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Abstract. State-space planning is the de-facto search method of the au-
tomated planning community. Planning problems are typically expressed
in a high-level language called the Planning Domain Definition Language
(PDDL), where action and variable templates describe the sets of actions
and variables that occur in the problem. For many planners, one of the
first steps is generating the full set of instantiations of these templates.
In this way, the planners are able to derive useful heuristics that guide
the search. Thanks to this success, there has been limited research in
other directions.
In this work, we explore a different approach, where we keep the com-
pact representation by directly reformulating the problem in PDDL into
Essence Prime. In contrast with some heuristic planners, by using this
reformulation procedure we are able to directly guarantee optimality on
the solved instances in terms of makespan.
Our contribution revolves around two different encodings from PDDL to
Essence Prime, how they represent action parameters and their per-
formance. The encodings are able to maintain the compactness of the
PDDL representation, and while they differ slightly, they perform quite
differently on various instances from the International Planning Compe-
tition.
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1 Introduction

Given a model of the environment, a planning problem attempts to find a se-
quence of actions that leads from an initial state to a given goal state. These
models are typically expressed in the Planning Domain Definition Language
(PDDL). Typically, the user describes the problem in terms of predicates, ac-
tions and functions with parameters. In turn, these parameters can be instanti-
ated with a set of defined objects.

Example 1. A simple example of a planning problem could be a logistics prob-
lem, where we must transport two persons from the city of Barcelona to the
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airport, so they are finally able to embark on a plane that will take them home.
Figure 1 shows a simple graphical representation of the problem. A valid plan for
this problem would be to move Bob to the Airport, move Alice to the Airport,
embark Bob into the plane, and finally embark Alice into the plane.

Alice Bob

Barcelona Airport

plane

Fig. 1. A representation of the initial state. Persons are in the city of Barcelona, and
they must reach the airport to embark.

In spite of having a compact model representation, when planners ingest the
model, one of their first steps is producing a totally grounded representation.
The action of grounding (or instantiation) will replace all variables that represent
parameters in actions by their possible values, creating all the possible instan-
tiations of the actions. After grounding, no variables are left free and all valid
instantiations of predicates and functions in the actions are computed. The size
of the fully grounded planning problem is exponential regarding the maximum
number of arguments of all the actions in the original problem.

Example 2. An action refuel(?x - vehicle, ?where - location) is an ac-
tion template. Considering three locations L1, L2 and L3, and two vehicles A and
B will result into six ground instances refuel A L1, . . . , refuel B L3 for each
step considered.

Depending on the original problem and how the task is grounded, this growth
sometimes can result in an instance that cannot be efficiently handled. There
have been some approaches in the literature that try to alleviate this grounding
problem in various ways. For example, one could ground only relevant parts
of the problem [10,9], make clever representations of actions [1] or simplify the
input problem [13].

The contrast of grounded planning would be lifted planning, where grounding
is fully avoided. Grounding is normally seen as a necessary step, and there are
very few approaches to lifted planning that skip grounding entirely [17,18,4].
These approaches are not that popular mainly due to the efficiency of grounding
to easily compute informative heuristics that are difficult to compute at the lifted
level. Also, reasoning in a more abstract level is typically more difficult.
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In this work, our aim is to take advantage of the expressivity of the constraint
satisfaction technologies to obtain lifted representations of PDDL problems. One
of the successful approaches for solving combinatorial problems is by translation
to more low-level languages, such as SAT, SMT [6], or FlatZinc. Examples of
these tools might be Savile Row [16], MiniZinc [14] or Picat [21]. Ideally, such
encodings would be compact (in terms of the number of clauses and additional
variables) and would have good propagation properties.

In this work, we will use Savile Row. The interest of using it emanates from
its declarative CSP modelling language Essence Prime and its capabilities of
automatic domain pruning or common subexpression elimination [15]. Moreover,
we will take advantage of its support for multiple backend solvers.

Our contributions in this paper are two different encodings from PDDL to
Essence Prime. They differ by how they represent action parameters. The
encodings are able to maintain the compactness of the PDDL representation,
and while they differ slightly, they perform quite differently.

