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Abstract. Scheduling problems have been studied for a long time in
Constraint Programming (CP). As the constraints used to model such
scheduling problems are often NP-hard to filter, various relaxation mech-
anisms (typically, to prune time interval variables) have been imagined
and still continue to be proposed. An example of such constraint is the
cumulative constraint, for which fast and strong filtering algorithms
have been conceived during the last two decades, which has permitted to
greatly improve constraint-based scheduling solvers [23]. In this paper,
we introduce a simple approach to further enhance the filtering process
of scheduling problems, in general, by relying on redundant table con-
straints. The idea is to compile all solutions of an abstract version of the
problem to be solved as a redundant table constraint. To cope with the
possibly prohibitive size of the generated table, solutions are collected
on task views at a coarser temporal granularity. Another important in-
gredient to control the size of the redundant table is to only consider a
subset of the tasks, for instance, those that are critical according to a
heuristic criterion such as the energy. Interestingly, this approach can be
easily integrated in constraint solvers and is totally compatible with any
existing filtering technique (propagators of the cumulative constraint,
lazy-clause reasoning, . . . ). Our experiments on Resource-Constrained
Project Scheduling Problem (RCPSP) show that this simple approach
can effectively reduce time solving despite the preprocessing stage needed
to build the redundant table constraint.
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1 Introduction

The success of CP on scheduling problems comes from the combination of global
filtering algorithms to prune the search tree and specialized heuristics to exhibit
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good-quality solutions quickly. During the exploration of the search space, filter-
ing algorithms are repeatedly applied (possibly, thousand times) at every step
(node of the search tree). The two required qualities for a filtering algorithm
is its strength (amount of inconsistent values that it is able to remove) and its
speed. Those objectives are in general conflicting, especially for the cumulative

constraint known to be NP-complete in general [4].
The cumulative constraint [1] is a key ingredient for modeling and solving

many real-world scheduling problems with Constraint Programming (CP). It
allows modeling a capacity limit on some resources required by some tasks (or
activities). More precisely, it ensures that at any time, the resource consumption
of the overlapping tasks do not exceed the resource capacity. This constraint ap-
pears in application domains such as manufacturing [34], production scheduling
[17, 37], space operations planning, . . . Regarding the strength and the speed
of the cumulative, a compromise is obtained by using polynomial filtering al-
gorithms based on some relaxation mechanisms, among which timetabling [14],
edge-finding [28, 41, 21], energetic reasoning [9], not-first/not-last [36, 35, 20] or
disjunctive reasoning [15] are often used. Energetic reasoning interestingly sub-
sumes most of the other rules ((extended) edge-finding, timetable edge-finding
[41]) but not the not-first/not-last and disjunctive reasoning rules.

Another kind of constraints that is frequently used when modeling combina-
torial problems in CP is the table constraint [25, 26, 30, 8, 42]. This constraint
allows us to express any relation as a list (table) of tuples; any constraint can
thus be theoretically encoded under this form. There is, however, a practical
limitation: the size of the tables may grow exponentially with respect to the
number of involved variables.

In this paper, our primary goal is to exploit table constraints in order to en-
hance the filtering process of scheduling problems (typically involving cumulative

constraints). This process is partly inspired by tabling techniques [7], which re-
place targeted subsets of constraints with their corresponding precomputed sets
of solutions. In our approach, for a given problem instance, a redundant ta-
ble is generated and posted: the introduced table does not completely replace
some specific parts of the model but instead represent the solutions of a relaxed
(abstract) version of the instance. We show the interest of our approach with
some practical results obtained on some representative instances of the Resource-
Constrained Project Scheduling Problem (RCPSP), taken from the BL set [3]
and PSPLib [22].

The paper is organized as follows. Some technical background is first in-
troduced, before describing our general methodology. Then, we present some
experimental results before concluding.

2 Technical Background and Related Work

A Constraint Satisfaction Problem (CSP) is specified by a triplet P = (X,D,C)
where X is a finite set of variables, D a set of finite domains, one for each
variable, and C a finite set of constraints. A CSP solution is the assignment
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of a value to each variable (from its domain) that satisfies each constraint. A
Constraint Optimization Problem (COP) is defined by a tuple P ′ = (X,D,C, z)
where (X,D,C) is a CSP and z : X → R is an objective function to be minimized
or maximized. A COP solution is a solution of the underlying CSP; it is optimal
if there is no other solution with a better value for the objective.

