
Deriving Optimal Multiplication-by-Constant Circuits

With A SAT-based Constraint Engine

Vitaly Lagoon
Cadence Design Systems, USA

lagoon@cadence.com

Amit Metodi
Cadence Design Systems, Israel

ametodi@cadence.com

Abstract

Constant multiplication circuits can be realized using additions, subtractions and left-
shifts. The problem of finding a multiplication circuit with minimum number of adders and
subtracters for a given constant (set of constants) is known as single (multiple) constant
multiplication (SCM, MCM) problem.

In this work we demonstrate how SCM and MCM instances can be encoded in constraints
of SystemVerilog language and solved by the integrated constraint solver of Xcelium Logic
Simulator by Cadence. Given a target constant C and a number N of nodes (adders and
subtracters), our approach produces a description of a circuit of N nodes taking an arbitrary
input x and computing Cx. The technique is complete, proving non-existence of a circuit if
the corresponding multiplication requires more than N nodes. Thus, an optimal realization
can be derived for Cx by searching for the lowest N for which the realization is feasible.

Our experiments show that the integrated constraint-solving flow of Xcelium based on
a Boolean satisfiability solver can handle hard and large instances of SCM/MCM, such as
multiplication by high 32-bit constants in reasonable time, usually no more than a few seconds.

We conjecture that the approach can be relevant in the context of IC/FPGA realization.

1 Introduction

Multiplication by constant is a performance-critical element of many numeric algorithms in digital
signal processing (DSP) and control applications. One well-known approach to speeding-up a
constant multiplication y = Cx for a known integer or fixed-point constant C in the contexts of
ASIC and FPGA realizations is to synthesize a specialized (with respect to C) multiplying circuit
based on adders, subtracters and left-shift operations. The problem of finding such circuits with
minimum numbers of adders and subtracters is known as single constant multiplication or SCM.
The generalization of the problem for multiplication by a set of given constants is known as multiple
constant multiplication or MCM. It is shown that SCM and MCM, by trivial generalization, are
NP-hard [6].

There is a straightforward upper bound of N = dlog2(C)/3e nodes for a multiplication by C,
based on the canonical signed digit (CSD) encoding [5]. The state-of-the-art literature reports
much tighter bounds for N , and conjectures that the minimum cost is sub-linear with respect to
the size of binary encoding of C (or sub-logarithmic with respect to C). The exact minimum cost
of SCM circuits however, remains an open research problem [12].

Numerous techniques of finding minimal or nearly minimal circuits for constant multiplication
(SCM and MCM) have been reported in the literature. The survey of the methods is beyond the
scope of this short paper. The reader is referred to [10, 7, 8] for more details. The methods pro-
posed in the literature are based on encoding optimizations, graph reduction techniques and more
recently, on applications of Integer Linear Programming (ILP). In general, the proposed methods
are divided into precise and approximate. Precise methods target exact minima of adders and

1

subtracters while the approximate techniques usually apply sets of heuristics leading to reduction
in circuit sizes, but not guaranteed to find the global minima.

In this work we demonstrate a precise method of solving SCM/MCM by modeling the cor-
responding multiplication circuits in a mix of arithmetic and bitwise constraints over finite bit-
vectors, and deriving the realization circuits by solving the constraints in a SAT (Boolean sat-
isfiability) engine. We use the constraint subset of SystemVerilog [2, 3] verification language for
our models. However, we claim that the model is generic and should be easily portable to any
common constraint language supporting bit-vectors. We conduct several experiments based on
solving the models for several SCM instances of interest. The solving is done using Cadence®

Xcelium� Parallel Logic Simulator for SystemVerilog [11] which integrates several constraint solv-
ing engines. In all our experiments the actual solving is handled by the integrated SAT flow of the
Xcelium Simulator. That flow incorporates several layers of program analysis, simplification, and
translation of bit-vector constraints to SAT. The actual SAT solving is performed by a variant of
Glucose SAT solver [1] modified for finding randomized solutions of the corresponding conjunctive
normal form (CNF).

Unlike most of prior art on SCM/MCM this paper does not propose any special-purpose
algorithms for solving the optimal multiplication problem. Instead, we rely on the existing general-
purpose Xcelium� engine and the integrated SAT solver. The contributions of the paper are thus,
(a) presenting a clear and concise model for the problem that can be straightforwardly translated
to SAT and (b) demonstrating through the series of experiments that the method is practical.