The rest of the paper proceeds as follows. In Section 2 we recall the theoretical
framework. In Section 3 we propose the encodings from PDDL to Essence
Prime. Section 4 is devoted to the experimental evaluation of the encodings.
Finally, Section 5 discusses some future work and concludes.

2 Preliminaries on Automated Planning

This paper considers numeric planning problems, which extend propositional
planning with numeric state variables. We formally define the numeric planning
problem only in terms of the grounded representation of the problem.

Definition 1 (Numeric Planning Problem). A planning problem can be
defined as a tuple

∏
= (B,O, F,X,A, I,G), where

– B is a set of names for all the objects,
– O is a set of object state variables,
– F is a set of propositional state variables,
– X is a set of numeric state variables,
– A is a set of actions,
– I is the initial state and
– G is the goal.

An action a ∈ A is defined as a tuple a = 〈Prea,Eff a〉, where Prea refers to the
precondition and Eff a to the effects of the action.

Definition 2 (State). Given a planning problem
∏

, a state is a variable-
assignment (or valuation) function over state variables O ∪ F ∪X, which maps
each o ∈ O to an object in B, each f ∈ F into a truth value, and each x ∈ X to
an integer. A state is represented as a set of ordered pairs

{(v1, z1), (v2, z2), . . . , (vn, zn)}

where each vi is the variable and zi the value mapped to it.
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An object condition has the form ζ ⊗ b, where ζ is an expression over O,
⊗ ∈ {=, 6=} and b is an object in B. A numeric condition has the form ζ ⊗ k,
where ζ is a linear integer arithmetic expression over X, ⊗ ∈ {≤, <,=, >,≥}
and k is an integer numeric constant.

Preconditions (Pre) and the goal G are sets (conjunctions) of object con-
ditions, numeric conditions and propositions. Action effects (Eff ) are sets of
assignments to propositional variables, assignments to object variables and in-
crease/decrease/assign a numeric variable by a numeric expression. A conditional
effect is a pair 〈c, e〉 where c is a set of object, numeric and propositional condi-
tions; and e is an effect. e is applied only if c is satisfied in the state where the
action is applied.

An action a is applicable in a state s only if its preconditions are satisfied in
s (s |= Prea) and the applied numeric, object and propositional effects do not
induce conflicting assignments. The outcome after the application of an action a
will be the state where variables that are assigned in Eff a take their new value,
and variables not referenced in Eff a keep their current values.

A sequence of actions 〈a0, . . . , an−1〉 is called a plan. We say that the ap-
plication of a plan starting from the initial state I bring the system to a state
sn. If each action is applicable in the state resulting from the application of the
previous action and the final state satisfies the goal (i.e., sn |= G), the sequence
of actions is a valid plan. A planning problem has a solution if it can be found
a valid plan for the problem.

3 Encodings

In this section, we propose various encodings for a numeric planning problem,
as described in the previous section. First, we will explain how the planning
as satisfiability approach works, then in what kind of input we will receive the
planning problem and finally the proposed encodings.

3.1 Planning as Satisfiability

As it is typically done in the planning as SAT or CSP approaches [11,3], we will
solve the planning problem by considering a sequence of CSPs φ0, φ1, φ2, . . . ,
where φi encodes the existence of a plan that allows to reach a goal state from
the initial state in i steps. The solving procedure will test the satisfiability of φ0,
φ1, φ2, and so on, until a satisfiable formula φn is found, proving the existence
of a valid plan of n steps.

Each φ formula will need variables to represent the state for each step and
need to define the values of the variables in the initial step. Then, it will also need
some variables to represent what action is executed at each step. We will need to
make sure that if an action is executed, its precondition holds with respect to the
problem variables. We will need to make sure that the goal conditions are met
and we will do it by adding some constraints on the variables representing the
state of the final step. Finally, we will need to make frame axioms explicit. That
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is, constraints that specify that if no action has modified a variable, it keeps its
value between steps. Approximations such as the ∀-step or ∃-step semantics [19]
allow parallel actions, but for now we will assume that one action will be executed
per time step.

3.2 Input

Notice that in contrast to the formal definition of a planning problem given in
the previous section, PDDL allows us to specify problems in a lifted manner. Al-
though being normally represented in this way, most solving approaches ground
them.