Scheduling problems are combinatorial constrained problems that are ubiq-
uitous in industry. Many methods have been proposed to improve the solving
process of such problems, among which, there are some strong filtering algo-
rithms combining advanced data structures (Θ-tree [40], timetabling [41], Profile
[18]) with the classic edge finding rule [28, 41, 21]. The decomposition of resource
constraints was also proposed in [32] to enhance the search, the lazy clause expla-
nation of various filtering rules was suggested in [33, 31], and an original approach
based on the use of Multi-valued Decision Diagrams (MDDs) has been shown
to reduce successfully the search tree of scheduling problems [5]. Importantly,
propagation alone is usually not sufficient to solve problem instances, and so,
it must be combined with some good heuristics to select variables and values
during the search (when taking decisions). In [13], it was shown that Conflict
Ordering Search (COS) is an adequate search scheme for scheduling problems.

Recently, auto-tabling has been proposed in [7] to reduce the size of search
trees. The idea is to compile a sub-problem that involves only a few tightly
constrained variables under the form of a table constraint. Although it suffices
to solve a CSP with the specific constraints, the size of the sub-problem must be
adequately controlled in order to limit this compilation pre-processing stage. An
automatic discovery of such interesting sub-problem has been proposed in [2].
Compilation alternatives have been proposed in [27] and [39], where regular

constraints and mdd constraints4, are respectively generated instead of table

constraints.

Precedence and resource constraints are generally the main components of
scheduling problems. The complete tabling of a sub-problem involving the tem-
poral original variables does not seem appropriate because the domain sizes are
usually large; the size of the generated table is consequently prohibitive. It is
then necessary to think about a form of temporal abstraction: introducing new
abstract variables to reason with a coarser temporal granularity, before gener-
ating a table based on these new variables. Contrary to tabling, the computed
table must be added as a redundant constraint since the table is based on a
relaxation of the problem (and does not represent the solutions of a specific
sub-problem). This is the methodology we use in this paper. It is related to ab-
straction techniques that have been introduced in the literature [19]. However,
in our approach, we do not reason with separate abstraction levels, as e.g., in
[11, 12].

In some respects, the method we propose combines several points of view,
but from an abstraction perspective. This is related, although rather different,
from [6] where the authors aim at combining model viewpoints for the same

4 based on Multi-Valued Decision Diagrams (MDDs), and more generally, formulas in
Deterministic Decomposable Negation Normal Form (d-DNNFs)
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problem. In their paper, they combine several (partly redundant) models, which
are linked by channeling constraints; this idea is further developed in [24] where
a redundant model is introduced using model induction, model channeling, and
model intersection.

3 Methodology

To prevent combinatorial explosion, in our context of generating a (redundant)
table constraint associated with a scheduling problem, we first perform some ab-
straction of the involved temporal variables by means of a parameter κ, which is
a positive integer. The time horizon 0..H, where H is a pre-computed time upper
bound, is then partitioned into a sequence of κ time intervals of similar size. More
precisely, if H+1 is a multiple of κ, then with σ = (H+1)/κ the successive time
intervals are: TIHκ = 〈[0..σ−1], [σ..2∗σ−1], . . . 〉. In case H+1 is not a multiple
of κ, some time intervals (the first ones) are 1 time unit greater than the others.
For example, if κ = 4 and H = 13, then TIHκ = 〈[0..3], [4..7], [8..10], [11..13]〉.
Reasoning with these intervals (hence, at a coarser temporal granularity) will
allow us to build redundant abstract tables of reasonable size.

Once the temporal abstraction is made, we can introduce some abstract
temporal variables. For simplicity, assume that 〈s1, s2, . . . , sn〉 are the tempo-
ral variables involved in a scheduling problem: each variable si represents the
starting time of a task i, and is such that dom(si) = [0..H]. We then introduce
〈sa1 , sa2 , . . . , san〉 with dom(sai ) = TIHκ after having chosen a value for κ. Of course,
we need to link original (concrete) variables with the new abstract ones. This is
made possible by introducing binary channeling constraints: for each i, we have a
constraint involving si and sai that is satisfied iff the value assigned to si belongs
to the time interval assigned to sai . Technically, such channeling constraints can
be defined extensionally, i.e., using a table constraint.

