
Increasing modeling language convenience with

a universal n-dimensional array,

CPpy as python-embedded example

Tias Guns

September 30, 2019

Abstract

CP modeling languages offer convenience to the user by allowing both constants and
decision variables to be first class citizens over which mathematical and Boolean operators
can be expressed. Furthermore, text-based modeling language are often solver-independent:
they parse the textual model and generate an expression tree of constraints and variables,
over which solver-specific transformations can be applied.

We demonstrate that the convenience of modeling languages can be further increased by
taking inspiration from the wider scientific computing field. More specifically the use of n-
dimensional arrays, sometimes called tensors, as universal data structure. In this setting,
both constants and n-dimensional arrays are first class citizens over which operators can be
expressed. In the latter case these are called vectorized operations, for which highly efficient
implementations in low-level languages different from the host language can be used.

In this short paper, we argue that the convenience of CP modeling languages can be further
increased by embracing constants, decision variables and n-dimensional arrays as first-class
citizens. The vectorized operations over the n-dimensional arrays allow for more compact
models by using advanced indexing. In fact, implementing advanced indexing in text-based
modeling language may require substantial effort while in an embedded modeling language this
can be offloaded to existing implementations such as the widely popular ndarray of NumPy.
We demonstrate this in a python-embedded CP modeling language that we call CPpy. To
ease reasoning and transforming the resulting expression tree of constraints, we also define a
minimal class diagram of expressions over decision variables, that is as oblivious to the actual
constraint reasoning as possible.

1 Introduction

Modeling languages are an integral part of the constraint programming community, and have both
a wide uptake in their use and an active research community. Examples of text-based modeling
languages are MiniZinc [13], Essence [7], OPL [15]. Their key properties are modeling convenience
and (except for OPL) solver-independence.

The alternative to text-based modeling languages are modeling languages embedded in an
existing programming language. All constraint solvers offer an API to construct models, and hence
could be considered modeling languages. However, they are often highly tied to the underlying
solver implementation and take less care to provide modeling conveniences where both constants
and decision variables are equal first-class citizens.

An exception to the above is Numberjack [10], a python-embedded modelling package that was
introduced almost 10 years ago. It builds a solver-independent expression list, as do text-based
modeling languages, but by operator overloading instead of parsing. It supports solver-specific
constraint decomposition and can translate models to the Mistral CP solver, to the MiniSat SAT
solver and to the SCIP MIP solver.

1

Our work takes inspiration from Numberjack, but further aims to use n-dimensional arrays
as first class citizen. In fact, Numberjack already includes its own ’Matrix’ object to allow more
convenient indexing into a two-dimensional (decision variable) array. However, this is a limited
implementation and unneeded when embracing existing n-dimensional array packages such as
NumPy.

NumPy is a popular package for scientific computing in Python. It’s n-dimensional array
object is called ndarray. It has highly efficient low-level implementations for storage and vectorized
operations. It further allows for advanced indexing with different ways of specifying which elements
to select, including logical expressions on other ndarrays. This contributes to its popularity for
doing numeric computations and data analytics tasks.

N-dimensional arrays have already been in use in scientific programming languages like Matlab
and R for many years. NumPy has allowed for similar use in the more general purpose program-
ming language Python. Other Python packages are built on top of NumPy, including SciPy which
contains linear programming routines, and CVXpy which is a general convex optimisation frame-
work. Popular AI frameworks such as the deep learning tools TensorFlow and PyTorch are fully
compatible with NumPy’s ndarrays as well, and often require the input to be in that format.

This paper explores the possibilities of using the full power of n-dimensional arrays and vec-
torized computations, without having to re-implement these capabilities in a text-based language
compiler. In fact, the resulting language and expression tree generator aims to be as lightweight as
possible so that all model transformations can be offloaded to existing solver-independent frame-
works that already do that very well, such as Numberjack [10], MiniZinc [13] and XCSP3 [3].
There is still much value in such an embedded language, is it is compatible with the Python
family of scientific tools allowing both easy integration which such tools for CP practitioners, and
potentially easier uptake of CP technology by practitioners of other scientific Python packages.

2 Modeling languages

Properties of text-based modeling languages Apart from OPL, the text-based modeling
languages are typically also solver independent. By also being programming language indepen-
dent, they are considered user-friendly and easy to learn, as one need not be versed in a specific
programming language and the syntax of the modeling language is typically kept high-level and
mathematical-like, which is intuitive to modellers.

