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Abstract Many optimisation problems are of an online nature, where
new information arrives and the problem must be resolved periodically
in order to (a) improve previous decisions and (b) take the required new
ones. Typically, building an online optimisation system requires sub-
stantial ad hoc coding, where the optimisation problem is continually
adjusted and resolved, keeping track of which previous decisions may be
committed and which new decisions need to be taken. In this paper we
define a framework for automatically solving online decision problems.
This is achieved by extending a model of the offline optimisation problem
so that the online version is automatically constructed from this model,
requiring no further implementation. In doing so, we formalise many of
the aspects that arise in online optimisation problems. The same frame-
work can be applied for automatically creating sliding window solving
approaches for problems that extend over a large time domain. Experi-
ments show that we can automatically create efficient online and sliding
window solutions to problems.

1 Introduction

Many important optimisation problems are online in nature (see e.g., [17]),
that is, the information that defines the problem may not be finite and is not
completely known. Rather, new information arrives either continuously or peri-
odically, and needs to be incorporated into the problem in an ongoing fashion.
Consider, for example, a traditional job-shop scheduling problem. If the com-
plete set of jobs is known from the start, the problem can be solved offline to
generate an optimal (or good enough) schedule. However, it is common to only
know an initial set of jobs, with new ones arriving before all previous jobs have
finished executing the generated schedule. While one could wait until all previ-
ous jobs have finished to schedule these new jobs, this will typically result in the
underutilisation of the available machines. A better solution may be found if the
problem is resolved to find a new schedule for all jobs that have not started yet
(be it old or new), that is, if the problem is solved in its natural online format.
? A shorter version of this paper is part of the CP2019 doctoral program.



Despite the strong similarities between all online optimisation problems, cur-
rent approaches to solving them are problem-specific. This is because every time
new information arrives that requires a resolve, some previous decisions can-
not be changed while others can. For example, in an online job-shop scheduling
problem, tasks that have already started cannot be rescheduled. As another ex-
ample, in a dynamic vehicle routing problem, we may not be able to add more
customers to a vehicle’s route after the vehicle has left the depot, but we may be
able to change the order in which the customers are visited. Specifying exactly
which decisions can be changed and which cannot, requires specifying how time
interacts with the variables and constraints of the problem model. This is usu-
ally done by the modeller, who understands this interaction and can implement
an update-model, that is, a model of the problem that combines the previous
solution with the newly arriving data. An iterative algorithm can then be used
to repeatedly instantiate and solve this update-model at each time point.

In addition, many large offline optimisation problems can be better solved
by decomposing them into smaller, simpler problems along a timeline. This pop-
ular approach is called sliding window decomposition (see e.g., [19,1]), where the
problem is decomposed into (usually overlapping) windows, each solved in in-
creasing time order. In effect, this converts the offline problem into an online one,
where each new window refers to some old parts of the problem (those overlap-
ping with the previous window), and to some new (the rest in the new window).
Thus, methods developed to solve online problems can be used to solve large
optimisation problems once one decides how to break up the data into windows.

This paper proposes a more generic approach to online optimisation that
enables the modeller to specify the online aspects of a problem in a declarative
way, and automates the resolving process. To achieve this, the modeller adds
annotations to an offline model of the optimisation problem. These annotations
specify how the data, variables and constraints in the model interact with time.
Once this is provided, an update-model can be constructed automatically from
the annotated model, which can then be used in an iterative algorithm to solve
the online problem. The main contributions of this paper are as follows:

– a framework for the declarative modelling of online and sliding window op-
timisation problems that identifies common interactions of models with time;

– an automatic approach to transform an online optimisation model into the
update-model needed to resolve the problem that takes into account new
data and previously fixed decisions;

– an implementation of the framework in the MiniZinc [20] system; and
– an experimental evaluation that shows the effectiveness of the framework for

tackling online problems and sliding window decompositions.

2 Background

A constraint optimisation problem (COP) P = (V,D,C, o) consists of a set of
variables V , an initial domain D mapping variables to (usually finite) sets of
possible values, a set of constraints C defined over variables V , and a selected



variable o ∈ V to minimise (without loss of generality). In practice, constraint
optimisation problems are specified by data-independent models written in a
modelling language such as MiniZinc [20], Essence [13], AMPL [11], or OPL [26].
A model M of a problem can be instantiated with data D into a concrete COP
instance P = instantiate(M,D).