Finally, a table constraint is defined on 〈sa1 , sa2 , . . . , sar〉; the table is generated
by collecting all solutions that can be found for the abstract temporal variables
within the context of the original problem. More specifically, an easy way to cre-
ate the table is to consider the initial set of constraints, to add the down-scaled
views of the tasks (i.e. the abstract temporal variables) with the corresponding
channeling constraints, and to branch only on these abstract down-scaled vari-
ables. This table constraint can then be posted to the constraint network, and
used as a redundant constraint.

Note that an upper bound for the horizon can be initially computed by
various means, for example by considering the first feasible solution obtained
by diving left in the search tree. Concerning the granularity of the abstraction,
where the activity views are given at a coarser level, an example for a scheduling
problem, where the time unit is initially the hour, corresponds to a down-scaled
view considering now the day as the schedule’s time unit, significantly reducing
the possible number of values to branch on. One can use various time partition
schemes to create the down-scaled views of the original activities: this can be
regular (as defined earlier) but this can also be problem specific (some time
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intervals being quite larger than others, due to the structure of the problem
such as lot of short tasks preceding longer tasks, and/or some temporal variables
being not abstracted). For generality’s sake, in our experiments, we have only
considered a regular time partition systematically applied to all activities.

The final search tree branches only on the initial variables of the problem.

4 Experimentation

We have conducted some experiments on the Resource-Constrained Project
Scheduling Problem (RCPSP). In a RCPSP instance, a finite set of n tasks
(or activities) T is executed with the help of a finite set of m resources R. Each
resource r ∈ R has a finite capacity Cr, and each task i ∈ T has a starting
time si, an ending time ei, and is executed without interruption during pi units
of time (i.e. we have si + pi = ei) while using cir units of each resource r.
The limited capacity of a resource r is enforced with a cumulative constraint:
Cumulative({(si, pi, ei, cir) | i ∈ T}, Cr). An acyclic network of precedence re-
strictions between tasks is also given. Each precedence is given by a pair (i, j)
meaning that the task i must precede the task j; the task j can only start after
the end of the task i (i.e., we have ei ≤ sj). Finally, all tasks should end before a
given specified time called the horizon h. Two special tasks, with id 0 and n+ 1,
with a duration of 0, are used as starting and ending tasks of the project. The
task 0 precedes all the tasks while the task n+ 1 succeeds all of them.

Figure 1 shows an example of the application of our approach. Looking at the
generated redundant table constraint, Figure 1d, one can see that the domain
of the variable sa3 is directly reduced (and so, by channeling, the domain of the
original variable s3 is also reduced).

For analyzing the results of our experiments, we have used performance pro-
files based on performance ratios introduced by [10]. For a given set of prob-
lems (instances) P and a set of solvers S, if mp,s is the measure (time,...) com-
puted for the solver s on problem p, then the performance ratio is defined by
rp,s =

mp,s

min
i∈S

mp,i
. The performance profile of a set of solvers s ∈ S on a set of

problems P is a cumulative distribution of the speedup performance compared
to the other solvers of S on P : ρs(τ) = 1

|P | × |{p ∈ P | rp,s ≤ τ}|.

4.1 Settings.

This section indicates which parameter values were used in our experiments so
as to make our results reproducible. Our code is available publicly5 and is based
on the publicly available Oscar solver [29].

Benchmarks. In our experiments, we have used two well-known series of in-
stances: J30 and J60 (480 instances each, from the PSPLib library [22], com-
posed of 30 and 60 tasks). The series of instances BL20 and BL25 were also

5 https://bitbucket.org/helene verhaeghe/rcpspwithtables
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t0 t1 t2 t3 t4 t5 t6

durations 0 2 2 3 2 1 0

resource 1 uses 0 1 1 2 1 1 0
resource 2 uses 0 1 3 1 1 1 0

(a) Tasks and Resources

0 1,2,3,4,5
1 2,6
2 6

3 4,6
4 6
5 6

(b) Precedence Relation

sa0 sa1 sa2 sa3 sa4 sa5 sa6

τ1 0 0 1 0 0 0 1
τ2 0 1 1 0 0 0 1
τ3 0 0 1 0 0 1 1
τ4 0 1 1 0 0 1 1
τ5 0 0 0 0 1 0 1
τ6 0 0 0 0 1 1 1
τ7 0 0 1 0 1 0 1
τ8 0 0 1 0 1 1 1
τ9 0 1 1 0 1 0 1

