
Specifying Local Search Neighborhoods from a
Constraint Satisfaction Problem Structure

Mateusz Ślażyński1, Salvador Abreu2, and Grzegorz J. Nalepa1

1 AGH University of Science and Technology, Krakow, Poland
{mslaz, gjn}@agh.edu.pl

2 University of Évora and LISP, Évora, Portugal
spa@uevora.pt

Abstract Neighborhood operators play a crucial role in defining effec-
tive Local Search solvers, allowing one to limit the explored search space
and prune the fitness landscape. Still, there is no accepted formal repre-
sentation of such operators: they are usually modeled as algorithms in a
procedural language, lacking in compositionality and readability. In this
paper we propose a new formalization capable of representing several
neighborhood operators, thereby eschewing the need to code these in a
full Turing complete language. The expressiveness of our proposal stems
from a rich problem representation, as used in Constraint Programming
models. We compare our system to competing approaches and show a
clear increment in expressiveness.

1 Introduction

Local Search is a family of heuristic algorithms, typically used to find approxi-
mate solutions for hard optimization problems. The common core of those meth-
ods consists in finding an initial sub-optimal solution (called configuration in
the rest of the paper) and iteratively replacing it with similar configurations,
called neighbors. There is a vast body of research on the exploration methods,
called metaheuristics, focused mostly on escaping local optima and finding novel
configurations. While metaheuristics vary in their performance, they are generic
enough to be applicable to many different problems. Various algorithmic configu-
ration methods can be used to tune their parameters without human interaction.

Another popular method of improving Local Search performance is to de-
fine a configuration’s neighborhood in a way that prunes out the not interesting
(e.g. incorrect) configurations. In this paper, the function which maps a config-
uration to its neighborhoods is called a neighborhood operator. In contrast to
metaheuristics, the most efficient neighborhood operators are problem-specific
and have to be defined and tuned by hand, often directly in the form of a com-
puter program. Such an approach suffers from poor reusability and does not
generalize well to new domains. A brief revision of the state of the art on cur-
rently used methods will be presented in Section 2.

The goal of this paper is to present in full detail a novel representation of the
neighborhood operators, one which exploits the structure of the problem under

2 M. Ślażyński, S. Abreu, G. J. Nalepa

consideration Such formal representation will lay a theoretical foundation for the
implementation of the high-level Local Search models, suitable for automated
processing and synthesis. In Section 3 we will define the problem’s structure in
terms of constraints and variables, as in the Constraint Programming paradigm.
Subsequently, the Neighborhood Definition Language (or NDL) will be presented
in Section 4. To show the expressiveness of the formalism, a set of non-trivial
neighborhoods will be defined in Section 5.

2 Context

Frequently, Local Search solvers are implemented in an imperative programming
language without any modeling layer. To facilitate code reuse, several program-
ming libraries were introduced, such as JAMES [1], Local++ [2] or EasyLo-
cal++ [3]. Neighborhood operators are represented as a class or function sat-
isfying a predefined interface. OptaPlanner [4] is a hybrid solver configurable
by means of XML files. It supports several search strategies, including local
search, and allows the definition of the neighborhood in a declarative manner
as a composition of basic moves. There are several predefined moves applicable
to common optimization problems, but to add new ones, one has to implement
them in the Java language.

At the same time, the Constraint Programming and Mathematical Opti-
mization communities have been concerned with problem modeling and human
readable representations. A Mathematical Programming Language (AMPL) [5]
is a modeling language closely resembling algebraic notation that can be eas-
ily translated to internal representation of various mathematical solvers. The
Optimization Programming Language (OPL) [6] provides a more generic rep-
resentation supporting both mathematical and constraint programming tools.
Recently various Constraint Programming languages have been proposed, such
as Essence [7] that incorporates high-level mathematical types or MiniZinc [8]
that is, by design, solver agnostic thanks to an intermediate low level representa-
tion called FlatZinc. These tools enable the user to express a problem structure
in a way as close as possible to their natural form.

Localizer [9] is a language designed to model the whole local search routine
in one domain-specific modeling language. The Comet [10] language extended
the Localizer approach by adding mechanisms to independently express both the
problem structure and the search strategy in terms of constraint programming
models. It was possible to define simple neighborhoods in an imperative man-
ner, by selecting variables and their new values according to various heuristics.
While the Comet language is not supported anymore, systems such as OscaR [11]
provide very similar capabilities. Neighborhood combinators [12] extend OscaR
with a declarative language used to define search strategies by combining exist-
ing neighborhood operators. The neighborhood operators themselves still have
to be implemented in the Scala language. A similar, although less extendable,
proposal has been also made for the MiniZinc modeling language [13].

Specifying Local Search Neighborhoods from a CSP Structure 3

Some authors [15,16] have proposed to define neighborhood operators as sep-
arate Constraint Programming problems with constraints corresponding to rela-
tions between the neighbors. Declarative Neighborhoods [14] implement this ap-
proach by extending MiniZinc with neighborhood operators defined in a declar-
ative manner. Such a representation integrates well into a Constraint Program-
ming model, allowing one to put additional requirements on the neighborhood
relation, i.e. every neighbor has to satisfy a set of constraints or that the neigh-
borhood operator requires some constraints to be satisfied before it may be
applied. It has been shown [17] that a Constraint Programming solver may be
effectively used to explore a local search neighborhood defined in this manner.

Recently, there has been a proposal for a system inferring possible neighbor-
hood operators from variable types occurring in the Constraint Programming
model, defined in the Essence language [18,19]. Various variable types are con-
nected with relevant move operators that are tried in an intelligent manner using
classic multi-arm bandit strategies. The resulting solver proved to be superior to
or competitive with popular generic strategies on several common combinatorial
problems. As the authors focused more on exploiting basic moves in an unsuper-
vised manner, the representation is composed of predefined operators and does
not allow one to define arbitrary, well known complex neighborhood operators.