(define (domain transport)

(:types person aircraft - locatable

location - object)

(:predicates (at ?p - locatable ?l - location)

(in ?p - person ?a - aircraft))

(:functions (seats ?p - aircraft) - number)

(:action move

:parameters (?p - person ?from ?to - location)

:precondition (at ?p ?from)

:effect (and (not (at ?p ?from)) (at ?p ?to)))

(:action embark

:parameters (?p - person ?l - location ?a - aircraft)

:precondition (and (at ?p ?l) (at ?a ?l) (> (seats ?a) 0))

:effect (and (not (at ?p ?l)) (in ?p ?a) (decrease (seats ?a) 1))))

(define (problem example)

(:domain transport)

(:objects plane - aircraft

Bob Alice - person

Barcelona Airport - location)

(:init (at Bob Barcelona) (at Alice Barcelona)

(at plane Airport) (= (seats plane) 2))

(:goal (and (in Bob plane) (in Alice plane))))

Fig. 2. Domain and problem file in PDDL, representing the example problem
in Figure 1. A valid plan for the problem would be: (move Bob Barcelona

Airport), (move Alice Barcelona Airport), (embark Bob Airport plane) and
(embark Alice Airport plane).

A fluent, in the area of automated planning, refers to a variable that repre-
sents some attribute of the problem and changes over time. Roughly speaking,
our framework will be numeric planning, with the consideration of object flu-
ents. This means that, apart from reasoning with integer fluents, we will be
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able to have actions that work with objects and refer to attributes of these ob-
jects. Therefore, a fluent declared as (location ?p - object) - place will be
able to express where objects are, and expressions like (= (location plane)

(location person)) or (> (fuel plane) 10) will be valid.
More concretely, our formalism will derive from PDDL 2.1 [7], without tem-

poral semantics or metric optimizations. We will also consider the functional
strips semantics [8] incorporated in the recent revisions of the PDDL language.
As explained, this will enable us to refer directly to problem objects.

Even though planning formalisms do not consider templates, they are widely
used in PDDL to make the representation compact. Types are also used in
PDDL to make the problem more readable and to give more information to the
planners. It can be seen in Figure 2 how types, templates for actions, predicates
and functions are expressed. As our input will be a problem defined in the PDDL
language, we will need to directly consider them. In fact, the instantiations of
the predicate templates will correspond to the predicate state variables of the
planning problem at hand, and the instantiations of the function templates will
correspond to the object and numeric state variables of the planning problem,
depending on its return type.

Templates can be state variable templates or action templates. These are
comprised of a name and a sequence of typed parameters, or “ordinary” variables.

Example 3. Consider (location ?p - object) - place, being an object state
variable template. Its name is location and its parameters, the sequence [?p],
where the only parameter ?p has the name p and the object type. The domain
of this object state variable is the set of objects with type place in the problem.

For instance, in the PDDL specification, expressions such as preconditions
and effects can also contain variables, belonging to the action template param-
eters. For example, the effect (and (not (at ?p ?from)) (at ?p ?to)) be-
longing to the move action template in Figure 2 contains three variables: p, from
and to.

3.3 Basic Encoding

In this section we describe formulas φh, that is, the existence of a valid plan with
h actions.

Again, our purpose in this work is to encode these PDDL instances into
Essence Prime in a lifted manner. Roughly, a grounded representation would
have a Boolean variable stating whether action move alice Barcelona airportt

is performed in a given time step t. Instead of that, for each time step t, we will
have an integer variable stating which action template is applied and an integer
variable per parameter of each action template stating what particular object
is used as a parameter of that action. Moreover, and for each time step t, we
will also have a CP variable for each concrete instantiation of each state variable
template.
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To express the encoding, we will need some auxiliary definitions. Let E be
the set of types specified in the PDDL model. Each object b ∈ B has a type
associated with it. Also, each type e ∈ E has a domain associated to it, being
Domaine ⊆ B. Let AT be the set of action templates in the PDDL problem.
Similarly, OT , FT and XT will be the sets of object, propositional and numeric
state variable templates, respectively.

