Uip = 1 for p ∈ 1..n).

The two dimensional array U has O(n2) variables. In addition, some tem-
porary Boolean variables are introduced by the exactly-one constraints in (6).
The number of clauses is dominated by constraint (5’), which requires O(n2×d)
clauses to encode, where d is the maximum degree in G.

4.2 Binary Adder Encoding

The binary adder encoding of the successor function employs a log-encoded
domain variable Pi for each vertex i, whose domain is the set of possible positions
for the vertex. As all the positions are positive, no sign variables are needed in
the encoding.

Since vertex 1 is visited first, P1 = 1. Constraints (3)-(5) given above are
translated into the following under the log encoding:

For each i ∈ 2..n:
H1i ⇒ Pi = 2 (3”)
Hi1 ⇒ Pi = n (4”)

For each i ∈ 2..n, j ∈ 2..n, i 6= j:
Hij ⇒ Pj = Pi + 1 (5”)

The efficiency of the encoding heavily depends on the encoding of the successor
function Pj = Pi + 1 used in constraint (5”).
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¬X4 ∨ ¬X3 ∨ ¬Y4 ∨ Y3

X4 ∨ ¬X3 ∨ Y4 ∨ Y3

X2 ∨ C1 ∨ ¬Y2

¬X3 ∨ ¬X2 ∨ ¬X1 ∨ ¬C1 ∨ ¬Y3

X5 ∨ X3 ∨ ¬Y5

X3 ∨ ¬X2 ∨ ¬X1 ∨ ¬C1 ∨ Y3

¬X2 ∨ C1 ∨ Y2

X3 ∨ ¬C6

¬X5 ∨ ¬X4 ∨ ¬Y5 ∨ Y4

X4 ∨ X3 ∨ ¬Y4

X5 ∨ ¬Y5 ∨ ¬Y3

X3 ∨ X2 ∨ ¬Y3

X2 ∨ ¬X1 ∨ ¬C1 ∨ Y2

X5 ∨ ¬X4 ∨ Y5 ∨ Y4

¬C6 ∨ ¬Y3

¬X3 ∨ X2 ∨ Y3

X2 ∨ ¬Y2 ∨ ¬Y1

X4 ∨ ¬Y4 ∨ ¬Y3

X5 ∨ ¬Y5 ∨ ¬Y4

X3 ∨ ¬Y3 ∨ ¬Y2

¬X1 ∨ C1 ∨ Y1

X1 ∨ ¬C1 ∨ Y1

¬X2 ∨ Y2 ∨ ¬Y1

¬X3 ∨ Y3 ∨ ¬Y2

¬C6 ∨ ¬Y5

¬X5 ∨ C6 ∨ Y5

¬C6 ∨ ¬Y4

X1 ∨ C1 ∨ ¬Y1

Fig. 2. The five-bit adder for <X5X4X3X2X1> + C1 = <C6Y5Y4Y3Y2Y1>

Let X’s log encoding be <Xm−1Xm−2 . . . X1X0> and Y ’s log encoding be
<Ym−1Ym−2 . . . Y1Y0>. Consider the addition:

Xm−1 . . . X1 X0

+ 1
Ym−1 . . . Y1 Y0

A naive encoding performs the addition bit-by-bit from the lowest bit position
to the highest bit position. If a half-adder is used for each bit position, then the
addition requires m− 1 carry variables and 7 clauses for each bit position.4

A more efficient encoding performs the addition as follows: For the lowest
bit position, it imposes Y0 = ¬X0 and C1 = X0, meaning that the result bit Y0

is the negation of X0, and the carry out C1 is the same as X0. The constraint
Y0 = ¬X0 is encoded as two clauses: Y0 ∨X0 and ¬Y0 ∨¬X0, and the constraint
C1 = X0 only passes X0 as the carry out, and requires no clauses. For the
next five bit positions, it uses the five-bit adder given in Figure 2 to perform
<X5X4X3X2X1> + C1 = <C6Y5Y4Y3Y2Y1>, which uses a new Boolean variable
(C6) and 25 clauses. For the remaining bit positions, it performs the addition
five bits a time, using the same five-bit adder.