2.1 Running Example: Job-Shop Scheduling

This paper uses MiniZinc to model problems. While most of MiniZinc’s syntax
is self-explanatory, we will use an example to introduce some of its syntax.

Consider a job-shop scheduling problem where each job includes exactly one
task on each machine. Each job has input data about its arrival time (earliest
start time for that job), the machines that process each of its tasks, and the
processing time it requires on each machine. The decisions to be made are the
start times for each task of each job. A solution must satisfy the arrival times,
task order (task i must finish before the start of task j for i < j), and machine
usage constraints (each machine can only handle one task at a time), while
minimising the total makespan. A natural model for the data and decisions of
this problem is shown in Figure 1.

The first 9 lines declare the parameters of the problem, where the values for
those declared in lines 1, 2 and 6–8 will be given in an input data file, while
those in lines 3–5 and 9 are computed in the declaration. Lines 1 and 2 declare
two integer parameters representing the number of machines and jobs in the
problem, respectively. Lines 3 to 5 declare three sets of integer parameters, each
computed from an integer range of the form l..u, representing the range from l
to u inclusive if l ≤ u, and the empty range otherwise. Line 6 declares a one-
dimensional array of integer parameters, where a[j] gives the arrival time of
job j. Line 7 declares a two-dimensional array of machine parameters indexed by
JOB and TASK , where m[j,k] gives the machine where task k of job j needs
to be processed. Line 8 declares a two-dimensional array of integer parameters,
where p[j,m] gives the processing time for the task of job j processed by
machine m. Line 9 declares an integer parameter for the latest possible completion
time, computed as the sum of all processing times plus the latest arrival time.
Line 11 declares a two-dimensional array of variables with domain in the range
0.. horiz , where s[j,k] will be determined by the solver to be the start time
for task k of job j. The three constraints express that no job can start before its
arrival time, each task in a job finishes before the next one starts, and tasks on
the same machine cannot overlap in time. The disjunctive constraint makes sure
that intervals (defined by the pairs enumerated by array comprehension) do not
overlap. Finally, the objective is defined as minimising the maximum finishing
time of the last task in any job.

Other components of MiniZinc that will be used in our models include:

– array comprehensions that build one-dimensional arrays, e.g., [ arrival [n]
- 5 | n in NODE ] builds an array of expressions of the arrival time
for node n minus 5;



1 int: M; % number of machines
2 int: J; % number of jobs
3 set of int: MACH = 1..M;
4 set of int: TASK = 1..M;
5 set of int: JOB = 1..J;
6 array [JOB] of int: a; % arrival time
7 array [JOB ,TASK] of MACH: m; % machine for task
8 array [JOB ,MACH] of int: p; % processing time
9 int: horiz = max(a)+sum(p); % latest possible time

10
11 array [JOB ,TASK] of var 0.. horiz: s; % start times
12
13 constraint forall (j in JOB) (s[j ,1] >= a[j]);
14 constraint forall (j in JOB , k in 1..M -1)
15 (s[j,k]+p[j,m[j,k]] <= s[j,k+1]);
16 constraint forall (m in MACH)
17 ( disjunctive ([s[j,t] | j in JOB , t in TASK where m[j,t]=m]
18 , p[..,m]));
19 solve minimize max (j in JOB) (s[j,M]+p[j,m[j,M]]);

Figure 1. A MiniZinc model for job-shop scheduling.

– array concatenation, e.g., a ++ b gives the result of concatenating array b
on the end of array a;

– if-then-else-endif expressions, e.g., if b then t else e endif is equal
to t if b is true and e otherwise. If the else part is omitted it is treated as if
e = true ;

– forall expressions, e.g., forall (i in S)(c[i]) holds if for each i in
range S the constraint c[i] holds;

– exists expressions, e.g., exists (i in S)(c[i]) holds if for some i in
range S the constraint c[i] holds;

2.2 Solving Online Problems by Iteration

As mentioned in the introduction, given a model and solver for an offline problem,
one can implement an iterative algorithm for the online version of the problem.
To illustrate this approach, we will extend the job-shop model from Figure 1
with additional parameters to take previous solutions into account:
int: sol_J; % number of jobs in previous solution
array [1.. sol_J ,TASK] of int: sol_s; % previous start times

The assumption is that at each time point, new jobs can be added to the
problem, but the number of machines (and thus tasks) remains constant. The
new parameters specify that sol_J of the J jobs are old (from a previous
iteration), and the rest are new. For each old job j in 1.. sol_J , sol_s[j,t]
contains the start time of task t of j in the previous iteration.



online-solve(M ,D,θ): while (new data δ)
D := append(D, δ)
D′ := constrain(D, θ)
θ := solve(instantiate(M,D′))

Figure 2. An iterative algorithm for solving online problems.