Let V be the set O∪F ∪X, representing the set of all state variables , without
taking their type into account. VT will represent the set of all state variable
templates. For x ∈ AT ∪ VT , let Parametersx be the sequence [z1, . . . , zn],
of parameters of the template. For each parameter zi, let Typezi be the type
associated to zi. Let l(v)→ Z be an injective function defined for all v ∈ B∪AT .
It serves as a labelling function, that maps an object or action to a unique integer.
This will be useful to later encode objects and object state variables as integers
and integer state variables respectively.

We will start by introducing the following CP variables:

– We introduce variables statetv that hold the value of state variable v in step
t. This representation corresponds to a new CP variable for each grounded
state variable.

statetv ∀v ∈ V,∀t ∈ 0..h (1)

– We introduce a variable actiont to express which action is scheduled at time
step t. The domain of these actiont variables is {l(a) | a ∈ AT }, being the set
of integers the labelling function l assigns to the problem action templates.

actiont,∀t ∈ 1..h (2)

– We introduce new variables paramt
a,i denoting the value of i-th parameter in

action template a at each step t. Each of these variables will have a domain
of the parameter type.

paramt
a,i ∀a ∈ AT ,∀i ∈ 1..|Parametersa|,∀t ∈ 1..h (3)

Note that variables introduced in (2) and (3) correspond to the action tem-
plates. With this representation, there is no need to ground all the possible
instantiations of the actions, and the solver will be responsible to choose what
action template is executed and with which parameters.

We state initial and goal states

state0v = z ∀(v, z) ∈ I (4)

gh ∀g ∈ G (5)

where G is a conjunction of conditions on state variables, and gh is the Essence
Prime translation of these conditions on CP variables statehv for all variables v
in the conditions of G. Note that the initial state must be fully specified.
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letting plane be 1

letting Bob be 2

...

letting aircraft be domain int(1)

letting person be domain int(2,3)

...

find actions: matrix indexed by [time] of domain_actions

find at: matrix indexed by [locatable,location,full_time] of bool

Fig. 3. An example for the encoding in Essence Prime of variables introduced in (1)
and (2). We use of the letting keyword to define constants. The find keyword defines
matrices of variables, and we use auxiliary domain definitions to make declarations
more easily to read.

Frame axioms express that, given a state variable, if it has changed from a
time step to the next one, is because an action that is able to change it has been
executed.

statet−1v 6= statetv →∨
∀a ∈ AT ,

∀m ∈ modify(a, v)

actiont = l(a) ∧
∧

∀(zj ,o)∈m

paramt
a,j = l(o)

 ∀t ∈ 1..h,
∀v ∈ V

(6)

We also need a function modify(a, v) that given an action template a and a
state variable v, returns the set of all combinations of parameter assignments
(expressed as a pair (zj , o)) that make action a modify variable v. For instance,
the state variable at(Bob,Barcelona) is modified by action template move, with
the following set of parameter assignments:

{{(p, Bob), (from, Barcelona), (to, airport)},
{(p, Bob), (from, airport), (to, Barcelona)}, ...}

Figure 4 is an example of a frame axiom.
Finally, actions are expressed

actiont = l(a)→ Pret
a ∧ Eff t

a ∀a ∈ AT ,∀t ∈ 1..h (7)

Preconditions are sets of conditions and effects are sets of assignments. When
translating Pret

a and Eff t
a into Essence Prime, we use the element global

constraint to access the corresponding state variables according to the values
given to the action parameters. The translation of conditions and state variable
assignments to Essence Prime is straightforward. However, we remark that
conditions and right-hand sides of assignments will consult the state variables of
time t − 1, and left-hand side of the assignments will update state variables of
time t. For instance, when considering the effect on the number of free seats in
the embark action: seats[embark a[k],k] = seats[embark a[k],k-1]-1.
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forAll k : int(1..T) .

forAll p : person .

forAll a : aircraft .

in[p, a, k-1] != in[p, a, k]) ->

actions[k] = embark /\ embark_p[k] = p /\ embark_a[k] = a

Fig. 4. Encoding in Essence Prime of Equation (6) for the in fluent in the example
from Figure 2. Informally, if the in(p,a) fluent changes between time steps, it’s because
an embark action has been executed and its parameters correspond to p and a.