This paper expands on ideas stated briefly in the recently presented poster [20].
The new contributions compared to the past presentation consist in a formally
defined semantics of the proposed language along with the selection of detailed
examples, showing its expressiveness and usefulness for common optimization
problems. The experimental works [21] have shown, that Genetic Program-
ming methods combined with the NDL, are able to synthesize various Traveling
Salesperson neighborhoods based only on the classical Constraint Programming
model. The system used in the experiments contains a prototype runtime for
NDL implemented as a Prolog Domain Specific Language, called Noodle3.

3 Representation of the Problem Structure

A Constraint Satisfaction Problem (CSP) is classically defined [22] as a triple
P = (X,D,C), where X is an n-tuple of variables X = (x1, x2, . . . , xn), D is a
n-tuple of corresponding domains D = (D1, D2, . . . , Dn) such that Di ⊂ Z4 and
xi ∈ Di, C is an m-tuple of constraints C = (C1, C2, . . . , Cm). In the general
case, a k-ary constraint Cj =

(
RSj

, Sj
)
, where Sj is called the scope of the

constraint and is the result of projecting X onto a k-tuple of variables. RSj
is a

subset of the cartesian product of the domains of variables in Sj . In this paper
the general definition will be restricted, without loss of generality, to strictly
binary scopes, so the problem structure can be expressed as a graph.

3 See: https://gitlab.geist.re/pro/ndl
4 This is for the case of constraints over finite domains (FD).

https://gitlab.geist.re/pro/ndl

4 M. Ślażyński, S. Abreu, G. J. Nalepa

3.1 Typing

We extend the classical representation of a CSP problem by adding type an-
notations which represent the syntactic structure of the problems, as found in
modern modeling languages such as MiniZinc. Types correspond to sets of in-
teresting entities composing the CSP problem.

There are two kinds of types in our formalization, variable types T and con-
straint types U . The former express indexed data structures (arrays) used in the
model to group together similar variables, e.g. an array of variables correspond-
ing to the queens’ positions in the n-queens problem. Every variable type Ti is
a pair (ti, Ji) where ti is a type identifier (name of the array) and Ji ⊆ Zd is an
index set addressing the corresponding d-dimensional array.

Another common abstraction used in constraint programming languages is
the ability to define constraints by quantifying over the variables. Constraints
defined this way share not only semantics, but also structural meaning, acting
together as a kind of global constraint. To exploit this similarity, we assign a
type ui ∈ U to every constraint, in such a way that constraints created via the
same quantifier or global constraint share the same type. It is also expected of
them to share types for variables falling under their scopes.

Given those definitions, a typed Constraint program is represented by a
6-tuple: PT = (X,D,C, T, I, U) where X, D and C are as previously seen, and
T = (T1, T2, . . . , Tn) is an n-tuple of types corresponding to the variables, I is
an n-tuple containing addressing information about the corresponding variables
I = (i1, i2, . . . in) such that ij ∈ Jj . Indexing I is correct if no variables of the
same type share the same index: ∀i, k ∈ 1..n, Ti = Tk =⇒ ii 6= ik. U is an
m-tuple of constraint types U = (u1, u2, . . . , un).

Example 1. The 4-queens problem can be represented as PT = (X,D,C, T, I, U),
where:

– X = (x1, x2, x3, x4) as there are four queens and xi represent the row taken
by queen in the i-th column.

– D = {DQ}4 such that all variables share the same domain DQ = {1, 2, 3, 4}.
– C = (CR1, CR2, . . . , CR6, CD1, CD2, . . . , CD6) where the CR constraints stand

for inequality (queens do not share rows) and CD indicate queens not shar-
ing the same diagonal on the board. We will skip enumerating scopes and
allowed valuations due to space constraints.

– T = {TQ}4 — all the variables share the same type TQ = (η, {1, 2, 3, 4}),
where η is an arbitrary selected type identifier.

– I = (1, 2, 3, 4).
– U = {ur}6 ∗ {ud}6, as row and diagonal inequality constraints are assigned

different types. The symbol ∗ here stands for concatenation of the tuples.

3.2 Typed Constraint Network

In order to represent the structure of an annotated CSP PT = (X,D,C, T, I, U),
we introduce the Typed Constraint Network (TCN) — a labeled directed multi-
graph GT = (V,A, s, e,ΣV , ΣA, lV , lA) where:

Specifying Local Search Neighborhoods from a CSP Structure 5

〈TQ, 2〉

〈TQ, 3〉

〈TQ, 1〉

〈TQ, 4〉

Figure 1: TCN of a 4-queens problem. Solid and dashed arcs represent constraints
of type ur and ud respectively.

– V is a set of vertices {v1, v2, . . . , vn} representing the variables vj = πj(X).
– A is a set of arcs {a1, a2, . . . , am} representing the constraints aj = πj(C).
– s : A→ V and e : A→ V map arcs respectively to their starting and termi-

nal (ending) vertices. Both are projections of the corresponding constraint’s
scope such that s(aj) = π1(Sj) and e(aj) = π2(Sj). The directed nature
allows arcs to mirror order in the corresponding constraint scope;

– ΣV is a set of vertex labels {ΣV1
, ΣV2

, . . . , ΣVn
} where label is a type of the

corresponding variable and its index ΣVj = (Tj , ij).
– ΣA = {σa1 , σa2 , . . . , σal} is set of all elements in U .
– lV : V → ΣV and lA : A→ ΣA are the labeling functions.

Figure 1 shows the TCN for Example 1. We argue that such a graph repre-
sents the syntactic structure of the CP model and may be used to define useful
problem-specific neighborhood operators.