The closest to our approach is perhaps the work of Aksoy et al. [4]. In that work, elaborate
Boolean modeling is used for capturing sharing of sub-terms, and a 0-1 ILP solver based on SAT
is used for finding solutions with maximum sharing which reflect the minimum of required adders
and subtracters. We believe that the model presented in this work is more intuitive and natural by
comparison, which makes it easier to understand and adopt in practical contexts. Moreover, since
we model the SCM/MCM problem directly in terms of adders, subtracters and shift operations of
the circuit, the corresponding correctness and optimality of the approach follow trivially, with no
need for proofs.

2 The Constraint Model of SCM Circuits

The proposed method is based on constraint encoding of the SCM problem in the embedded
constraint language of SystemVerilog [2, 3]. The model is shown in Figure 1.

We model a linearized view of a multiplication circuit for a given constant C as an array
scm.nodes[N]. Each element in the array represents an adder or a subtracter. The nodes relate to
their input arguments through the indices i1 and i2 in the array of nodes. The constraints in lines
13–17 establish the relations between the parameters of each node with v1 and v2 representing
the two inputs and o representing the output of the node. The two Boolean flags, ADD and sh1

indicate respectively whether the node performs addition or subtraction, and whether it applies
the left shift operation to v1 or to v2. Without loss of generality we restrict our model to the
nodes with (a) exactly one input, either v1 or v2 shifted left and (b) in case of add-nodes, the first
input v1 shifted left. The restriction breaks the symmetry of add-nodes in the natural way, and
excludes the whole dimension of nodes with two inputs shifted left. The constraints in lines 15–17
also include the corresponding “inverse” statements, such as (o-v2)>>sh==v1 for add-nodes. Such
constraints prevent numeric overflows which are a part of the SystemVerilog semantics. We need
to avoid overflows to make sure the circuit is correct for multiplications by inputs of any size.

The constraint in lines 30–34 equates the input variables of each node v1 and v2 with the
output values of the argument nodes designated by i1 and i2. Finally, the target constraint
in line 35 requires that the last node in the linearized sequence outputs the target multiplication
result.

Our modelling approach implies that all node outputs are odd numbers, and the model is only
feasible for odd values of C. The restriction prunes the search space by excluding the nodes with
two inputs shifted left, as explained above. Note however, that it does not limit the power of the

2

00 ‘define N 4
01 ‘define C 12345;
02
03 module top;
04 class node;
05 rand bit ADD; // is this an ADD or a SUB node?
06 rand bit sh1; // are we shifting the 1st or the 2nd input?
07 rand int unsigned i1, i2; // indices of the two input nodes (or 0 for x)
08 rand int unsigned v1, v2; // values copied from the input nodes
09 rand int unsigned sh; // left-shift one of the inputs by that many bits
10 rand int unsigned o; // node output
11
12 constraint node_rels {
13 i1==0 -> v1==1;
14 i2==0 -> v2==1;
15 if (ADD) { o==(v1<<sh)+v2; sh1==1; (o-v2)>>sh==v1; } // ADD-node
16 else if (sh1) { o==(v1<<sh)-v2; (o+v2)>>sh==v1; } // SUB-node, shifting 1st input
17 else { o==v1-(v2<<sh); (v1-o)>>sh==v2; } // SUB-node, shifting 2nd input
18 }
19 endclass // node
20
21 class scm;
22 int unsigned max_shl; // maximum shift
23 int unsigned val; // target value
24 rand node nodes[]; // linearaized circuit
25
26 constraint init { nodes[0].v1==1; nodes[0].v2==1; }
27 constraint limits { foreach (nodes[i]) { nodes[i].sh>0; nodes[i].sh<max_shl;
28 nodes[i].i1<=i; nodes[i].i2<=i; }}
29
30 constraint val_mux {
31 foreach(nodes[i]) foreach (nodes[j]) if (j<i) {
32 (nodes[i].i1==j+1) -> (nodes[i].v1==nodes[j].o);
33 (nodes[i].i2==j+1) -> (nodes[i].v2==nodes[j].o);
34 }}
35 constraint target { nodes[‘N-1].o==val; }
36 endclass // scm
37
38 scm SCM = new;
39 initial begin
40 SCM.nodes = new[‘N];
41 foreach (SCM.nodes[i]) SCM.nodes[i] = new;
42 SCM.val = ‘C;
43 SCM.max_shl = $clog2(SCM.val)+1;
44 SCM.randomize();
45 // display SCM (omitted)
46 end
47 endmodule

Figure 1: The basic SCM model

3

proposed method. Any even C can be seen as 2kC ′ for some odd C ′. Thus, a solution for C can
be trivially obtained from an SCM circuit for C ′ by shifting left its output left by k.