(c) Redundant table constraint
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(d) Illustration of an optimal solution (corresponding to relaxed solution
τ1). Starts of activities t1, t3, t4 and t5 belong to TI0 while start of activity
t2 belongs to TI1

Fig. 1: Illustration of the methodology with a simple instance composed of 5
tasks and 2 resources (whose respective capacities are 2 and 3); t0 and t6 are
the starting and ending special tasks. The horizon is 9, and the value κ chosen
for the temporal abstraction is 2 so that we get TI = 〈[0..4], [5..9]〉. The new
(abstract) temporal variables sai have {0, 1} as domain allowing us to index the
two intervals in TI. The redundant table constraint that can be generated with
our approach is given by Figure 1d; note that τ1 and τ3 leads to optimal solution
with a horizon of 8, whereas the other tuples lead to solutions with a horizon of
9.
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considered (20 instances each, from [3], with 20 and 25 tasks). As they take less
than 2 seconds to be solved by the baseline model (i.e., they were too easy to
solve), an improvement on these is not significant.

Baseline Solving. As a baseline, we have used two ways of solving the RCPSP
instances on the basis of the initial model (i.e., without abstraction): Base-M,
which uses the medium filtering level available in Oscar, and, Base-S, which
uses the strong(est) one. The medium filtering algorithm combines TimeTable
[14], TimeTable Disjunctive Reasoning [16] and TimeTable Edge Finder [31]
(without explanation). The strong one adds Energetic Reasoning [9]. For explor-
ing the search space, we have used conflict ordering search [13]. Note that all
easy instances have been discarded, that is, the instances requiring less than 2
seconds to complete with the baseline model.

First Solution. The initial horizon used to compute the redundant table con-
straint is set with the left-most first feasible solution that can be found with the
Base-M model.

4.2 Case 1: Considering All Tasks

1 25 50 75 100 125 150
0

0.2

0.4

0.6

0.8

1

τ (speedup ratio)

%
in
st
a
n
ce
s

Base-S

Full-S-2
Full-S-3

(a) J30, strong filtering
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(b) J60, strong filtering

Fig. 2: Performance profiles for Case 1.

In our first experiment, a redundant table is generated while considering all
tasks involved in the instance to be solved; this approach is denoted by Full-φ-κ
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where φ ∈ {M,S} is the chosen level of filtering (medium or strong), and κ is
the temporal granularity (tested with values 2 and 3). Note that for the J60
instances, the arity of the generated tables is thus equal to 60. The methodology
we apply is as follows: Step 1: the initial Base-M model is used to find a first
solution; Step 2: the redundant table is generated, using Base-S (or -M) model
with, additionally, the down-scaled new (abstract) variables and channeling con-
straints (the search process focusing on those additional variables); Step 3: the
redundant table is added to Base-S (or -M) model to find an optimal solution.
The time is measured as the methodology total time (i.e., the time to do the
three steps).

The results that we have obtained with the strong level of filtering for the
J30 and J60 instances are given by Figure 2, which clearly shows that computing
full redundant tables (i.e., tables involving all tasks) significantly increases the
total time needed to prove optimality. The impact is even higher on the second
data set that involves more tasks (J60), which then suggests, unsurprisingly, that
controlling the arity of the tables is important. The results for the medium level
of filtering lead to the same conclusion. Hence, we propose to refine the approach
by only keeping the most critical tasks when generating redundant tables. Crit-
ical tasks are the ones that are not easy to set inside the schedule, because,
for instance, they consume more resources and/or are involved in many prece-
dence restrictions. Less critical tasks are more easily set, and, as a consequence,
contribute to increasing the size (number of tuples) of the tables without any
substantial filtering gain. Therefore, in our next experiment, such non-critical
tasks will be discarded when generating redundant tables. Note that a similar
technique is used in [38], where the authors select the most critical rectangles
(to be packed), generate solutions for them, and finally integrate the remaining
rectangles to form complete solutions.