In addition, we will add a parameter called now that is set to the current time
(in the model’s view of time) for the current iteration of solving, and allows us
to reason about whether a previously scheduled job has already started running
or not. If it has, then we constrain it to remain scheduled at the same time:

int: now;
constraint forall (j in 1.. sol_J , t in TASK)

(if sol_s[j,t]<= now then s[j,t]= sol_s[j,t] endif);

We call the resulting, extended model the update-model. Once it is defined, a
simple iterative algorithm, such as the one in Figure 2, can be used to solve the
online problem at each time point. The arguments of the online-solve function are
the update-model M , the original data D, and the initial solution θ (which can
be constructed using a heuristic or by solving offline with the original data D).
As long as there is new data, the append function adds it to the current data. For
our concrete example, this means appending the data for the new jobs to the a, m
and p arrays, and adjusting J. The constrain function adds the parameters that
are used for restricting the time-dependent variables (in our job-shop example,
this means setting sol_J and sol_s according to the previous solution, and
updating now). Then the update-model is instantiated with the updated data
set and solved. The new solution θ will be used in the next iteration.

Section 4 introduces new modelling constructs that enables specifying rela-
tions between variables and time, such as the one above, much more concisely.

Note that for the remainder of the paper we will assume that the online
problems we consider have complete recourse [9], that is, neither the previous
solution nor the new data will ever make the problem unsatisfiable. This is
typically achieved by adding penalties to the objective, e.g., for not scheduling
jobs in the case of a job-shop problem.

3 Related Work

Online problems and online solution methods have been well studied. The two
main approaches are (a) using an off-the-shelf solver with an ad hoc sliding
window algorithm wrapped around it, and (b) developing a problem-specific
algorithm. In this paper we develop a new approach by extending a solver-
independent modelling language to support online problems natively.

Approach (a) requires the implementation of an iterative resolve algorithm
that is wrapped around a particular solver, and uses a sliding window approach



where the new data arrives between resolves. Examples of this approach include
that of Bertsimas et al. [4] for solving an online vehicle routing problem. They
update the problem by adding nodes and edges to a graph, and develop their
own iterative online algorithm. See [18,23,7] for other examples. These wrapper
algorithms are often problem-specific in nature, and require the model to be
formulated in such a way it obfuscates the underlying problem.

Examples of approach (b) are more widespread, and include the algorithms
for online vehicle routing given in survey [16], and the online scheduling al-
gorithms described in [22]. In some cases, the same decisions have to be taken
repeatedly (with some or total disregard to previous decisions) over time, in real-
time. This case is often addressed by developing fast single-point algorithms or
models that can be used to resolve with the latest data as desired, and then
replacing the old decisions with the new ones [14].

We have not found any problem-independent framework (solver-independent
or not) that enables the modelling of online problems for real-time applications
or sliding window decompositions. The closest work is the modelling language
AIMMS, which supports the modelling and use of sliding window decomposition
(referred to as “rolling horizon”) of time-based offline problems [25]. This is done
by first coding how all the parts of a model can be divided into multiple (possibly
overlapping) windows, and then coding an iteration script that iterates through
all these windows, solves them, and makes any necessary changes between the
iterations. Hence, it is really an example of approach (a). The sliding window
feature of AIMMS have been used in several works [19,3].

Often in the literature, dynamic constraint satisfaction problems (DCSPs)
are used to reason on online and dynamic problems [12]. DCSP is a potential
formalisation of our proposed high-level modelling framework.

Note that, in this paper, we do not look into stochastic and advanced forms of
dynamic online optimisation (see [27,28,2,5]) nor robustness and stability criteria
(see [8]), all of which we consider future work. Some other interesting concepts
include Constraint Networks on Timelines [21], Constraint Programming for
Real-Time Allocation [15], and iterative repair techniques [6].