The model of Figure 1 produces randomized solutions for the case defined by the corresponding
‘N and ‘C constants as illustrated by the following example.

Example 1. Consider the problem of optimal multiplication by 12345. Figure 2 demonstrates the
output (left) and the math formula (right) of the corresponding circuit produced by the constraint
solver for the encoding of Figure 1. It takes less than 0.5sec to derive the solution. It is also easy
to prove based on the same model that the result is optimal. By running the same model with
the definition “‘define N 3” we get a contradiction in less than 0.5sec. The infeasibility result
means the same multiplication cannot be handled by less than four adders/subtracters.

N1 = (X<<3) - X 8x− x = 7x
N2 = (X<<5) - N1 32x− 7x = 25x
N3 = (N1<<6) + N1 64 · 7x + 7x = 455x
N4 = (N2<<9) - N3 512 · 25x− 455x = 12345x

Figure 2: Multiplication by 12345 as a 4-node circuit

The results of the above example demonstrate that the proposed method is useful not only
for deriving multiplication circuits, but is also capable of proving their minimality. The example
suggests a natural method of optimizing SCM instances. First, we find a sub-optimal solution
based on a conservative estimate of N . The most conservative estimate for which a solution always
exists is N = dlog2(C)/3e, but better (lower) estimates are not hard to guess (see Table 1 below
and the corresponding explanations). Once the initial value of N is established, the minimization
consists in solving the same model with decreasing values of N . The lowest value for which the
solution exists is the proven minimum of nodes required for the given SCM instance.

In our next experiment we verify the known lower limits for constant multiplications that
cannot be realized in a given number of nodes, from one to six inclusively. Table 1 presents the
lowest constants that cannot be realized in the corresponding number of N adders and subtracters.
To the best of our knowledge, the constants for N > 6 are unknown, and the value for N = 6 has
only been conjectured i.e., it is not known if there is a lower value for which the multiplier cannot
be realized in six adders and subtracters [9].

For each entry we show the times (in seconds) it took to prove that the corresponding instances
are unsatisfiable. For N = 1, 2 and 3 the results are instantaneous. In the cases N = 4, 5 and 6 we
extracted the low-level CNF encoding produced by the constraint model and solved it using the
standalone multi-threaded version of Glucose SAT solver. We ran the solver in 20 parallel threads
on a machine with a 28-core Intel Xeon 2.6GHz CPU. The “Real Time” column shows the time it
took to get the unsatisfiability result in each case. The “CPU time” shows the cumulative CPU
time spent by all the 20 threads1. As the reader can see, it took us over 7 hours of real time and
the equivalent of 6 days of machine time to confirm the result for N = 6. Again, to the best of our
knowledge, it is the first time it is proven2 that multiplication by 171,398,453 cannot be realized
in six adders and subtracters.

Please note however, that in this example we consider very hard instances of the problem,
where no realization exists and the solver is required to prove it. The computation is usually
much shorter in cases when the realization exists, as illustrated by the following example.

Example 2. Consider the circuit realization 171, 398, 451x. The multiplier is an odd number
closest from below to the value for N = 6 in Table 1. (Even multipliers are out of interest, as
explained in Section 2). The 6-node multiplier for that SCM instance is shown in Figure 3. It took

1It is interesting to note that we gain nearly ×19 speed-up in N = 5 and N = 6 cases by employing 20 threads.
Obviously, parallel Glucose scales very well, at least for the given problem.

2Albeit, through a computer-based total search procedure

4

N C Real Time CPU Time
1 11 0 0
2 43 0 0
3 683 0 0
4 14,709 0.9 15.1
5 699,829 106 2,111
6 171,398,453 26,150 520,751

Table 1: Verifying the minimum values that cannot be realized in N nodes

N1 = (X<<7) + X 27x + x = 129x
N2 = N1 - (X<<4) 129x− 24x = 113x
N3 = (N2<<4) + X 24 · 113x + x = 1809x
N4 = (N2<<19) + N3 219 · 113x + 1809x = 59246353x
N5 = N4 - (N1<<14) 59246353x− 214 · 129x = 57132817x
N6 = (N5<<2) - N5 22 · 57132817x− 57132817x = 171398451x

Figure 3: Multiplication by 171, 398, 451 as a 6-node circuit

the parallel Glucose solver running 20 threads only 7.5 seconds to derive that circuit description.
Proving that the same multiplication cannot be realized in five nodes takes 56 seconds.