4.3 Case 2: Considering a Fixed Number of Tasks

In our second experiment, a redundant table is generated while considering only
a fixed number K of tasks; this approach is denoted by Fixed-φ-K-κ where κ has
again been tested with values 2 and 3. The chosen tasks are the K tasks with
the highest total energy values (pi ·

∑
r∈R cir). Tested values for K are 5, 7, 10,

and 15 for the J30 instances and 5, 10, 15, and 20 for the J60 instances.
Starting with Base-S and the J30 instances, one can observe in Figure 3a that

the best combinations of parameters are for K-κ equal to 5-2, 7-2, 10-2 and 5-3,
which are rather competitive with Base-S. In Figure 3b, Base-S is compared with
the virtual best method (vb) built from all tested combinations of parameters
K-κ; vb simulates an approach where every instance would be run with its best-
suited parameters. Figure 3c shows a similar comparison with Base-M. This
shows that our approach has the capability of solving some instances, unsolved
when baseline solving is used, within the timeout.

On the 60 instances (Fig. 4a), the runtime is improved by one of our param-
eter combinations on 50% of the instances as shown in Fig. 4b (as both curves
start at around 0.5). A more thorough examination of the results shows that our
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(a) J30, all parameters, strong filtering
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(c) J30, virtual best, medium filtering

Fig. 3: Performance Profiles for Case 2, J30 benchmark.

methodology is better on 70% of the instances, with the strongest propagator,
when the optimal solution is not the first solution found. Fig. 4c shows Base-M
combined with vb: we can see an improvement for almost 60% of the instances.
This improvement is even better when only considering the instances for which
the optimal solution is not the first one found by the solver.
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Fig. 4: Performance Profiles for Case 2, J60 benchmark.

4.4 Case 3: Iterative Table Generation

For our third experiment, a time budget as well as a maximum arity are given as
limits during table creation. The table is built in an iterative manner, gradually
augmenting the set of tasks. In addition, at step (iteration) i, the table from the
previous step i − 1 is already added to the model. The table creation process
stops when the time is consumed or the maximum arity is reached. The last
completed table is then used as a redundant constraint.
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We tried with the following combinations of parameters on the J60 set: a
maximum of 10 seconds allowed for creating the table, a maximum of 5, 10, 15
or 20 tasks per table, and κ set to 2. The iterative approach improved the solving
time for 7% of the instances, compared to Base-S, and 65% of the instances, com-
pared to Base-M. The parameters achieving this improvement were 10 seconds
with 5 activities maximum. This corresponds to more difficult instances where
even a small relaxed table is complicated to compute in a reasonable amount of
time.

4.5 Global Comparison and Complementary Results

A comparison between Base-S, Fixed-S-vb (Case 2) and Iter-S-vb (Case 3) is
displayed in Figure 5c for the J60 series. As one can see, the new approach
improves resolution time for around 50% of the instances; most of them were
improved when considering a fixed number of tasks. Compared to Base-M, still
for the J60 series (Fig. 5b), the improvement is observed on 70% of the instances.
Finally, for the J30 series (Fig. 5a), compared to Base-S, 80% of the instances
benefits from the technique.

Figure 5d shows the speedup of vb (virtual best) when measuring only the
step 3 of our approach (i.e., the time to prove optimality without the time
to compute the redundant table). As it can be seen, the redundant constraint
almost always contributes improving the solving time. This convinces us that
investigating new (automatic) mechanisms for identifying the best tradeoff could
be worthwhile. This precomputation step (of generating a redundant table) can
also be perceived as being mainly offline in some contexts where the problem
instances slightly change, and a form of reoptimization is simply needed. The
precomputed table on the stable part of the model could be reused for a series
of similar instances in such cases.

5 Conclusion

We have proposed a methodology for improving the filtering capability of schedul-
ing problems by compiling all solutions of an abstract view of (a subset of) tasks
under the form of redundant table constraints. Several mechanisms to control
the time required for precomputing such tables have been presented: reasoning
on task views at an appropriate temporal granularity, selecting only the most
impacting tasks, and incrementally creating tables with a time budget. Inter-
estingly, the proposed methodology is rather generic and ready to use in any
constraint solver. We have applied this methodology to the RCPSP, showing
promising results.