4 Neighborhood Definition Language

Given an annotated CSP PT and corresponding TCN GT , the neighborhood
specific to the problem is a relation N ⊆ Γ × Γ , where Γ is the configuration
space Γ = D1 ×D2 × · · · ×Dn. In order to define the operator in a fine-grained
constructive manner we propose its decomposition into a set of basic operators
and combinators. To ease notation, we will assume that every operator is problem
specific and both PT and GT will not be stated explicitly in their domains.

4.1 Selectors

Selectors S = Φ ∪ Ω ∪ Ψ provide a way to select a single constraint, variable or
value, based on the problem’s structure and a given configuration. Every selector
denotes a set of entities which meet the requirements and can be regarded as a
non-deterministic choice function. Given that such a set may be empty, selectors
are not total functions and, in the undefined cases, we will say that selector fails.

6 M. Ślażyński, S. Abreu, G. J. Nalepa

Constraint Selectors Pick one arc from the Typed Constraint Network and con-
stitute a family of operators Φ = {φΣ , φΣ×s, φΣ×e}, where:

– φΣ : ΣA → A picks an arc with a label: φΣ(σaj) ∈ {ak ∈ A : lA(ak) = σaj}
– φΣ×s : ΣA × V → A picks an arc of type aj and starting vertex vs:
φΣ×s(σaj , vs) ∈ {ak ∈ A : lA(ak) = σaj ∧ s(ak) = vs}

– φΣ×e : ΣA × V → A analogous to φΣ×s, but uses an ending vertex.

Variable Selectors Pick single vertex from the TCN and constitute family
Ω = {ωT , ωI , ωs, ωe}, where:

– ωT : T → V picks vertex of type matching the argument ωT (Tj) ∈ {vi ∈
V : π1(lV (vi)) = Tj}.

– ωI : I × T → V picks vertex with given index and variable type matching
the arguments ωT (ix, Tj) ∈ {vi ∈ V : π1(lV (vi)) = Tj ∧ π2(lV (vi)) = ix}.

– ωX : Γ × Z × T → V picks a vertex with a given value and variable type
matching the arguments ωT (γ, x, Tj) ∈ {vi ∈ V : π1(lV (vi)) = Tj ∧ ψvi(γ) =
x}, where ψvi is defined in the next paragraph.

– ωs : A → V and ωe : A → V pick starting and ending vertices of the arc:
ωs(aj) = s(aj) and ωe(aj) = e(aj).

Value Selectors Pick a value based on the problem structure and configuration
Ψ = ΨD ∪ ΨJ ∪ ΨV , where:

– ΨD and ΨI are sets of choice functions ψDj
∈ Dj and ψJi ∈ Ji for every

domain and index set in the given problem.
– ΨV is a set of functions ψvi : Γ → Di for every vertex vi in the Typed

Constraint Network, where Di is domain of the corresponding variable. ψvi
maps vertices to their assigned values in the configuration ψvi(γ) = πi(γ).

4.2 Selector Combinators

While selectors are designed to pick single elements, there is often the need to
collect several inter-related elements, e.g. variables sharing the same value, the
sum of two other values, etc. To achieve this, NDL is equipped with two types of
basic logical and mathematical operators that can combine the selectors’ results:

– Filters F = {f=, f6=, f<, f≤} are functions that pass the first argument un-
changed only if it satisfies a simple constraint, e.g. f= : Σ × Σ → Σ is an
equality filter defined on the NDL alphabet:

f=(s1, s2) =

{
s1 = s2, s1

otherwise is undefined (fails)

f< : Z × Z → Z and f≤ : Z × Z → Z are analogous filters that check for
inequality over their arguments.

– Arithmetic combinators Λ = {λ+, λ−, λ×, . . .} correspond to arithmetic func-
tions, e.g. λ+(z1, z2) = z1 + z2.

Specifying Local Search Neighborhoods from a CSP Structure 7

4.3 Modifiers

The main goal of the neighborhood operator is to modify a given configuration.
Modifiers create a new configuration γN by slightly perturbing a given configu-
ration γS . There are three operators in this family M = {µs, µα, µf}:

– µα : Γ × V × Z → Γ is an partial function, that creates a new configura-
tion with a value reassigned to the given variable. (∀vi ∈ V , vi 6= vx =⇒
πi(µα(γS , vx, x)) = πi(γS)) ∧ πj(µα(γS , vx, x)) = x. The result is undefined
if the value given does not belong to the corresponding domain.

– µs : Γ × V × V → Γ swaps values of two variables. It can be defined inside
NDL as µs(γs, vi, vj) = µα((µα(γs, vj , ψvi(γs)), vi, ψvj (γs)).

– µf : Γ × V × Z× Z→ Γ creates a new configuration by “flipping” a value:

µf (γ, vi, x1, x2) =


ψvi(γ) = x1, µα(γ, vi, x2)

ψvi(γ) = x2, µα(γ, vi, x1)

otherwise is undefined (fails)

4.4 Move

A single move α : Γ → Γ is the most basic neighborhood operator defined in the
NDL language. It is a total function, defined as the composition of a fixed number
of operators Oα = {o1, o2, . . . ok}, where at least one of them is a modifier.

In case any of the intermediate results is undefined (one of the operator fails),
we define α to be an identity function I : Γ → Γ , so it was total.

In order to avoid redundant repetitions and simplify notation, we will express
composition of operations via conjunction, i.e. α(γs) = o1 ◦ o2 ◦ . . . ◦ ok will be
written as α(γs) = γn ⇔ rk = ok(γs) ∧ . . . ∧ r2 = o2(. . .) ∧ γn = o1(r2). The
same applies to the selector combinators, instead of writing x2 = f=(x2, x1), we
will use the infix notation x2 = x1.