4 For the lowest and highest bit positions, the half-adder can be optimized so that it
uses 4 clauses.
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Under the log encoding, each of the position variables Pi (i ∈ 2..n) uses
log2(n) Boolean variables. In addition, temporary Boolean variables are used for
carries in the encoding of Pj = Pi + 1 in constraint (5”). The number of clauses
is dominated by constraint (5”), which requires O(n × log2(n) × d) clauses to
encode, where d is the maximum degree in G.

4.3 LFSR Encoding

The LFSR encoding of the successor function also employs a log-encoded domain
variable Pi for each vertex i (i ∈ 1..n) [21]. Given a binary number X, the
Fibonacci LFSR5 determines the next binary number Y by shifting the bits of
X one position to left and computing the lowest bit of Y by applying xor on the
taps bits of X. For a given length of n, the LFSR is able to generate all 2n − 1
non-zero numbers from any non-zero start number.

For example, consider the length n = 4 and the taps {2, 3}. Given a binary
number <X3X2X1X0>, the next binary number <Y3Y2Y1Y0> is calculated as
follows: Y3 = X2, Y2 = X1, Y1 = X0, Y0 = X2 ⊕X3. Assume the start number
is 0001, the LFSR produces the following sequence:

0001 → 0010 → 0100 → 1001 →
0011 → 0110 → 1101 → 1010 →
0101 → 1011 → 0111 → 1111 →
1110 → 1100 → 1000 → 0001

The LFSR encoding is more compact than the binary adder encoding. The
LFSR encoding does not need any carry variables. For a number, in order to
produce its successor the LFSR encoding uses two clauses for each bit except
the lowest bit, for which it uses 4 clauses if the number of taps is 2, and 16
clauses if the number of taps is 4.

5 Preprocessing

The distance encoding treats the HCP as a single-agent path-finding problem.
At time 1, the agent resides at vertex 1. In each step, the agent moves to a
neighboring vertex. The agent cannot reach a vertex at time t (t ∈ 2..n) if there
are no paths of length t − 1 from vertex 1 to the vertex. Similarly, the agent
cannot occupy a vertex at time t (t ∈ 2..n) if there are no paths of length
n− t+ 1 from the vertex to vertex 1. This simple reasoning rules out impossible
positions from consideration for vertices during preprocessing.

If the agent cannot occupy vertex i at time t, then vertex i cannot be mapped
to position t. Under the unary encoding, the variable Uit is set to 0; under binary
encoding, the value st−1(1) is excluded from the domain of Pi.

5 https://en.wikipedia.org/wiki/Linear-feedback_shift_register#Fibonacci_

LFSRs
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It is expensive to check if there is a path of a given length t from one vertex
to another if t is large.6 For long paths, we use the shortest-distance heuristic.
For each vertex i (i ∈ 2..n), if the shortest distance from vertex 1 to vertex i is
t, then the agent cannot occupy vertex i at times 1, 2, . . . , t. Similarly, if the
shortest distance from vertex i to vertex 1 is t, then the agent cannot occupy
vertex i at times n− t + 2, n− t + 3, . . ., n.

If the graph is undirected, and the start vertex 1 has exactly two neighbors,7

then the agent must visit one of the neighbors at time 2, and visit the other
neighbor at time n. This means that the agent cannot occupy either neighbor at
times 3, 4, . . . n−1. This idea can be seen as a special case of the Hall’s theorem
[15].

6 Experimental Results

We experimentally compared the three encodings of the successor function on
the knight’s tour problem and the Flinders challenge set, using the Maple SAT
solver [25]. The knight’s tour problem is a popular benchmark that has been
utilized to evaluate solvers. The problem can be solved algorithmically in linear-
time [6]. The Warnsdorff’s rule, which always proceeds to the square from which
the knight has the fewest onwards moves, is a very effective heuristic used in
backtracking search. With Warnsdorff’s rule, called first-fail principle in CP,
and the reachability-checking capability during search, CP solvers can solve very
large instances. Regarding SAT-based solvers, there are reports of successes in
this problem using lazy approaches [1, 34], but no eager approaches have been
reported to be able to solve instances of size 30 × 30 or larger. The Flinders
challenge set contains instances with various graph structures, and is very com-
prehensive for evaluating HCP solvers.