However, there is still syntax to learn, especially for more complex constructs such as dealing
with matrices, doing array comprehension or pretty printing. Furthermore, conveniences available
in modern programming languages may not be available in the modeling languages, including
array slicing, data manipulation, debugging and printing/catching errors during model creation.
The reason is often simply a matter of priorities and required time on the language developer side:
these are not essential to a constraint modeling language and can even complicate the compiler
implementation.

To ensure extensibility, modeling languages like MiniZinc allow user-defined functions as well
as custom global decomposition definitions that are solver-specific. These can be written in the
syntax of the modeling language, allowing easy extensions of these kinds.

However, any kind of extension or model transformation that requires access to the expression
tree has to be added to the compiler. And this compiler is written in a different language than
the modeling language, which can be a serious barrier to entry. In the case of MiniZinc, this is
sometimes worked around by parsing its flattened FlatZinc output and further transforming that
structure (as done in MiningZinc [8] using multiple global definitions), or even reconstructing the
original structure and further transforming that (as done by or-tools and non-CP solvers).

Moreover, uses of CP where the solver is called multiple times with minor variations to the
model, such as basic large neighborhood search [5] or dominance programming [9] require either
extending the language with search constructs, and hence the compiler which may not support
states and nesting yet as it is not needed for modeling, or to do this outside of the modeling
language. In the latter case, a (inherently different) programming language must be used and

2

communication with the solver has to happen by writing and parsing text-based models and
solutions which can be cumbersome.

Extensive experiments with different datafiles and solvers also require a programming language
in which the compiler/solvers is called multiple times from the command line, with different text
files an input parameters. This is no different from the use of a text-based problem formats such as
DIMACS CNF, MPS/LP and XCSP, however these typically do not include convenience modeling
constructs and largely require the use of a programming language to generate a valid problem file
to start with.

Properties of embedded modeling languages The advantage of being embedded in a pro-
gramming language is that the whole pipeline of operations, of which solving is one, can be done
within the same language: data reading and prepocessing, model construction, search specifica-
tion, solving and iterative solving, debugging and printing, visualisation and post-processing of
the solution(s).

The main disadvantage of an embedded modeling language is that it is tied to one specific
programming language, which the user must be familiar with or learn, and where the IDE tools of
that language must be used and familiarized with. In case of languages like Java and C++, this
often involves additional code constructs (boilerplate code) that can increase the initial learning
curve. However, modern languages like Python and Julia have almost no required boilerplate
and look more similar to text-based modeling languages even if they are full-fledged programming
languages.

It seems that the language constructs used to build a CP model within a programming language,
is usually not called a modeling language. Still, it has all the constructs of a text-based modeling
language (variables, operators, constraints) that can be composed in predefined ways, and it
typically does transformations on these constructs prior to solving. Perhaps the reason is that
modeling language implies a form of solver independence, and in embedded languages usually the
constructs are closely intertwined with one specific solver and its internal representation.

Embedded solver-independent languages We are aware of one embedded modeling lan-
guage that is solver independent, namely Numberjack [10]. Almost 10 years ago, the authors
already argued for the advantages of being both embedded in a popular language and supporting
multiple combinatorial solvers: reuse of existing language constructs, extensibility of (decompos-
able) constraints and search strategies in the same language and integration with other packages
of that language such as spreadsheet readers, web-based GUIs and automatic cloud deployment.

Further use cases that have emerged in recent years: iterative solving [9], natural-language
explanations of CP inference [14], calling a solver from within a machine learning procedure [6],
feeding machine learning trained networks [2] and graphs [4] into solvers and interleaving optimi-
sation and simulation [1]. It also makes it easier to benefit from developments in other AI fields,
for example the use of generic algorithm configuration methods like SMAC [11] which is available
as a Python package 1.

Compared to Numberjack, we propose to go one step further by 1) embracing n-dimensional
arrays as universal data structure as explained earlier, and 2) keeping the abstract syntax tree
representation as unaware of solving as possible.

The motivation for having abstract expressions is two-fold: firstly, all model transformation
code (propagation of constants, simple rewritings, the use of variable views, decompositions) can
be kept separate and re-used, or not, for different purposes. Secondly, the resulting expression
representation will be fairly simple and hence it can lower the barrier to writing new model
transformation tools, either directly on the high-level model or on a previously transformed model.