4 Modelling Online Problems

This section introduces our extensions to the MiniZinc language to support the
solver-independent modelling of online optimisation problems. Recall the iter-
ative algorithm of Figure 2 for the online job-shop example from Section 2.2.
Compared to a standard algorithm for solving the offline model, this algorithm
contained two additional components: the functions append and constrain. The
append function needs to know which arrays in the model to extend with new
data. The constrain function requires the additional parameters for the previous
solution to be present in the model, and relies on additional constraints in the
model to implement the actual time dependencies.

We will now introduce annotations that modellers can add to a standard,
offline MiniZinc model to capture these aspects in a concise and declarative way.



The update-model, together with the append and constrain functions, can then
be generated automatically from this annotated model, as it will be discussed in
Section 5.

The first new annotation, :: online , is used to indicate which parameters
can be extended with new data at each time point. If a parameter annotated
with :: online is used to define other parameters (e.g., it is part of an array
index set), then those other parameters automatically become extendable with
new data as well.

Example 1. Consider the offline job-shop problem introduced in Figure 1, and
assume that in its online version new jobs can arrive as time progresses. To
transform the offline model for this problem into an online one, we must start by
annotating the parameter in line 2, obtaining the line int: J :: online ;,
thus indicating that parameter J might increase with time. Since J is used to
define the set JOB, this also indicates that the amount of data in each of the
arrays a, m, and p, might similarly increase with time. ut

The second key feature of online problems is that some decisions cannot be
changed after a certain time point. The most obvious of these affect time vari-
ables, that is, variables whose domain is time itself. In particular, past decisions
that have fixed a time variable to a value earlier than the current time, cannot be
changed. Also, if such a variable is not yet fixed, then current decisions cannot
fix it to a value that is earlier than the current time. To reflect all this, modellers
can simply annotate such variables with :: time;.

Example 2. Continuing the job-shop example from Figure 1, the main variables
of the model are the start times for each task of each job, that is, the array of vari-
ables defined in line 11. The domain of these variables is indeed time and, hence,
the declaration must be annotated, resulting in the line array [JOB ,TASK]
of var 0.. horiz: s :: time; ut

While the domain of some variables is not time itself, it may nevertheless
reflect decisions that cannot be changed after a certain point in time. We say
that the decision must be locked. To achieve this, modellers can annotate such a
variable v with :: lock_var_time (t), where t is a variable whose domain
is time and whose value is the time point after which a decision for v cannot be
changed. Note that when annotating an array d of variables, t must also be an
array of variables with the same dimensions as d.

Example 3. Consider an open-shop scheduling problem similar to that of Fig-
ure 1 except that the allocation of tasks to machines is not fixed, i.e., the array
of parameters in line 7 is now declared as an array of variables. This means the
solver now needs to decide the order of the tasks of a job by allocating each task to
a machine, as this is no longer provided by the input data. Clearly, once a task has
started to be processed, the machine that processes it cannot change. Thus, the
online model for this problem has in line 7 the declaration array [JOB ,TASK]
of var MACH: m :: lock_var_time (s);. Note that the dimensions of



arrays s and m are the same. This annotation ensures that if the start time
s[j,k] for task k of job j is less than or equal to the current time, then the
machine m[j,k] chosen for this task cannot be changed. ut

A more complex form of time constraint common in online problems, involves
checking the values a variable can take: while some of these values might need
to be locked once selected, others might become unavailable as time progresses.
To achieve this, modellers can annotate such a variable v using the annotation
lock_val_time (t), where t is a one-dimensional array that corresponds to
the declared domain of v.