Tables 1 and 2 compare the encodings on code size. For each encoding, we
compared two settings, one with preprocessing (pp) and the other without pre-
processing (no-pp). The results are roughly consistent with the theoretical analy-
sis: The LFSR encoding (lfsr) generates the most compact code, then followed by
the binary adder encoding (adder), and finally by the unary encoding (unary).
Preprocessing has different levels of effectiveness in reducing code size. While
preprocessing reduces the code size to half for unary and always reduces the
code size to some extent for adder, it increases lfsr’s number of clauses for in-
stance knight-20. Although both adder and lfsr use log encoding for position
variables, preprocessing produces holes scattered in the domains for lfsr, and
these domains sometimes require more prime implicants to cover than domains
that have holes concentrated.

Table 3 compares the encodings on CPU time, which includes both the com-
pile and solving times. The times were measured on Linux Ubuntu with an Intel

6 Let M be the adjacency matrix of the graph. A naive algorithm that finds all paths
of length t requires computing M t.

7 The knight’s tour problem belongs to this case if one of the corner squares is chosen
as vertex 1.
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Table 1. A comparison of the encodings on code size (number of variables)

Benchmark adder lfsr unary
pp no-pp pp no-pp pp no-pp

knight-8 808 1,220 880 888 2,246 4,416
knight-10 1,928 1,981 1,407 1,409 5,259 12,497
knight-12 3,123 3,202 2,314 2,326 13,186 25,063
knight-14 4,261 4,364 3,110 3,120 23,446 45,045
knight-16 6,382 6,774 5,088 5,098 39,591 75,988
knight-18 7,752 7,921 5,739 5,749 61,075 118,799
knight-20 10,285 10,492 7,754 7,760 92,080 179,330
knight-22 12,781 13,026 9,660 9,670 133,078 259,864
knight-24 15,396 15,695 11,643 11,651 185,746 364,126

Table 2. A comparison of the encodings on code size (number of clauses)

Benchmark adder lfsr unary
pp no-pp pp no-pp pp no-pp

knight-8 10,531 14,527 9,220 9,540 37,909 146,460
knight-10 23,009 24,683 16,217 15,406 135,200 89,482
knight-12 40,828 43,547 40,241 41,187 96,382 192,806
knight-14 57,465 61,115 57,924 55,644 181,604 364,667
knight-16 84,026 100,212 75,561 78,633 320,668 639,929
knight-18 115,631 121,835 92,201 93,225 509,231 1,029,328
knight-20 151,630 159,013 124,927 111,979 788,490 1,591,404
knight-22 188,325 197,181 153,243 119,595 1,166,274 2,351,996
knight-24 239,456 251,113 222,159 237,725 1,659,575 3,348,802

i7 3.30GHz CPU and 32GHz RAM, and the time limit used was 20 minutes per
instance. Preprocessing is generally effective in reducing the time. The results
for adder are very interesting: when preprocessing was turned off, adder even
failed to solve size 12×12; with preprocessing, however, it efficiently solved all of
the instances. adder even succeeded in solving larger instances. For example, it
solved size 30× 30 in 1 minute, and size 36× 36 in 34 minutes. There have been
no reports of such successes by eager encoding approaches in the literature. It is
also interesting to note that lfsr does not scale up as well as adder, although
lfsr also uses log encoding for position variables, and preprocessing also reduces
the domains of these variables.8 With preprocessing, unary also solved all of the
instances. However, the time taken for each instance is much longer than that
taken by adder.

Table 4 shows the number of solved instances in the Flinders challenge set.
All the encodings were tested with preprocessing enabled, and the time limit
used was 10 minutes per instance. The 1001 instances were divided into five
groups based on the numbers of vertices in the graphs. Except for the last group
in which each graph has more than 4000 vertices, adder solved more instances
than lfsr and unary in each of the groups.