3.4 Encoding Compaction

Approximations such as the ∀-step or ∃-step semantics [19] allow parallel actions
as long as they are not interfering. For now, our encoding assumes that one action
will be executed per time step.

With one action executed per time step, we can see that most of the variables
from (3) are rarely used. That is, only the parameters belonging to the selected
action are used, and the others are ignored. Here we introduce two variants of the
encoding with the aim of reducing the total number of variables: Type sharing
and Max Parameters.

Before explaining the encodings, we need to introduce the concept of a sub-
stitution. A substitution (or renaming) σ is a partial mapping from variables to
variables. It can be represented explicitly as a function by a set of bindings of
variables to variables. That is, if σ = {x1 7→ y1, . . . , xn 7→ yn}, then σ(xi) = yi
for all i in 1..n, and σ(x) = x for every other variable. Using an infix notation
and given any expression τ containing variables, τσ is τ with all the contained
variables replaced, as specified by σ.

Example 4. Given a substitution σ = {p 7→ q} and the term representing an
effect τ = (and (not (at ?p ?from)) (at ?p ?to)), the result of τσ would
be (and (not (at ?q ?from)) (at ?q ?to))

Type Sharing The rationale behind this encoding is that, even though actions
can have lots of parameters, they will have very few parameters of the same type.
Therefore, actions will now substitute each of its parameters of a given type for
a new parameter that will be shared by all the actions that need a parameter of
that type.

Let Ce for each e ∈ E be the maximum number of parameters on all actions
that share type e. Then, variables introduced in (3) are substituted with

paramt
e,i ∀e ∈ E,∀i ∈ 1..Ce,∀t ∈ 1..h (8)

Example 5. If the PDDL action that has most parameters with the place type
is an action such as move(?p - person, ?from - place, ?to - place), then
Cplace = 2. Then, the previous Equation will introduce parameter variables
paramt

person,1, paramt
place,1 and paramt

place,2 for each time step.
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Original PDDL representation

fly(?p - plane ?from ?to - loc)

unload(?p - plane ?x - package)

load(?p - plane ?x - package)

Standard encoding

fly(pfly,1,pfly,2,pfly,3)

unload(punload,1,punload,2)

load(pload,1,pload,2)

Type Sharing

fly(pplane,1, ploc,1,ploc,2)

unload(pplane,1,ppackage,1)

load(pplane,1,ppackage,1)

Max parameters

fly(p1,p2,p3)

unload(p1,p2)

load(p1,p2)

{pfly,1, pfly,2, pfly,3

Set of declared parameters

punload,1, punload,2,

pload,1, pload,2}

{pplane,1, ppackage,1, ploc,1, ploc,2}

{p1, p2, p3}

Fig. 5. A graphical representation of how parameters are shared in the various encod-
ings for the planes domain used in the experimental section. The left column shows
how parameters are substituted, and the right column what parameter variables are
created.

Given an action template a ∈ AT and a type e ∈ E, let pos(e, a) = [z | z ∈
Parametersa, T ypez = e]. That is, the subsequence of parameters of a that have
type e.

Then, we can define a substitution σa for every action a ∈ AT , such that

σa = {parama,q 7→ parame,i |
q ∈ 1..|Parametersa|, e = Typeq, i ∈ 1..|pos(e, a)| , pos(e, a)[i] = q} (9)

Finally, Equation (7) is modified to use these new parameter variables

actiont = l(a)→ Pret
aσa ∧ Eff t

aσa ∀a ∈ AT ,∀t ∈ 1..h (10)

Following Example 5, this will substitute all appearances on the Pre and Eff
of ?p by paramperson,1 and so on. Figure 6 represents the encoding in Essence
Prime with the substitutions applied.
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forAll k : int(1..MAX_ACTIONS) .

actions[k] = embark ->

((at[p_person1[k], p_location1[k], k-1] /\

at[p_aircraft1[k], p_location1[k], k-1] /\

seats[p_aircraft1[k], k-1] > 0)

/\

(!at[p_person1[k], p_location1[k], k] /\

in[p_person1[k], p_aircraft1[k], k] /\

(seats[p_aircraft1[k], k] = seats[p_aircraft1[k], k-1] - 1)),

Fig. 6. Encoding in Essence Prime of Equation (10) for the embark action from
Figure 2. Note that in the Pre and Eff we substituted the parameter names for the
ones according by σa.