4.5 Move Combinators

In order to express neighborhood operators that perturb the configuration in
a dynamic – possibly recursive – manner, we introduce move combinators that
apply the specified move to the Typed Constraint Graph in a systematic way.
Move combinators can be perceived as domain-specific recursion schemes known
from category theory and functional programming [23]. We will use a functional
notation to abstract the unbounded variables in the moves, so they could be
applied to different parts of the graph. In terms of expressiveness, combinators
belong to primitive recursive functions.

The Universal Selector Quantifier Quantifies over the results of a selector β, com-
posing them with a given move α. ∀s(γs, β, α) = ∀(ρi ∈ β(γs)), α(γs, ρ1) ∧ γ3 =
α(γ2, ρ2))∧ . . .∧ γm = α(γm−1, ρm−1)), where γm is the resulting configuration.
This combinator may be used to perform moves that modify many variables at
once, e.g. swap rows of an array.

8 M. Ślażyński, S. Abreu, G. J. Nalepa

The Least Fixpoint Operator Performs a primitive recursion over the structure of
the TCN. The fixpoint operator f : Γ ×α×vs → Γ applies move α : Γ ×A→ Γ
over arcs of the TCN spanning tree rooted at vertex vs explored in a breadth first
search order. If the move applied at a given arc does not change the configuration,
the corresponding branch of the spanning tree is pruned. As the spanning tree
is finite, such an operator is bound to terminate.

4.6 Neighborhood

As introduced in the beginning of the section, neighborhood operators in NDL
are defined by means of functional composition and specific combination of basic
operators: selectors and modifiers. An NDL formula explicitly defines only a
single neighbor of given configuration. As some operators, e.g. selectors, are non-
deterministic, in order to define the neighborhood relation, we have to quantify
over all their possible results, i.e. corresponding sets of entities (this does not
apply to selectors that already fall in scope of an Universal Selector Quantifier.)

The order of neighbors in such a neighborhood is not defined by NDL itself:
this is left to the Local Search metaheuristic. Some of these, e.g. Simulated
Annealing, may want to sample the neighborhood in a stochastic manner, while
others will explore it exhaustively, or even order the neighbors according to some
problem-specific heuristics.

5 Example Use Cases

In this section we will explore several neighborhood operators, and their NDL
specification. The examples were chosen based on both their popularity and for
their suitability to showcase the expressiveness of the language.

5.1 Kempe Chain Neighborhood

Kempe chain is an efficient neighborhood operator applicable in the graph color-
ing problem proposed in [24]. Given a graph G = (VG, EG), the task is to find the
minimal vertex labeling (coloring) (ΣC , lc) that assigns different labels (colors)
to the adjacent vertices ∀{v1, v2 ∈ EG}, lc(v1) 6= lc(v2). A coloring satisfying this
property is called admissible.

The idea behind Kempe chain is to perturb an admissible coloring in such a
way that admissibility is preserved — in other words, admissibility is an invariant
of this neighborhood operator. Given an admissible coloring (Σc1 , lc1), a Kempe
chain can be described in four steps:

1. Pick two vertices v1, v2 ∈ VG such that lc1(v1) = l1 ∧ lc1(v2) = l2 ∧ l1 6= l2.
2. Create a new graph K by removing from G all vertices with coloring other

than l1 or l2.
3. Choose a component Kv1 in K containing v1.
4. Change colors of all vertices in Kv1 by replacing l1 with l2, and vice versa.

The resulting coloring is admissible and does not use more colors than Σc1.

Specifying Local Search Neighborhoods from a CSP Structure 9

〈TC , 1〉 〈TC , 2〉 〈TC , 3〉

〈TC , 4〉〈TC , 5〉〈TC , 6〉

u

u

u

u u u

u u

Figure 2: TCN representing 6-nodes graph coloring problem.

CSP Model. A graph coloring problem with n vertices and m edges is represented
as PT = (X,D,C, T, I, U), where:

– X = (v1, v2, . . . , vn) such that every vi ∈ VG.
– D = {DC}n such that DC = {1, 2, . . . , n}.
– T = {TC}n such that TC = (η, {1, 2, . . . , n}).
– I = (1, 2, . . . , n).
– C = (C1, C2, . . . Cm) where Cj =

(
RSj

, (vk, vl)
)

such that vk, vl ∈ EG.
– U = {u}m.

A corresponding TCN for a basic 6-nodes problem is shown in Figure 2.

NDL Operator Encoding of the Kempe chain neighborhood makes heavy use of
the least fixpoint operator f and µf (flip) modifier:

We say that configuration γn is neighbor of γs:

NC(γs) = γn ⇔
when vx and vy are graph nodes:

vx = ωT (TC) ∧ vy = ωT (TC)

lx and ly are their corresponding colors:

∧ lx = ψvx(γs) ∧ ly = ψvy (γs)

such that lx and ly are different colors:

∧ l1 6= lx

the color of vx is “flipped” from lx to ly:

∧ γ1 = µf (γs, vx, lx, ly)

and the Kempe chain starts from node vx:

∧ γn = f(γs, α, vx)

α describes color changes in its adjacency:

α(γk, af) = γk+1 ⇔
node vf is adjacent to the previously modified node:

vf = ωe(af)

10 M. Ślażyński, S. Abreu, G. J. Nalepa

its color is flipped too — when the color is neither lx nor ly, flipping fails and
we finish exploring this branch of the chain, otherwise we continue:

∧ γk+1 = µf (γk, vf, lx, ly)

An example of a neighborhood induced by this operator is shown in Figure 3.

v1 v2 v3

v4v5v6

(a) Initial configuration
γs = (1, 2, 2, 3, 3, 2).

v1 v2 v3

v4v5v6

(b) γ2 = (1, 2, 2, 2, 3, 2)
defined by α(γs, vx).

v1 v2 v3

v4v5v6

(c) γ3 = (1, 2, 3,2, 3, 2)
defined by α(γ2, v3).

v1 v2 v3

v4v5v6

(d) γ4 = (1, 3,3,2, 3, 2)
defined by α(γ3, v2).

v1 v2 v3

v4v5v6

(e) γ5 = (1,3,3,2, 2, 2)
defined by α(γ4, v5).

v1 v2 v3

v4v5v6

(f) γn = (1,3,3,2,2, 3)
defined by α(γ6, v6).