MCM In this short paper we do not go into details about solving Multiple Constant Multiplica-
tion (MCM) problem. Let us only state that the same approach extends naturally to accommodate
MCM. In case of SCM we constrain the result computed in the final step to be the target value.
For MCM we generalize that requirement specifying that the set of target values is included in
the set of results computed by the nodes of the circuit. Our initial experiments indicate that
the method can solve MCM instances faster than the state of the art methods reported in the
literature.

3 Future Work And Conclusion

There are several directions in which this work can continue and develop.

1. We need to experiment with additional symmetry breaking and other improvements of the
encoding. Adding symmetry-breaking can be beneficial in proving optimality bounds, when
we need to find a value of N for which the model is unsatisfiable.

2. In addition to the standard 2-argument adders some modern FPGA hardware implements
ternary adders that compute sums of three inputs in one hardware unit. Our proposed
method can be extended to allow for ternary adders in SCM/MCM solutions, thus further
reducing the node counts in the multiplier circuits.

3. There exist several metrics which provide indirect measures of power consumption of shift-
and-add based constant multiplication circuits. The simplest one is the adder depth (AD).
It is defined as a maximum number of cascaded adders on each path. The glitch path count
(GPC) was introduced as a more accurate power estimation. Without going into the details
let us state that the proposed method naturally extends for adding AD or GPC as secondary
minimization objectives. Once the minimum number of nodes is determined for an SCM (or
MCM) instance, we can find the best solution in terms of the chosen power estimation.

5

To conclude, we have demonstrated how a problem of finding optimal multipliers by constant
(SCM) can be encoded in SystemVerilog constraints and solved by Cadence® Xcelium�. We
demonstrate that the method can handle non-trivial SCM instances in reasonable times. We also
make a theoretical contribution by confirming for the first time that multiplication by 171,398,453
cannot be realized in six adders/subtracters. We argue that the proposed approach naturally
extends in several directions for related tasks such as MCM, and for more optimizations of the
target circuits.

Acknowledgements We thank Michael Codish (Ben-Gurion University of The Negev) and
Martin Kumm (University of Kassel) for reviewing earlier versions of the paper and providing
valuable feedback.

References

[1] The Glucose SAT solver. http://www.labri.fr/perso/lsimon/glucose/.

[2] IEEE standard for SystemVerilog–unified hardware design, specification, and verification lan-
guage. IEEE Std 1800-2017 (Revision of IEEE Std 1800-2012), pages 1–1315, Feb 2018.

[3] SystemVerilog — Wikipedia, the free encyclopedia. https://en.wikipedia.org/wiki/

SystemVerilog, 2018.

[4] Levent Aksoy, Eduardo A. C. da Costa, Paulo F. Flores, and José Monteiro. Exact and
approximate algorithms for the optimization of area and delay in multiple constant multipli-
cations. IEEE Trans. on CAD of Integrated Circuits and Systems, 27(6):1013–1026, 2008.

[5] Algirdas Avizienis. Signed-digit number representations for fast parallel arithmetic. IRE
Trans. Electronic Computers, 10(3):389–400, 1961.

[6] P. Cappello and K. Steiglitz. Some complexity issues in digital signal processing. IEEE
Transactions on Acoustics, Speech, and Signal Processing, 32(5):1037–1041, Oct 1984.

[7] Oscar Gustafsson. Towards optimal multiple constant multiplication: a hypergraph approach.
In Conference Record of the Asilomar Conference on Signals Systems and Computers, pages
1805–1809, Piscataway, NJ, 2008. IEEE.

[8] Martin Kumm. Optimal constant multiplication using integer linear programming. IEEE
Trans. on Circuits and Systems, 65-II(5):567–571, 2018.

[9] Vincent Lefèvre. Multiplication by an integer constant vincent lefèvre n4192 mai 2001. 2001.

[10] Abdelkrim Kamel Oudjida, Nicolas Chaillet, and Mohamed Lamine Berrandjia. Radix-2r

arithmetic for multiplication by a constant: Further results and improvements. IEEE Trans.
on Circuits and Systems, 62-II(4):372–376, 2015.

[11] Cadence Design Systems. Xcelium�Parallel Logic Simulator. https://www.cadence.com/

content/cadence-www/global/en_US/home/tools/system-design-and-verification/

simulation-and-testbench-verification/xcelium-parallel-simulator.html, 2017.

[12] Yevgen Voronenko and Markus Püschel. Multiplierless multiple constant multiplication. ACM
Trans. Algorithms, 3(2):11, 2007.

6