Example 4. Consider a package delivery routing problem for C customers and
V vehicles, where each customer must be visited for a delivery. The problem is
modelled using a graph with N = C + 2V nodes, where there is one node for
each customer and two nodes for each vehicle v, representing the time when v
leaves from and returns to the depot. The variables include, for each node n, the
arrival time at n, the next node visited from n, and the vehicle that visits n. A
partial model for an online version of this problem is as follows:

1 int: V :: online ; % number of vehicles
2 int: C :: online ; % number of customers
3 int: horiz :: online ; % scheduling horizon
4 int: N = C + 2*V; % number of nodes
5 set of int: NODE = 1..N;
6 set of int: CUST = 1..C;
7 set of int: VEH = 1..V;
8 array [NODE] of var 0.. horiz: arrival :: time;
9 array [NODE] of var NODE: next

10 :: lock_var_time ([ arrival [n] | n in NODE ]);
11 array [NODE] of var VEH: veh
12 :: lock_val_time ([ arrival [C+v] | v in VEH ]);

In this model we may get new customers and new vehicles (a vehicle returning
to the depot becomes available as a new vehicle). The time horizon for schedul-
ing also changes as more customers arrive. The arrival time at each node is a
time constrained variable (hence, line 8). The decision about where to go next
from node n is locked at the time point where the vehicle arrives at n (hence,
line 10). Also, since the packages must be loaded onto vehicles v at the depot,
the decision of which customers v visits is locked at the time point where v leaves
the depot. This is recorded as the arrival time at the vehicle’s start time node
arrival [C+v] (hence, line 12). ut

The lock_val_time annotation introduced above, conflates two different
kinds of restrictions: commit and forbid. These indicate, respectively, that a
decision cannot be changed or is no longer available as time progresses. We
thus define two annotations commit_val_time and forbid_val_time ,
to separate the two parts conflated by lock_val_time .

Example 5. Consider again the problem of Example 4. When deciding which
vehicle should visit each customer, it is unrealistic to add (or remove) a customer



to (or from) a vehicle if the vehicle is about to leave the depot, since it takes
time to load (or unload) the package. Assuming we need 5 minutes to pack a
new delivery, and 15 minutes to find and remove a packed delivery, the following
code (substituting that of lines 11 and 12) reflects the correct behaviour:
array [NODE] of var VEH: veh

:: forbid_val_time ( [ arrival [C+v] - 5 | v in VEH ])
:: commit_val_time ( [ arrival [C+v] - 15 | v in VEH ]);

The annotations state that the decision of assigning a customer to vehicle v
cannot be changed if v leaves in the next 15 minutes, and that a customer
cannot be (newly) assigned to a vehicle that is leaving in the next 5 minutes. ut

The above annotations define some of the most common time constraints that
arise when solving an online problem. In certain problem-specific cases, where
these annotations are not sufficient, the modeller is given access to the solution
computed in the previous iteration via a generic function sol(x), which returns,
for each variable and parameter x, the value of x in the previous solution. This
is analogous to the use of the function sol () in MiniSearch [24] and other
extensions of MiniZinc [10] to refer to the previous solution to a problem. In
addition, modellers can use the function has_sol (x) to test whether x actually
existed in the previous solution, and they can make use of the now parameter
in their time constraints.

Example 6. Consider an extension of the delivery problem in Example 4, where
we inform customers of the expected arrival times within the next 24 hours.
Consider also that, after informing clients about their arrival time, we want to
ensure that later solutions do not delay these arrival times by more than an
hour. This can be expressed in the model as follows:
constraint forall (c in CUST where has_sol ( arrival [c]))

(if sol( arrival [c]) <= now + 24*60
then arrival [c] <= sol( arrival [c]) + 60 endif);

When used as an offline model, has_sol will return false for any argument,
so the constraint will not be active. ut

For simplicity, this paper assumes that execution will perfectly follow de-
cisions, but our framework does work without this assumption. Using our job-
shop example, a realistic scenario incorporating uncertainty in execution could
be that a task, according to the past decisions, should have started at some
time, but, according to the actual execution, the task started at another time
(or perhaps not at all). To address this, sol () and has_sol () can be set,
before each iteration, to reflect the execution instead of the past decisions, by
passing the desired data to MiniZinc.

Finally, we discuss how the current time in the model’s view of time, now,
is defined. Since only modellers understand the relationship of now with time in
the real world, they are the ones who must define now as a parameter computed
using the system time calls already available in MiniZinc.



5 Transforming and Solving Online Problems

Once an online model MO has been created, the next step is to instantiate the
iterative algorithm from Figure 2, i.e., to call instantiate(M,D). This involves
transforming MO into an update-model M = transform(MO) with additional
parameters and constraints that implement the model’s time-dependent aspects.

5.1 Transformation

The following describes how the annotations of an online model MO are used by
transform(MO) to generate the update-model M .