This work must be perceived as a proof of concept, showing that global
redundancy controlled by abstraction can pay off. Our approach is a kind of hy-
bridization between well-known techniques of redundant modeling and abstrac-
tion reformulation. As a future work, we plan to investigate how to automatically
tune parameters so as to find the best trade-off between precomputation time
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Fig. 5: Global comparison and evaluation of the last step

and filtering gain (machine learning techniques could be useful), and, of course
to test our approach on other problems.
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10. Dolan, E.D., Moré, J.J.: Benchmarking Optimization Software
with Performance Profiles. Math. Program. 91(2), 201–213 (2002).
https://doi.org/10.1007/s101070100263, https://doi.org/10.1007/s101070100263

11. Freuder, E., Sabin, D.: Interchangeability supports abstraction and reformulation
for multi-dimensional constraint satisfaction. In: Proceedings of AAAI’97. pp. 191–
196 (1997)

12. Frisch, A., Hnich, B., Miguel, I., Smith, B., Walsh, T.: Towards csp model refor-
mulation at multiple levels of abstraction. In: Proceedings of CP’2002: Workshop
on reformulating CSP (2002)

13. Gay, S., Hartert, R., Lecoutre, C., Schaus, P.: Conflict Ordering Search for Schedul-
ing Problems. In: International conference on principles and practice of constraint
programming. pp. 140–148. Springer (2015)

14. Gay, S., Hartert, R., Schaus, P.: Simple and Scalable Time-Table Filtering for
the Cumulative Constraint. In: Pesant, G. (ed.) Principles and Practice of Con-
straint Programming - 21st International Conference, CP 2015, Cork, Ireland, Au-
gust 31 - September 4, 2015, Proceedings. Lecture Notes in Computer Science,
vol. 9255, pp. 149–157. Springer (2015). https://doi.org/10.1007/978-3-319-23219-
5 11, https://doi.org/10.1007/978-3-319-23219-5 11

15. Gay, S., Hartert, R., Schaus, P.: Time-table disjunctive reasoning for the cumulative
constraint. In: International Conference on AI and OR Techniques in Constriant



14 H. Verhaeghe et al.

Programming for Combinatorial Optimization Problems. pp. 157–172. Springer
(2015)

16. Gay, S., Hartert, R., Schaus, P.: Time-Table Disjunctive Reasoning for the Cu-
mulative Constraint. In: Michel, L. (ed.) Integration of AI and OR Techniques
in Constraint Programming - 12th International Conference, CPAIOR 2015,
Barcelona, Spain, May 18-22, 2015, Proceedings. Lecture Notes in Computer Sci-
ence, vol. 9075, pp. 157–172. Springer (2015). https://doi.org/10.1007/978-3-319-
18008-3 11, https://doi.org/10.1007/978-3-319-18008-3 11

17. Gay, S., Schaus, P., De Smedt, V.: Continuous casting scheduling with constraint
programming. In: International conference on principles and practice of constraint
programming. pp. 831–845. Springer (2014)

18. Gingras, V., Quimper, C.: Generalizing the Edge-Finder Rule for the Cumulative
Constraint. In: IJCAI. pp. 3103–3109. IJCAI/AAAI Press (2016)

19. Giunchiglia, F., Walsh, T.: A theory of abstraction. Artificial Intelligence 56(2-3),
323–390 (1992)

20. Kameugne, R., Fetgo, B.S., Gingras, V., Ouellet, Y., Quimper, C.G.: Horizon-
tally Elastic Not-First/Not-Last Filtering Algorithm for Cumulative Resource Con-
straint. CPAIOR pp. 316–332 (2018)

21. Kameugne, R., Fotso, L.P., Scott, J.D., Ngo-Kateu, Y.: A Quadratic Edge-
Finding Filtering Algorithm for Cumulative Resource Constraints. Constraints
An Int. J. 19(3), 243–269 (2014). https://doi.org/10.1007/s10601-013-9157-z,
https://doi.org/10.1007/s10601-013-9157-z

22. Kolisch, R., Sprecher, A.: PSPLIB - A Project Scheduling Problem Li-
brary: OR Software - ORSEP Operations Research Software Exchange Pro-
gram. European Journal of Operational Research 96(1), 205–216 (1997).
https://doi.org/10.1016/S0377-2217(96)00170-1

23. Laborie, P., Rogerie, J., Shaw, P., Viĺım, P.: IBM ILOG CP Optimizer for Schedul-
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