1https://github.com/automl/SMAC3

3

3 CPpy

CPpy is a prototype python-embedded solver-independent language with the following design
principles:

1. use a native n-dimensional array implementation as data-structure for variable arrays (in
case of Python: numpy’s ndarray)

2. use as much operators and syntax from the native language as possible, hence introduce as
few custom constructs as possible

3. be solver independent, allowing both native solvers and text-based (meta-)solvers to be used
as backend

4. keep as much constraint logic outside of the abstract syntax tree representation as possible

5. provide convenient access to the solution, directly from the variable objects created during
modeling

3.1 Modeling language constructs

A single construct is offered to instantiate decision variables: BoolVar(shape) and IntVar(lb,ub, shape),
where shape is the shape of the n-dimensional array, e.g. 1, 10 or (5,5) for a single element, array
of 10 elements and 5x5 matrix respectively. Shapes of higher dimension are also possible. The
underlying object will inherit from NumPy’s ndarray and hence fully compatible with all numpy
operations.

Python’s operator overloading is such that the existing mathematical and Boolean operator
syntax can be used on these ndarrays of variables. Our implementation of these overloaded
operators then construct the relevant Expression objects (see next section) on the fly. Operations
on constants are automatically performed by Python itself, only when an operation on a decision
variable (or array thereof) is called will our code be called.

The only further convenience functions are: implies(left , right) which has no corresponding
built-in operator in python, the minimize() and maximize() functions that create an ’Objective’
instance as well as a function for every global constraint to create a corresponding ’GlobalCon-
straint’ instance. We also had to overwrite the built-in Python functions all() and any() so as to
construct the corresponding BoolOperators for n-ary ’and’ and ’or’.

3.2 Examples

We now review two examples expressed in CPpy, that demonstrate that the syntax is of similar
light weight as text-based modeling languages, and the benefits using n-dimensional arrays and
vectorized operations.

Example 1: Send More Money This example demonstrates that apart from variable creation
and global constraints like alldifferent(), the language’s standard operators can be used, including
built-in functions like sum(), ’+’ and ’==’. Also note the direct access to variable values after
solving, through the ’.value’ property.

Furthermore, it demonstrates how we can make use of NumPy also for convience of operations
on constants, e.g. mathematical transformations on arrays (arange(n), which creates an array
0..n-1, the listwise power operator ’∗∗’ and flip). It is unlikely that text-based modeling languages
will support such constructs unless it frequently improves modeling convenience.

4

Send More Money in CPpy

from cppy import ∗
import numpy as np

Construct the model
s , e , n , d ,m, o , r , y = IntVar (0 , 9 , shape=8)

c o n s t r a i n t = []
c o n s t r a i n t += [a l l d i f f e r e n t ([s , e , n , d ,m, o , r , y])]
c o n s t r a i n t += [sum([s , e , n , d] ∗ np . f l i p (10∗∗np . arange (4)))

+ sum([m, o , r , e] ∗ np . f l i p (10∗∗np . arange (4)))
== sum([m, o , n , e , y] ∗ np . f l i p (10∗∗np . arange (5)))]

c o n s t r a i n t += [s > 0 , m > 0]

model = Model (c o n s t r a i n t)
s t a t s = model . s o l v e ()
p r i n t (” S ,E,N,D = ” , [x . va lue () f o r x in [s , e , n , d]])
p r i n t (” M,O,R,E = ” , [x . va lue () f o r x in [m, o , r , e]])
p r i n t (”M,O,N,E,Y =” , [x . va lue () f o r x in [m, o , n , e , y]])

Sudoku in CPpy

x = 0 # c e l l s whose value we seek
n = 9 # matrix s i z e
g iven = numpy . array ([

[x , x , x , 2 , x , 5 , x , x , x] ,
[x , 9 , x , x , x , x , 7 , 3 , x] ,
[x , x , 2 , x , x , 9 , x , 6 , x] ,

[2 , x , x , x , x , x , 4 , x , 9] ,
[x , x , x , x , 7 , x , x , x , x] ,
[6 , x , 9 , x , x , x , x , x , 1] ,