Figure 3: Configurations involved in the Kempe Chain move at nodes v4, v6.

5.2 Column Swap

A common pattern in the constraint programming is to group variables into ar-
rays mirroring the problem structure, e.g. in job scheduling problems, column
index in a two dimensional array corresponds to the moment of time and row in-
dex represents a specific machine/worker. This example will show how to exploit
such structure to define neighborhoods.

The Traveling Tournament [25] problem consists in scheduling a tournament,
given n teams, distances between their home towns and n−1 rounds. Every team
plays only once per round and has to face every other team exactly once. The
goal is to minimize the total distance traveled during the tournament.

There are many different neighborhood operators applicable to this prob-
lem [26], leading to efficient optimization routines. Most of them are based on
local swap moves, either swapping rounds or opponents. More advanced oper-
ators swap only parts of the rounds and then fix the configuration in a way
analogous to Kempe chaining.

Specifying Local Search Neighborhoods from a CSP Structure 11

Model. The traveling tournament problem with n teams can be represented as
PT = (X,D,C, T, I, U), where:

– X =
(
v1−1, v1−2, . . . , v1−(n−1), v2−1, . . . , vn−(n−1)

)
such that vi−j represents

opponent of the i-th team in the j-th round.
– D = {D1}n−1 ∗ {D2}n−1 ∗ · · · ∗ {Dn}n−1 such that Di = {1, 2, . . . , n} \ i, so

no team could play with itself.
– T = {TO}n such that index set cover all indexes in the 2-d array of size
n× n− 1: TO = (τ, {1, 2, . . . n} × {1, 2, . . . n− 1}).

– I = ((1, 1) , (1, 2) , . . . , (1, n− 1) , (2, 1) , . . . (n, n− 1)).

– C = {CR}n(n−1)(n−2)∗{CO}n(n−1)
2 ∗{CS}n(n−1)

2

, where CR constrains vari-
ables to have different values in every round (in the column); CO constrains
variables to have different values for any team (in the array row); CS con-
strains variables to be symmetrical: if team A plays with team B, then B
plays with A in the same round.

– U = {uR}n(n−1)(n−2) ∗ {uO}n(n−1)
2 ∗ {uS}n(n−1)

2

.

NDL Operator. The following basic operator swaps two rounds, first by finding
their columns’ indexes, then by quantifying over all variables in the first column
and swapping their values with corresponding variables from the second column.

NS(γs) = γn ⇔ ax = φΣ(uR) ∧ vs = ωs(ax) ∧ ve = ωe(ax)

∧ (τ, (isc, isr)) = lV (vs) ∧ (τ, (iec, ier)) = lV (ve) ∧ γn = ∀s(γs, β, α)

where β selects from two columns isc and iec two matches in the same row:

β ⇔ vl = ωT (τ) ∧ (τ, (ilc, ilr)) = lV (vl) ∧ ilc = isc ∧ vr = ωI((iec, ilr) , τ)

and α swaps them in the configuration:

α(γk, vl, vr) = γk+1 ⇔ γk+1 = µs(γk, vl, vr)

Figure 4 presents a sequence of configurations defined by this operator.

5.3 2-opt Neighborhood

The Traveling Salesperson Problem (TSP) is a discrete optimization problem
of finding a Hamiltonian Cycle with the least weight in the complete weighted
graph. There is a well known family of efficient neighborhood operators appli-
cable to this problem, named 2-opt, 3-opt, etc. corresponding to the number of
changes introduced to the configuration. An m-opt operator removes m edges
from the current configuration (cycle) and replaces them with m new edges. It
is worth noting that for m = 2 there exists only one way to reassemble the cycle,
but for m > 2, there exist (m− 1)!× 2m−1 distinct results. Also the moves with
m > 2 can be replaced by the repeated application of the 2-opt operator, i.e.
3-opt can be seen as at most three consecutive applications of the 2-opt.

The basic representation of the TSP configuration with n vertices is an n-
tuple containing the vertices in the visiting order , i.e. (v1, v4, v3, v5, v2) repre-
sents a cycle composed of edges {v1, v4}, {v4, v3}, {v3, v5}, {v5, v2} and {v2, v1}.

12 M. Ślażyński, S. Abreu, G. J. Nalepa

1R 2R 3R

1T 2T 3T 4T

2T 1T 4T 3T

3T 4T 1T 2T

4T 3T 2T 1T

(a) γs =
(2, 3, 4,
1, 4, 3,
4, 1, 2,
3, 2, 1)

.

1R 2R 3R

1T 2T 3T 4T

2T 1T 4T 3T

3T 4T 1T 2T

4T 3T 2T 1T

(b) before α(γs, v1−1, v1−3).

1R 2R 3R

1T 4T 3T 2T

2T 1T 4T 3T

3T 4T 1T 2T

4T 3T 2T 1T

(c) γ2 =
(4, 3, 2,
1, 4, 3,
4, 1, 2,
3, 2, 1)

.

1R 2R 3R

1T 4T 3T 2T

2T 3T 4T 1T

3T 4T 1T 2T

4T 3T 2T 1T

(d) γ3 =
(4, 3, 2,
3, 4, 1,
4, 1, 2,
3, 2, 1)

.