Online annotations The online annotation is used to generate the append
function, which combines old and new data. In fact, we use MiniZinc itself to
perform the append. For any parameter p :: online , we generate two ver-
sions in the update-model: p_old and p_new . The actual parameter p is then
computed as p = p_old+p_new for numeric parameters, and p = p_old
++ p_new for array parameters. As mentioned in Section 4, if an online para-
meter p is used to define the index set of another array parameter q, then q is
also considered to be an online parameter.

Time annotations The time annotation:

var D: x :: time;

where x is a variable over domain D, results in the following constraint:

if has_sol (x) /\ now >= sol(x) then x=sol(x) else x>= now endif;

which ensures the solution to x can only change if it was set to a point still in
the future, and cannot change to a point in the past (in other words, the past
cannot be changed).

Variable annotations An annotation of the form:

var D: x :: lock_var_time (t);

where x and t are variables over D and time, respectively, is transformed into
the following constraint for the update-model:

if has_sol (x) /\ now >= sol(t) then x=sol(x) endif ;

This correctly ensures that the value of variable x does not change once the time
point given by the value of t in the previous solution has arrived. The extension
to an annotation for an array of variables (rather than over a single variable x)
is straightforward.



Value annotations We show how commit and forbid annotations are trans-
formed. (Recall that lock annotations simply combine the two.) A commit an-
notation is of the form:
var D: x :: commit_val_time (t);

where x is a variable over D, and t is an array of variables indexed by D. It
results in the following constraint:
if has_sol (x) /\ now >= sol(t[sol(x)]) then x = sol(x) endif;

This correctly ensures that if the time associated with the value taken by x is
in the past, then the decision is fixed. A forbid annotation is of the form:
var D: x :: forbid_val_time (t);

where x is a variable over domain D, and t is an array of variables indexed by
D. It results in the following constraint:
forall (d in D where has_sol (x) /\ sol(x) != d)

(if has_sol (t[d]) /\ now >= sol(t[d]) then x != d endif );

This correctly ensures that, for each value d ∈ D of variable x (except the
previous value of x), if the associated time point of d (given by t[d]) has
passed, then x cannot be newly assigned d.

5.2 Garbage Collection

The append function in the iterative algorithm from Figure 2 will construct larger
and larger problems as time progresses: more and more data is added, which leads
to more and more variables and constraints. In typical online problems, many
variables will be fixed immediately due to their time dependencies. Even though
they may therefore not have a big impact on solving time, for long running
online problems this can lead to an increase in time for the instantiation phase
(translating the MiniZinc model into the solver-level FlatZinc). In many cases,
we can determine that some parts of the data can have no effect on the remaining
solving and, hence, can be omitted. We call this garbage collection of old data.

For example, in the online job-shop problem of Figure 1, jobs that are com-
pletely finished by the current time can have no further effect on any jobs sched-
uled after the current time. Hence, they can be omitted from the data. Jobs that
have started by the current time but not finished, however, can still affect new
jobs, since they still use resources. Hence, they cannot be omitted.

This example shows that garbage collection is problem specific: the mere fact
that the start time of a job is in the past does not mean that it does not affect
the future schedule. We therefore need the modeller to express which parts of the
data can be garbage collected. An interesting avenue for future work is whether
this could be determined automatically from the model and its annotations in
certain cases. For now, we require modellers to introduce into their models new
parameters that identify which parts of the data have become obsolete. These
parameters are annotated as :: online_gc (for garbage collection).



Example 7. We can change our online job-shop model in Figure 1 slightly to
enable garbage collection.

1 int: J :: online ; % number of jobs
2 int: LJ :: online_gc ( % last job that may affect new jobs
3 arg_max ( [ exists (i in TASK)
4 (sol(s[j,i]) + p[j,m[j,i]] > now)
5 | j in JOB ] ++ [true ]));
6
7 set of int: JOB = LJ..J; % meaningful jobs
8 array [JOB] of int: a; % arrival time
9 array [JOB ,TASK] of MACH: m; % machine used

10 array [JOB ,MACH] of int: p; % processing time
11 array [JOB ,TASK] of var 0.. horiz: s :: time;