[x , 8 , x , 4 , x , x , 1 , x , x] ,
[x , 6 , 3 , x , x , x , x , 8 , x] ,
[x , x , x , 6 , x , 8 , x , x , x]])

Var iab l e s
puzz l e = IntVar (1 , n , shape=given . shape)

c o n s t r a i n t = []
c o n s t r a i n t s on rows and columns
c o n s t r a i n t += [a l l d i f f e r e n t (row) f o r row in puzz l e]
c o n s t r a i n t += [a l l d i f f e r e n t (c o l) f o r c o l in puzz l e .T]

c o n s t r a i n t on b locks
f o r i in range (0 , n , 3) :

f o r j in range (0 , n , 3) :
c o n s t r a i n t += [a l l d i f f e r e n t (puzz l e [i : i +3, j : j +3])]

c o n s t r a i n t s on va lue s
c o n s t r a i n t += [puzz l e [given >0] == given [given >0]]

model = Model (c o n s t r a i n t)
s t a t s = model . s o l v e ()

5

Figure 1:

Example 2: sudoku The classical sudoku problem greatly demonstrates how standard oper-
ators over n-dimensional arrays like transpose and advanced iterators can also increase modeling
convenience of CP problems!

There are two advanced iterators in this example, the first is ’i:i+3’ which returns array
[i,i+1,i+2] and can also easily be supported in text-based languages. The second is more sub-
tle but also more powerful, namely ’given>0’ in the last constraint. It returns the list of indices
of all cells in ’given’ whose value is greater than 0. This list of indices can be used as an index,
both on the same n-dimensional array or on another (in this case the variable ndarray puzzle),
such that only the elements at those indices are returned.

Furthermore, all the conversions from iterators and views on ndarrays to lists of variables are
automatically performed by the ndarray implementation requiring no custom implementation.

3.3 Execution mechanism

Figure 1 shows the general architecture of CPpy. It aims to make maximal use of other Python
libraries, including numpy for arrays (not shown) and python APIs to CP solvers such as to
MiniZinc, XCSP3, OR-tools and other python-based CP environments such as Numberjack (still
under development).

The user specification, such as the two examples shown earlier, are automatically converted
to expression trees through Python’s operator overloading mechanism. When calling ’solve()’ on
the resulting model, one of the solver interfaces can be called, which will transform the expression
tree (abstract syntax tree) of the constraint and objective into whatever form the python API
that is used expects. The solving call will then be passed on to that API, and the solution will be
mapped back to the CPpy variables.

3.4 Class diagram of expressions

A model consists of two expressions: the constraint (typically a conjunction of constraints) and
optionally an objective expression. Constraints and decision variables and all operators are types
of expressions that inherit from a base Expression class. We only need to consider operators and
constraints involving decision variables, all operations on constants will be immediately performed
by the host language. The following is the complete class diagram of expressions:

We point out that we make convenient use of multiple inheritance for NDVarArray. This limits
the number of places where we need to implement operator overloading. In fact, this is mostly
only in the Expression and Operator classes.

6

numpy.ndarray Expression

Comparison Operator Element GlobalConstraintNumVarImpl

IntVarImpl

BoolVarImpl

NDVarArray

Comparisons (==, ! =, >=, etc) and Boolean operators (and, not, xor, implied) do not have
one class per operator, neither do mathematical operators. This is possible because it is an explicit
design decision not to put constraint solving logic in the expression representation. Hence, there
is no need for subclassing to the specific operators of the same family.

The only exception is Sum, the n-ary sum expression, and WeightedSum, its weighted variant.
Sums of multiplications of a variable and a constant are automatically transformed into a weighted
sum too. Weighted sums are less typical in programming languages to have their own construct,
but very typical in CP. Exactly for the reason of detecting WeightedSums during construction did
we decide to have explicit an Sum class too. Substraction is part of MathOperator, unless it is
part of a bigger chain of addition/substraction (which is automatically detected), in which case it
is turned into a single WeightedSum.

4 Discussion

The above examples show some of the potential benefits of using n-dimensional arrays and vec-
torized operations in constraint modeling languages.

We chose to create an embedded modeling language because this allows to reuse existing n-
dimensional arrays, and eases interfacing to other packages in that language. The downside of the
embedded language is that there is less freedom in deciding the syntax; in this case we can not
define new keywords (only functions and operator overloading), and there is no operator symbol
for implication → which is common in text-based constraint modeling languages.