Max parameters Another approximation for representing parameters more
efficiently is to share parameters independently of its types. That is, instead of
dedicated parameter variables for each action, we will only declare n parameters,
where n is equal to the number of parameters of the action with most parame-
ters. Formally, n = max({|Parametersa| | a ∈ AT }). These parameters will be
representing different types depending on which action is executed. Therefore,
the domain of each one will be the union of all possible objects. We will again
substitute variables in (3) by

paramt
q ∀q ∈ 1..n, ∀t ∈ 1..h (11)

Now, let σa be a substitution for every action a ∈ AT , such that

σa = {parama,q 7→ paramq|q ∈ 1..|Parametersa|}

This substitution will replace the mentioned parameters in the action by the
new declared parameters in (11). Finally, Equation (7) is also modified to use
these new variables

actiont = l(a)→ Pret
aσa ∧ Eff t

aσa ∀a ∈ AT ,∀t ∈ 1..h (12)

To help the encoding, if using a CSP solver as a backend, a table constraint
can be added on the Essence Prime model to limit the possible values of the
parameters depending on the action chosen. This makes that once an action has
been decided, the domains of the parameters are restricted to its declared types.

4 Experimental Evaluation

In this section, we evaluate the performance of the presented encodings by solv-
ing a set of numeric planning problems coming from the third IPC [12]. These
domains contain integer numeric fluents without quantified preconditions, as the
rest of the domains contain features that we still do not support. These domains
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are: Zenotravel, Driverlog, Depots. This competition edition has been chosen as it
was the last that focused on problems with a numeric component. The Petrobras
and Planes domains from [5] are also considered since they have an interesting
numerical component. Although some domains give various optimization crite-
ria, we only consider the satisfiability of the problem, minimizing the makespan.

As we said, our approach reformulates the PDDL description to the Essence
Prime language. In turn, this Essence Prime model is given as input to Sav-
ile Row [16] to generate a SAT or CSP model. Finally, we use Glucose [2]
and Chuffed3 as the backend solvers. We validated the usefulness of the Savile
Row preprocessing steps such as common subexpression elimination or symme-
try breaking capabilities by turning them off and determining that solving times
were gravely hindered, at least by a factor of two.

To compare the presented encodings with a similar approach, we use the
linear encoding provided by RanTanPlan [5], using planning as SMT with a
fully grounded encoding. We additionally evaluated the SpringRoll planner [20],
as it also supports linear semantics, but it only solved 5 instances and therefore
it is not included in the results table. The experiments were run on a cluster of
machines, running the CentOS operating system, equipped with Intel R© Xeon R©

E3-1220v2 Processors at 3.10 GHz with Turbo Boost disabled, and 8GB of main
memory. The total timeout is set to 1 hour.

We do not consider the basic encoding without compacting action parame-
ters, as it behaves worse than the two proposed improvements. Table 1 shows
the time taken to solve and the optimal makespan for instances solved by any
of the approaches considered. The three approaches are comparable in terms of
total number of instances solved, but differ considerably between families.

The maximum number of actions we see is 24, and we speculate that over
these numbers symmetries between the application of actions are too big for the
solvers to be able to give a response in the given timeout.

The Depots domain seems too big, as all the approaches are only able to
return a solution for a very few number of instances. The same happens with
the Petrobras domain.

If we look at the Driverlog, Zenotravel and Planes domains, the different
approaches differ between them. The RanTanPlan planner is clearly better in
the Zenotravel domain. The Type Sharing encoding is roughly one order of
magnitude faster than the rest in the Driverlog domain and is clearly better in
the Planes. Finally, the Max. Parameters encoding is comparable in number of
instances to RanTanPlan in the Zenotravel.

Chuffed is able to solve 8 instances of Petrobras, and seems to benefit greatly
from the type information in the Type Sharing encoding. Strangely, we find
lots of out of memory errors when using the Max. Parameters encoding with
Chuffed. Even though typically the Max. Parameters encoding generate a few
less parameters, the type information is very useful, as Savile Row is able to
generate smaller encodings when translating to SAT.