Initially, we set LJ = 1. After instantiating the update-model, the expression
inside the online_gc annotation will be evaluated to the index of the first
job with a task that is still running (sol(s[j,i]) + p[j,m[j,i]] >
now). Note that because of the true entry in the array, arg_max returns the
first element where the Boolean condition evaluates to true. If this expression
determines, for example, that job number 5 is the first such job, then LJ will be
set to 5. For the next iteration, the data for all parameter arrays that use LJ in
their index sets (a, m, and p) will be garbage collected accordingly: discarding
all irrelevant data of jobs up to (but not including) LJ. ut

Note that this method always lags behind by one iteration. The model com-
putes which data would have been irrelevant for the time point of the current
iteration, and that data is then excluded at next the iteration. Another weak-
ness occurs with very long-running jobs. A long-running job keeps all the jobs
appearing after it in the job list alive until it has finished, even if they finished
much earlier. Still the simplicity of the approach is very appealing, and if the
jobs are reasonably uniform in duration, this will not be a problem.

6 Experiments and Examples

All experiments were run on a 2.2 GHz Intel Core i7 processor with 16 GB
RAM, using the lazy clause generation solver Chuffed (version bundled with the
MiniZinc IDE Version 2.2.3).

6.1 Online Job-Shop Scheduling Problem

Our first experiment uses the online job-shop scheduling problem described
throughout the paper. The instances used are formed from offline job-shop
scheduling problems of the MiniZinc benchmarks.3 We first take an offline in-
stance as the initial problem. The online data is then constructed by repeatedly
adding copies of the jobs from the offline instance into an endless queue.
3 https://github.com/MiniZinc/minizinc-benchmarks/tree/master/jobshop

https://github.com/MiniZinc/minizinc-benchmarks/tree/master/jobshop
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Figure 3. (a) Instantiation time and (b) solving time per iteration, with and without
garbage collection (GC), for online job-shop using instance abz5.

Data Driven Online Problem The main focus of this experiment is to illustrate
the effect of garbage collection. To achieve this, we define now to ensure that
the solving time per iteration is significantly less than the time between two
iterations. We iterate through the endless queue as follows. The first i jobs in
the queue form the initial iteration, where i is the greatest integer such that the
first iteration can be solved to optimality within 5 seconds. Consecutively, the
next i/2 jobs from the queue form the next iteration, for as many iterations as
desired. The now parameter for each iteration increases by p each time, where
p is the lower bound makespan for scheduling the new jobs, assuming all tasks
have the average processing time of the given instance.

Figure 3 shows the instantiation time (a) and solving time (b) for each itera-
tion and Table 1 (left) shows the accumulated solving and instantiation time for
multiple instances, each running for 300 iterations. Without garbage collection,
instantiation time quickly starts dominating, which highlights the importance of
garbage collection for long running online problems. Solving time also increases
without garbage collection, which is partly due to the fact that a much larger
initial model has to be parsed, and the additional propagation for parts of the
model that are fixed needs to be performed. Given these results, from now on
we always use garbage collection in all experiments.

Solver Driven Online Problem This second experiment shows how our framework
can deal with online problems where the duration of one iteration is in fact
constrained by the time it takes to solve the update-model. Note that in this
setting now is defined as the time at the end of the solving time limit.

Suppose a set number of jobs arrive every second, then the more time we allow
the solver to spend, the more new jobs will arrive for each iteration. Since solving
is now time constrained, we may not be able to obtain an optimal solution within
each iteration, but simply use the best solution found within the time limit.



Table 1. Left: Accumulated instantiation and solving time with and without garbage
collection (GC). Right: Time-constrained online job-shop scheduling (instance ft20).

With GC Without GC

instance solving (s) instn. (s) solving (s) instn. (s)

abz5 13.01 19.00 75.64 3913.48
ft06 14.56 18.91 56.63 1363.91
ft10 17.04 19.86 121.59 3882.49
ft20 1467.56 18.84 1490.86 941.64

Makespan

time/iteration 4 jobs/s 8 jobs/s

0.25 s 117809 65266
0.50 s 117840 65270
1.00 s 117973 65260
2.00 s 118170 65493
4.00 s 118749 66272
8.00 s 119581 67904

16.00 s 121352 71168

Table 1 (right) shows the results for scheduling 1162 jobs in total (ft20), with
different time limits per iteration, and different rates of new jobs per second. For
the purpose of this experiment, we assume that 1 second real time corresponds to
408 time units (based on the average task duration in the chosen benchmark). As
we can see, if the rate of new jobs is low (4 per second), then a fast resolving time
of 0.25 per iteration yields the best overall makespan. With a higher data rate
(8 jobs per second), a time out of 1 second per iteration yields the best result.
Being able to quickly experiment with these settings, by translating the external
time automatically into model-specific time units, is a significant advantage of
our approach over manual approaches.