To reach its full potential, the CPpy language should be linked to existing solver-independent
solving frameworks including MiniZinc, Essence and XCSP3. Python-based interfaces to solvers
including the Numberjack framework (and through that SAT solvers and MIP solvers) and or-tools’
lazy clause generation solver should be included as well.

Furthermore, it would be interesting to be able to include a pure-Python solver, such as a
Python version of MiniCP [12]. This would provide a complete framework where everything from
solver-independent exploration to solver-specific extensions could be accomplished in the same
language. From a pedagogical point of view, this could also align with the growing trend to
already use Python for basic programming and data science courses.

The advanced possibilities of embedded solver-independent modeling languages obviously does
not preclude the interest in text-based modeling languages. In fact, one of their key strengths are
the compilers behind them, and their ability to tailor models to specific solvers. The ability to
use such compilers as libraries, where the input is not a text file but an expression tree, would
allow the same compiler to be used for both models resulting from parsing text files and from a
language-embedded formulation. This could strengthen both approaches at once.

Code The code is open source and available online: https://github.com/tias/cppy

7

References

[1] Hamid Allaoui and Abdelhakim Artiba. Integrating simulation and optimization to sched-
ule a hybrid flow shop with maintenance constraints. Computers & Industrial Engineering,
47(4):431–450, 2004.

[2] Andrea Bartolini, Michele Lombardi, Michela Milano, and Luca Benini. Neuron constraints to
model complex real-world problems. In International Conference on Principles and Practice
of Constraint Programming, pages 115–129. Springer, 2011.

[3] Frédéric Boussemart, Christophe Lecoutre, Gilles Audemard, and Cédric Piette. Xcsp3:
An integrated format for benchmarking combinatorial constrained problems. arXiv preprint
arXiv:1611.03398, 2016.

[4] Rocsildes Canoy and Tias Guns. Vehicle routing by learning from historical solutions. In
International Conference on Principles and Practice of Constraint Programming, pages 1–16.
Springer, 2019.

[5] Jip J Dekker, Maria Garcia de la Banda, Andreas Schutt, Peter J Stuckey, and Guido Tack.
Solver-independent large neighbourhood search. In International Conference on Principles
and Practice of Constraint Programming, pages 81–98. Springer, 2018.

[6] Adam N Elmachtoub and Paul Grigas. Smart” predict, then optimize”. arXiv preprint
arXiv:1710.08005, 2017.

[7] Alan Frisch, Warwick Harvey, Christopher Jefferson, Bernadette M. Hernández, and Ian
Miguel. Essence: A constraint language for specifying combinatorial problems. Constraints,
13(3):268–306, 2008.

[8] Tias Guns, Anton Dries, Siegfried Nijssen, Guido Tack, and Luc De Raedt. Miningzinc: A
declarative framework for constraint-based mining. Artificial Intelligence, 244:6–29, 2017.

[9] Tias Guns, Peter J Stuckey, and Guido Tack. Solution dominance over constraint satisfaction
problems. In ModRef 2018 workshop on Modeling and Reformulation. CP18 workshop, 2018.

[10] Emmanuel Hebrard, Eoin O’Mahony, and Barry O’Sullivan. Constraint programming and
combinatorial optimisation in numberjack. In International Conference on Integration of Arti-
ficial Intelligence (AI) and Operations Research (OR) Techniques in Constraint Programming,
pages 181–185. Springer, 2010.

[11] Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Sequential model-based optimization
for general algorithm configuration. In International conference on learning and intelligent
optimization, pages 507–523. Springer, 2011.

[12] Laurent Michel, Pierre Schaus, and Pascal Van Hentenryck. Minicp: a lightweight solver for
constraint programming (2018).

[13] Nicholas Nethercote, Peter J. Stuckey, Ralph Becket, Sebastian Brand, Gregory J. Duck, and
Guido Tack. MiniZinc: Towards a standard CP modelling language. In CP, volume 4741 of
LNCS, pages 529–543. Springer, 2007.

[14] Mohammed H Sqalli and Eugene C Freuder. Inference-based constraint satisfaction supports
explanation. In AAAI/IAAI, Vol. 1, pages 318–325, 1996.

[15] Pascal Van Hentenryck. The OPL optimization programming language. MIT Press, 1999.

8