3 https://github.com/chuffed/chuffed
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Table 1. Solved instances by any of the approaches. SR - SAT columns are the
combination of Savile Row and Glucose, and SR - CP are Savile Row with Chuffed.
TO denote a timeout and MO a memory out.

SMT SR - SAT SR - SAT SR - CP SR - CP
Instance steps RanTanPlan T. Sharing Max. Param T. Sharing Max. Param

depots-1 10 28.21 111.80 119.34 27.89 2889.01
depots-2 15 TO 437.56 523.08 2653.75 TO
depots-7 21 TO 3513.73 TO TO TO
driverlog-1 7 0.90 5.75 23.21 5.30 MO
driverlog-2 19 1298.04 39.44 439.14 1417.61 MO
driverlog-3 12 39.76 15.30 87.48 26.00 MO
driverlog-4 16 1877.58 29.17 292.47 1358.93 MO
driverlog-5 18 3535.26 42.63 594.14 1509.25 MO
driverlog-6 11 168.82 14.66 100.39 31.51 MO
driverlog-7 13 3228.56 20.77 174.69 363.30 MO
driverlog-9 22 TO 132.74 2459.13 TO MO
driverlog-10 17 TO 130.22 2259.11 TO MO
driverlog-11 19 TO 105.48 1711.46 TO MO
petrobras-A1 5 39.29 204.92 145.53 6.74 MO
petrobras-A2 10 1444.23 TO TO 47.93 MO
petrobras-B1 5 498.21 281.91 435.94 8.85 MO
petrobras-B2 10 TO TO TO 404.23 MO
petrobras-C1 5 496.99 277.70 403.17 8.74 MO
petrobras-C2 10 TO TO TO 406.26 MO
petrobras-D1 5 496.09 267.19 416.62 9.69 MO
petrobras-D2 10 TO TO TO 405.96 MO
planes-1 14 10.90 63.73 TO 25.37 MO
planes-2 17 87.90 86.76 TO 135.69 MO
planes-3 19 703.04 321.03 TO 1509.96 MO
planes-4 22 TO 1318.36 TO TO MO
planes-5 21 TO 491.70 TO TO MO
planes-6 24 TO 2145.01 TO TO MO
planes-7 22 TO 612.99 TO TO MO
planes-8 23 TO 1031.65 TO TO MO
zenotravel-1 1 0.07 0.78 2.29 0.51 3.75
zenotravel-2 6 0.13 4.45 69.73 4.27 56.92
zenotravel-3 7 0.67 105.07 250.62 6.67 130.07
zenotravel-4 10 2.69 336.9 580.81 14.37 593.98
zenotravel-5 12 69.72 TO 1072.97 52.58 TO
zenotravel-6 12 66.32 TO 1235.67 106.58 TO
zenotravel-7 13 191.70 TO 1679.50 114.21 TO
zenotravel-8 13 977.26 TO TO TO TO

Total Solved - 24 29 23 27 5



14 Joan Espasa, Jordi Coll, Ian Miguel, and Mateu Villaret

5 Conclusions and Future Work

In this work, we have presented two lifted encoding approaches of planning
problems to CP, which seem promising as a first step. The use of Savile Row
has enabled us to try different solving backends easily. Its interesting to see that
small changes in how the parameters are shared lead to important differences
in solving times. The difference between efficiency between the two encodings
depends on the differences between the number of parameters in actions and
its types. This could lead to a simple preprocess where an encoding is selected
depending on the problem structure.

These encodings can also be helped by considering the symmetries between
the successive application of different actions, or by incorporating the application
of various actions in the same step. The search strategy now goes naively from
one step to infinity, until a plan is found or the timeout makes the procedure
stop. A possible improvement is to consider computing a lower bound using a
relaxation of the problem.

For now we have considered a few similar numeric domains from the IPC
competition. We should extend the comparison further, with more domains and
get a full grasp of the strengths and weaknesses of the encodings. Non-numeric
domains would be also interesting to try. The comparison should also be extended
to include numeric planners with different approaches.
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