1R 2R 3R

1T 4T 3T 2T

2T 3T 4T 1T

3T 2T 1T 4T

4T 3T 2T 1T

(e) γ3 =
(4, 3, 2,
3, 4, 1,
2, 1, 4,
3, 2, 1)

.

1R 2R 3R

1T 4T 3T 2T

2T 3T 4T 1T

3T 2T 1T 4T

4T 1T 2T 3T

(f) γn =
(4, 3, 2,
3, 4, 1,
2, 1, 4,
1, 2, 3)

.

Figure 4: Configurations involved in a column swap move. Light gray color marks
the variables to be processed, dark gray highlights vertices chosen by the β selec-
tor. Subscripts T and R correspond to the team- and round-indexes accordingly.

Given this representation we can define 2-opt operator as γn = γs[1 : i − 1] ∗
vy ∗ r(γs[i + 1 : j − 1]) ∗ vx ∗ γs[j + 1 : n]. The notation γ[i : j] here stands for
the projection of the configuration γ on the vertices positioned inclusively on
positions between i and j; ∗ stands for concatenation of two tuples; r reverses
the tuple order. vx and vy are two randomly chosen, distinct vertices. Reversing
is required because of the representation’s directed nature.

One can see that m-opt operators require two non-trivial operations: re-
versing and swapping parts of the configuration. The NDL language, does not
support any data structures nor procedures required for those operations. In
the following paragraph we will show that enriching the problem representation
allows one to overcome those limitations.

Rich Model. The issue with the basic representation is that it loses a lot of infor-
mation about the problem’s structure — the TSP is reduced to a permutation
problem and there is no way to distinguish qualitatively between two different
permutations without referring to an external criterion. A more effective repre-
sentation is to use circuit global constraint — the configuration is now n-tuple
γ = (i1, i2, . . . in) such that k-th value represents an edge starting at vertex vk
and ending at vertex ik. To represent circuit as an annotated problem, one has
to decompose it into binary constraints. The resulting representation of a TSP
with m vertices is PT = (X,D,C, T, I, U), such that:

– X = (xn1
, xn2

, . . . xnm
, xa1 , xa2 , . . . xam) where xnk

corresponds to the vari-
ables falling under the circuit constraint and xak are auxiliary variables
corresponding to order of vertices as in the basic representation.

Specifying Local Search Neighborhoods from a CSP Structure 13

– D = (Dn1
, Dn2

, . . . Dnm
, Da1 , Da2 , . . . Dam) such that:

• Dnk
= {1, 2, . . . ,m} \ {k}: self-loops are forbidden.

• Da1 = {1} (start at the first vertex) and ∀k > 1, Dak = {2, . . .m}
– There are two types of variables T = {Tn}n ∗ {Ta}n such that Tn = (τ1, Dn)

and Ta = (τ2, {1, 2, . . . ,m}).
– Variables are indexed in their appearing order I = (1, 2, . . . ,m, 1, 2, . . . ,m).
– C = Cn ∗ Ca ∗ Co where:
• Cn =

(
Cn1

, Cn2
, . . . , Cnm(m−1)/2

)
expressing that every two variables xni

and xnj
must not have the same value. It would mean that two edges in

the cycle share an ending vertex.
• Ca =

(
Ca1 , Ca2 , . . . , Cam(m−1)/2

)
expressing that every two variables xai

and xaj must not have the same value. It would mean that the same
vertex is visited twice in the cycle.

• Co =
(
Co2−1 , C2−2, . . . Com−m

)
— every auxiliary variable xak with k > 1

has to be ordered as stated in the edges {xn1 , . . . , xnm}.
– U = {u1}|Cn| ∗ {u2}|Ca| ∗ {u3}|Co| — constraints are typed as defined above.

The biggest gain from using this representation is that we explicitly handle
local configuration issues such as self-loops and edges sharing the same terminal
vertex. Due to the edge-based representation, swapping cycle edges is just an
exchange of the terminal vertices.

It is noteworthy that the xa variables depend on the xn variables and do not
have to be modified by the neighborhood operator. To simplify the notation, in
the example below, configuration γ will cover only the xn variables represented
by the corresponding nodes in the TCN: v1, v2, . . . , vm.

NDL Operator The 2-opt operator definition in NDL will consist of three parts:
picking suitable variables, introducing change into configuration and fixing vio-
lated constraints by reversing involved edges using the least fixpoint operator.

N2o(γs) = γn ⇔ vx = ωT (Tn) ∧ vy = ωT (Tn) ∧ vx 6= vy ∧ y = ψvy (γs)

∧ x = ψvx(γs) ∧ lV (vx) = (Tn, ix) ∧ vz = ωI(γs, y, Tn)

∧ γ1 = µα(γs, vy, ix) ∧ γ2 = µα(γs, vz, x) ∧ γn = f(γ2, α, vx)

where:

α(γk, af) = γk+1 ⇔ lA(af) = u1 ∧ vs = ωs(af) ∧ vs 6= vz

∧ lV (vs) = (Tn, is) ∧ vp = ωe(af) ∧ p = ψvp(γd)

∧ p = is ∧ lV (vp) = (TN , ip) ∧ γk+1 = µα(γk, vs, ip)

Figure 5 presents a states’ sequence defined by this operator in a small graph.
In order to define the 3-opt operator, one would have to extend N2o by

selecting an additional variable and use f< filter to ascertain their order.
It is worth of nothing that partly due to the apparent complexity of this

definition, TSP has been chosen for the first experiments on automatic synthesis

14 M. Ślażyński, S. Abreu, G. J. Nalepa

12

3

4 5

6

(a) (2, 3, 4, 5, 6, 1).

12

3

4 5

6

(b) (2, 3, 4, 5, 2, 3).

12

3

4 5

6

(c) (2, 1, 4, 5,2,3),
with: af = (v2, v1).