8 The experiment produced similar results when Lingeling
(http://fmv.jku.at/lingeling/) was used as the SAT solver.
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Table 3. A comparison of the encodings on CPU time (seconds)

Benchmark adder lfsr unary
pp no-pp pp no-pp pp no-pp

knight-8 2.19 2.59 2.28 2.51 5.80 7.59
knight-10 3.32 3.79 3.48 3.29 7.08 11.21
knight-12 4.60 >1200 6.48 17.59 9.62 37.24
knight-14 3.39 >1200 89.73 62.89 16.37 95.68
knight-16 6.92 >1200 18.14 33.66 79.03 185.33
knight-18 4.97 >1200 52.71 83.12 110.39 265.12
knight-20 9.37 >1200 90.36 145.63 133.25 422.83
knight-22 14.05 >1200 573.61 517.69 341.84 >1200
knight-24 24.75 >1200 >1200 >1200 1027.11 >1200

Table 4. A comparison of the encodings on the Flinders challenge set (solved instances)

n adder lfsr unary
1..1000 (171) 156 152 119

1001..2000 (167) 137 95 13
2001..3000 (175) 75 20 0
3001..4000 (185) 7 2 0
> 4000 (303) 0 0 0
total (1001) 375 269 132

7 Related Work

Various approaches have been proposed for the HCP [13]. As the HCP is a special
variant of the Traveling Salesman Problem (TSP), many approaches proposed
for TSP [7, 14] can be tailored to the HCP.

Recently several studies have used SAT solvers for the HCP. A common
technique utilized in encoding the HCP into SAT in order to prevent sub-cycles
is to impose a strict ordering on the vertices. The bijection encoding [16] uses an
edge constraint for each non-arc pair (i, j) that bans vertex j from immediately
following vertex i in the ordering. This encoding is compact for dense graphs.
The relative encoding [31] imposes transitivity on the ordering: if vertex i reaches
vertex k, and vertex k reaches vertex j, then vertex i reaches vertex j. The
reachability encoding, which is used in translating answer-set programs with
loops into SAT [26], also imposes transitivity on the ordering. All these encodings
use direct encoding for positions, and require O(n3) clauses in the worst case.
It is reported in [37] that using a hierarchical encoding for domain variables
significantly reduces the code size and increases the solving speed for HCP.
However, hierarchical encoding still suffers from code explosion for large graphs.

The distance encoding for HCP is not new. It is based on the standard
decomposer used in MiniZinc [29], which uses an order variable Oi for each
vertex i, and ensures that if Vi = j then Oj = Oi + 1. The idea of using order or
position variables could be traced back to the integer programming formulation
that uses dummy variables to prevent sub-cycles [28]. Johnson first came up
with the idea of using the LFSR to encode the successor function [21]. His HCP
solver, which employs the LFSR encoding and graph partition techniques, took
the second place in the Flinders challenge.
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The log encoding [18] resembles the binary representation of numbers used
in computer hardware. Despite its compactness, log encoding is not popular due
to its poor propagation strengths [23]. This work has shown for the first time
that, with optimizations and preprocessing, the binary adder encoding of the
successor function outperforms the unary and LFSR encodings for the HCP.

In order to circumvent the explosive code size of eager encoding approaches,
researchers have proposed lazy approaches, such as satisfiability modulo acyclic-
ity [1] and incremental SAT solving [34] for the HCP. The lazy approaches may
be able to deal with large graphs. However, they limit the choice of SAT solvers.

8 Conclusion

A central issue in encoding the HCP into SAT is how to prevent sub-cycles,
and one well-used technique is to map vertices to different positions. In this
paper, we have compared three encodings for the successor function used in
the distance encoding of the HCP, and proposed a preprocessing technique that
rules out unreachable positions from consideration. Our study has surprisingly
revealed that, with optimizations and preprocessing, the binary adder encoding
outperforms the unary and the LFSR encodings. The binary encoding solved
some instances of the knight’s tour problem that had been beyond reach for eager
encoding methods, and solved more instances of the Flinders HCP challenge set
than other encodings.

An efficient SAT encoding for the HCP will expand the successes of SAT
solvers in solving combinatorial problems. We plan to further improve the dis-
tance encoding for the HCP by exploiting special graph structures. We also plan
to generalize the encoding for the TSP, of which the HCP is a special variant.
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