6.2 Sliding Window Decomposition: Cargo Assembly Planning

A common approach for large offline optimisation problems is sliding window
decomposition, which decomposes the problem into a series of subproblems re-
stricted to a small time window that slides forward during the process. All de-
cisions before the window are fixed and all decisions after the window are not
considered. We can use our framework to directly implement and solve sliding
window decompositions, simply by appropriately splitting the data.

We use the cargo assembly planning problem (CAPP) from the MiniZinc
benchmark suite4, a simplified version of the problem described by Belov et
al. [1]. In CAPP, vessels arrive at different times. Every vessel has a set of cargoes
that has to be assembled in a stockyard, at an unoccupied part on a stacking
pad, into a set of stockpiles. Each stockpile is then loaded onto its vessel.

We modified the model in the following ways: the number of vessels becomes
an online parameter, the stacking and loading start times for each stockpile are
:: time annotated, and the position of each stockpile is :: lock_var_time
annotated with the assembly start time of that stockpile.

Table 2 shows results for all instances from the MiniZinc benchmarks with at
least 16 vessels. We compare the offline solving approach (as a baseline) with a
4 https://github.com/MiniZinc/minizinc-benchmarks/tree/master/cargo

https://github.com/MiniZinc/minizinc-benchmarks/tree/master/cargo


Table 2. Cargo Assembly Planning Problems solved as a single optimisation problem
and using sliding window decomposition. The symbol — under runtime indicates a
time out (120s) and under obj. val. indicates no solution was found.

Original Sliding Window

instance runtime obj. val. runtime obj. val.

07 1s 133 — 10563 40.35 5868
08 222f 3475 — 70068 90.38 66085
09 1s 18 OPT — 7117 0.41 22958
10 15966f 2060 — 38119 90.34 36347
16 10720f 4243 — — 80.71 88862
19 31058f 2548 — 141119 77.30 129748

sliding window of 10 non-arrived vessels, adding 5 new vessels at each iteration.
A total timeout of 120 seconds (only instantiation and solving time) for each
method was used, divided equally amongst the sliding window iterations.

Clearly the sliding window decomposition is usually better than solving the
original problem, the exception is for the easiest of the problems where the global
viewpoint allows the solver to find a better solution.

7 Conclusion and Future Work

This paper presented a systematic approach for modelling and solving online
optimisation problems. We introduce several annotations that enable modellers
to describe online aspects, i.e., how the decisions in their models are related
to time, in a high-level way. This simplifies modelling and solving of online
problems significantly, making it more efficient for experienced modellers and
more accessible for novices.

Experiments using our implementation of the framework for MiniZinc show
the usefulness of the approach for both online problems and sliding window de-
composition. Furthermore, the experiments highlight the importance of garbage
collection, i.e., removing old data that is no longer relevant.

Future work includes, among other things, extending the framework to ad-
dress dynamic and stochastic online problems (i.e., where known parameters
can change over time and where disruptions can occur, with or without a pri-
ori distributions or probabilities), incorporating predictions of future data while
solving, automatic detection of simple garbage collection rules via model ana-
lysis, looking at stability and robustness criteria, and using dynamically sized
windows and multiple passes with sliding window decompositions.
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dra Jussien. Solving a real-time allocation problem with constraint programming.
Journal of Systems and Software, 81(1):132–149, January 2008.

16. Patrick Jaillet and Michael R. Wagner. Online vehicle routing problems: A survey.
In Bruce Golden, S. Raghavan, and Edward Wasil, editors, The Vehicle Routing
Problem: Latest Advances and New Challenges, volume 43 of Operations Research/-
Computer Science Interfaces, pages 221–237. Springer US, Boston, MA, 2008.

17. Patrick Jaillet and Michael R. Wagner. Online Optimization. Springer, 2012.



18. BoonPing Lim, Hassan Hijazi, Sylvie Thiébaux, and Menkes van den Briel. Online
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