12

3

4 5

6

(d) (6,1, 4, 5,2,3),
with: af = (v1, v6).

Figure 5: Configurations involved in a 2-opt move, replacing (2, 3), (5, 6) edges.

of the NDL operators [21]. The experiments have shown that an evolutionary
algorithm is able to find an equivalent and shorter (but at the same time less
obvious) definition of the 2-opt operator.

6 Related Works

As stated in Section 2, there are several existing approaches to represent neigh-
borhood operators. In this section we will compare NDL to two of them: Op-
taPlanner [4] and Declarative Neighborhoods [14]. Other referenced languages
either focus mostly on heuristics or combine existing neighborhoods into search
strategies. Both subjects, while related, are not directly comparable to our ap-
proach in the present state of the work.

The Neighborhood Definition Language shares many similarities with Opta-
Planner’s XML approach. In both languages the moves are composed of vari-
able/value selectors and modifiers (“move selectors” in the OptaPlanner termi-
nology). Besides the basic perturbations, like a value swap/change, OptaPlan-
ner also defines more complex domain-specific move selectors like 2-opt or group
swaps/changes that can be used to implement row/column group operations.
Another noticeable difference is that selectors do not exploit the constraint struc-
ture and can only refer to variable types and values. The lack of more generic
combinators makes it impossible to define new complex neighborhoods such as
Kempe Chain. Consequently, OptaPlanner definitions are more coarse-grained,
requiring several interesting and useful operators to be directly implemented in
the low-level Java programming language.

In Declarative Neighborhoods, neighborhood is defined as a Constraint Satis-
faction problem and because of that, cannot express any kind of recursion, even
one as limited as the move combinators approach used in NDL. This greatly
restricts the expressiveness of the language, limiting it only to a fixed number of
perturbations, similar to a single NDL move. The language may still be extended
to include more complex moves (as it is done in OptaPlanner) like column or row
swaps, with the restriction that they perform only a fixed number of changes.
The main advantage of Declarative Neighborhoods over NDL is its ability to set
specific requirements on the neighborhoods by means of Constraint Programs.
This way, the neighborhood can be easily pruned and specific constraints can

Specifying Local Search Neighborhoods from a CSP Structure 15

explicitly be made invariant. At the same time, such a pruning relies on solving
a constraint satisfaction problem, which in the general case is an NP-complete
procedure and may be computationally prohibitive.

7 Summary

In this paper we have presented the main elements of the Neighborhood Defi-
nition Language — a formal language capable of representing the Local Search
neighborhood operators in a fine-grained manner. Compared to general-purpose
programming languages, NDL has a well defined semantics and is limited to
primitive recursion, effectively leading to always terminating total programs.
Compared to other declarative approaches, it is much more self-contained and
expressive enough to represent even complex neighborhood operators. Such re-
sults have been achieved partly with a rich problem representation borrowed
from the Constraint Programming formulation, and partly with a limited set of
recursion schemes, effectively exploring a problem’s structure.

Our current research is focused on integration with modern modeling lan-
guages and solvers. The biggest issues include finding extraction methods capa-
ble of creating a TCN based on the CSP model, but also the injection of arbitrary
NDL operators into current Local Search solvers. The natural candidates for the
task are the MiniZinc language, compatible with a notion of the constraint/vari-
able types and the Oscar/CBLS solver, which combines Local Search with the
Constraint representation.

References

1. H. De Beukelaer, G. F. Davenport, G. De Meyer, and V. Fack, “JAMES: An
object-oriented Java framework for discrete optimization using local search meta-
heuristics,” Software: Practice and Experience, vol. 47, no. 6, pp. 921–938, Jun.
2017.

2. A. Schaerf, M. Lenzerini, and M. Cadoli, “LOCAL++: a C++ framework for local
search algorithms,” in Proceedings Technology of Object-Oriented Languages and
Systems. TOOLS 29 (Cat. No.PR00275), Jul. 1999, pp. 152–161.

3. L. D. Gaspero and A. Schaerf, “EASYLOCAL++: an object-oriented framework
for the flexible design of local-search algorithms,” Software: Practice and Experi-
ence, vol. 33, no. 8, pp. 733–765, 2003.

4. “OptaPlanner User Guide.” [Online]. Available: https://docs.optaplanner.org/7.
15.0.Final/optaplanner-docs/html single/index.html

5. R. Fourer, D. M. Gay, and B. W. Kernighan, “A Modeling Language for Math-
ematical Programming,” Management Science, vol. 36, no. 5, pp. 519–554, May
1990.

6. P. Van Hentenryck, The OPL Optimization Programming Language. Cambridge,
MA, USA: MIT Press, 1999.

7. A. M. Frisch, W. Harvey, C. Jefferson, B. Mart́ınez-Hernández, and I. Miguel,
“Essence: A constraint language for specifying combinatorial problems,” Con-
straints, vol. 13, no. 3, pp. 268–306, Sep. 2008.

https://docs.optaplanner.org/7.15.0.Final/optaplanner-docs/html_single/index.html
https://docs.optaplanner.org/7.15.0.Final/optaplanner-docs/html_single/index.html

16 M. Ślażyński, S. Abreu, G. J. Nalepa

8. N. Nethercote, P. J. Stuckey, R. Becket, S. Brand, G. J. Duck, and G. Tack, “MiniZ-
inc: Towards a Standard CP Modelling Language,” in Principles and Practice of
Constraint Programming – CP 2007, C. Bessière, Ed. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2007, vol. 4741, pp. 529–543.

9. L. Michel and P. Van Hentenryck, “Localizer A modeling language for local search,”
in Principles and Practice of Constraint Programming-CP97, ser. Lecture Notes in
Computer Science, G. Smolka, Ed. Springer Berlin Heidelberg, 1997, pp. 237–251.

10. P. Van Hentenryck and L. Michel, Constraint-Based Local Search. The MIT Press,
2005.

11. OscaR Team, OscaR: Scala in OR, 2012.
12. R. D. Landtsheer, Y. Guyot, G. Ospina, and C. Ponsard, “Combining Neighbor-

hoods into Local Search Strategies,” in Recent Developments in Metaheuristics,
ser. Operations Research/Computer Science Interfaces Series. Springer, Cham,
2018, pp. 43–57.

13. A. Rendl, T. Guns, P. J. Stuckey, and G. Tack, “MiniSearch: A Solver-Independent
Meta-Search Language for MiniZinc,” in Principles and Practice of Constraint
Programming, G. Pesant, Ed. Cham: Springer International Publishing, 2015,
vol. 9255, pp. 376–392.

14. G. Björdal, P. Flener, J. Pearson, P. J. Stuckey, and G. Tack, “Declarative Local-
Search Neighbourhoods in MiniZinc,” in 2018 IEEE 30th International Conference
on Tools with Artificial Intelligence (ICTAI), Nov. 2018, pp. 98–105.

15. G. Pesant and M. Gendreau, “A constraint programming framework for local
search methods,” J. Heuristics, vol. 5, no. 3, pp. 255–279, 1999. [Online].
Available: https://doi.org/10.1023/A:1009694016861

16. P. Shaw, B. D. Backer, and V. Furnon, “Improved local search for CP
toolkits,” Ann. Oper. Res., vol. 115, no. 1-4, pp. 31–50, 2002. [Online]. Available:
https://doi.org/10.1023/A:1021188818613

17. G. Björdal, P. Flener, J. Pearson, and P. J. Stuckey, “Exploring declarative
local-search neighbourhoods with constraint programming,” in Principles and
Practice of Constraint Programming - 25th International Conference, CP 2019,
Stamford, CT, USA, September 30 - October 4, 2019, Proceedings, ser. Lecture
Notes in Computer Science, T. Schiex and S. de Givry, Eds., vol. 11802. Springer,
2019, pp. 37–53. [Online]. Available: https://doi.org/10.1007/978-3-030-30048-7 3

18. Ö. Akgün, S. Attieh, I. P. Gent, C. Jefferson, I. Miguel, P. Nightingale, A. Z.
Salamon, P. Spracklen, and J. Wetter, “A Framework for Constraint Based Local
Search using Essence,,” in Proceedings of the 27th International Joint Conference
on Artificial Intelligence, 2018.

19. S. Attieh, N. Dang, C. Jefferson, I. Miguel, and P. Nightingale, “Athanor: High-
level local search over abstract constraint specifications in essence,” in Proceedings
of the Twenty-Eighth International Joint Conference on Artificial Intelligence,
IJCAI 2019, Macao, China, August 10-16, 2019, S. Kraus, Ed. ijcai.org, 2019,
pp. 1056–1063. [Online]. Available: https://doi.org/10.24963/ijcai.2019/148

20. M. Ślażyński, S. Abreu, and G. J. Nalepa, “Towards a formal specification of
local search neighborhoods from a constraint satisfaction problem structure,” in
Proceedings of the Genetic and Evolutionary Computation Conference Companion,
GECCO 2019, Prague, Czech Republic, July 13-17, 2019., 2019, pp. 137–138.

21. ——, “Generating local search neighborhood with synthesized logic programs,”
in Proceedings 35th International Conference on Logic Programming (Technical
Communications), ICLP 2019 Technical Communications, Las Cruces, NM, USA,
September 20-25, 2019., 2019, pp. 168–181.

https://doi.org/10.1023/A:1009694016861
https://doi.org/10.1023/A:1021188818613
https://doi.org/10.1007/978-3-030-30048-7_3
https://doi.org/10.24963/ijcai.2019/148

Specifying Local Search Neighborhoods from a CSP Structure 17

22. E. C. Freuder and A. K. Mackworth, “Chapter 2 - Constraint Satisfaction: An
Emerging Paradigm,” in Foundations of Artificial Intelligence, ser. Handbook of
Constraint Programming, F. Rossi, P. van Beek, and T. Walsh, Eds. Elsevier,
Jan. 2006, vol. 2, pp. 13–27.

23. E. Meijer, M. Fokkinga, and R. Paterson, “Functional Programming with Bananas,
Lenses, Envelopes and Barbed Wire,” in Proceedings of the 5th ACM Conference
on Functional Programming Languages and Computer Architecture. Berlin, Hei-
delberg: Springer-Verlag, 1991, pp. 124–144.

24. C. A. Morgenstern and H. D. Shapiro, Chromatic Number Approximation Using
Simulated Annealing. Department of Computer Science, College of Engineering,
University of New Mexico, 1986.

25. T. Walsh, CSPLib Problem 026: Sports Tournament Scheduling, C. Jefferson,
I. Miguel, B. Hnich, T. Walsh, and I. P. Gent, Eds. [Online]. Available:
http://www.csplib.org/Problems/prob026

26. L. D. Gaspero and A. Schaerf, “A composite-neighborhood tabu search approach
to the travelling tournament problem,” Journal of Heuristics, vol. 13, pp. 189–207,
2007.

http://www.csplib.org/Problems/prob026

	Specifying Local Search Neighborhoods from a Constraint Satisfaction Problem Structure
	Introduction
	Context
	Representation of the Problem Structure
	Typing
	Typed Constraint Network

	Neighborhood Definition Language
	Selectors
	Selector Combinators
	Modifiers
	Move
	Move Combinators
	Neighborhood

	Example Use Cases
	Kempe Chain Neighborhood
	Column Swap
	2-opt Neighborhood

	Related Works
	Summary

