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Abstract
Dominance breaking is a useful technique in solving Constraint Optimization Problems (COPs),
which can speed up the solution process substantially by prune off many solutions in the search space.
However, the technique usually requires human expertise and deep understandings of the problem
structures. In this paper, we review recent research progress of dominance breaking, and introduce a
new line of work on automatic dominance breaking, a framework to automate the identification and
generation of effective constraints for dominance breaking in COPs. The main idea is to generate
(a) only nogoods as the building blocks to model arbitrary dominance breaking constraints and (b)
only the nogoods that are efficiently and conveniently identifiable by constraint satisfaction. At the
end, we also discuss possible directions of future work to make automatic dominance breaking more
efficient and more useful in practice.
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1 Introduction

Constraint Optimization Problems (COPs) are ubiquitous in practice, and Constraint Pro-
gramming (CP) usually solves COPs with the Branch and Bound (BnB) algorithm. The
efficiency of the BnB algorithm depends highly on the structural properties of COPs, among
which the existence of dominance relations is of practical importance. If one solution is domin-
ated by another, the former is known to be subordinate to the latter with respect to satisfiab-
ility and/or the objective value. Dominance Breaking is the technique to exclude dominated
solutions from the search space, and a wealth of research work [25, 47, 24, 46, 42, 31, 11, 21, 52]
show that dominance breaking can dramatically reduce the search space and speed up the
BnB algorithm in various problems.

In this paper, we review the research progress of dominance breaking in constraint
programming. While dominance breaking is successfully applied to various COPs, past
research work often requires sophisticated insights into the problem structures. In particular,
constraints for dominance breaking are problem-specific and non-trivial to transfer to another
problem domain. We introduce a recent line of work on automatic dominance breaking,
a framework to automate the process to make dominance breaking accessible to even non-
experts. The main idea is to restrict the form of dominance breaking constraints to nogood
constraints, which can be elementary building blocks to model arbitrary constraints in CP. The
generation of nogoods are modeled as constraint satisfaction consisting of sufficient conditions
to guarantee that such nogoods prune off only subordinate solutions from the search space.
The framework is the first of its kind as a truly automated method for dominance breaking
for a class of COPs and eliminates the need for manual efforts to identify dominance relations,
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1:2 Automatic Generation of Dominance Breaking Nogoods

which will take us one step closer to the Holy Grail of Computer Science [17, 18]. In the
concluding section, we discuss possible directions for future work to shed light on possibilities
for more effective detection and utilization of dominance relations in COPs.

2 Background

A Constraint Satisfaction Problem (CSP) P is a tuple (X,D,C) consisting of a finite set of
variables X = {x1, . . . , xn}, a mapping D from a variable x ∈ X to its finite domain D(x)
and a set of constraints C. A literal of P = (X,D,C) is of the form xi = vi where xi ∈ X
and vi ∈ D(xi). An assignment θ over a set of variables S ⊆ X is a set of literals that has
exactly one literal for each variable xi ∈ S, where S = var(θ) is the scope of θ. We use θ̄
to emphasize that an assignment is a full assignment whose scope is X, or it is otherwise
a partial assignment. Let θ[xi] = vi denote the value assigned by θ to variable xi ∈ var(θ)
if the literal (xi = vi) ∈ θ, and we also let θ[S′] = {(xi = vi) ∈ θ | xi ∈ S′} to denote the
projection of an assignment θ over a set of variables S′ ⊂ var(θ).

A constraint c ∈ C is a set of assignments over the variables var(c). An assignment
θ satisfies a constraint c iff var(θ) ⊇ var(c) and θ[var(c)] ∈ c. A solution of a COP
P = (X,D,C, f) is a full assignment that satisfies all constraints in C. If the set of all
solutions sol(P ) is non-empty, then P is satisfiable. A nogood constraint derived from θ is
a constraint of the form ¬θ ≡ ∨x∈var(θ)(x 6= θ[x]), and its length is equal to the scope size
|var(θ)|. A decision for a variable x ∈ var(θ) in a nogood constraint ¬θ is the literal x = θ[x].
A decision for a variable x is subsumed iff D(x) = {θ[x]} and is falisified iff θ[x] /∈ D(x).

Let DX be the set of all full assignments in P . A Constraint Optimization Problem
(X,D,C, f) extends a CSP with an objective function f : DX 7→ R. Without loss of generality,
solving a COP is to find an optimal solution θ̄opt such that θ̄opt ∈ sol(P ) and f(θ̄opt) ≤ f(θ̄′)
for any other solution θ̄′ of P . In other words, the objective function is minimized.

Following Chu and Stuckey [9], we define dominance relations to be relations over DX .

I Definition 1. A dominance relation ≺ of P is a transitive and irreflexive relation such
that ∀θ̄, θ̄′ ∈ DX , if θ̄ ≺ θ̄′, then either:
1. θ̄ is a solution of P and θ̄′ is not a solution of P, or
2. both θ̄ and θ̄′ are solutions of P and f(θ̄) ≤ f(θ̄′), or
3. both θ̄ and θ̄′ are not solutions of P and f(θ̄) ≤ f(θ̄′)
In this case, we say that θ̄ dominates θ̄′ with respect to P .

Dominance relations compare full assignments regarding the satisfaction of constraints and
the optimality of the objective, and it is sound to prune all dominated full assignments.

I Theorem 2. [9] Let ≺ be a dominance relation of a COP P = (X,D,C, f). We can
prune all full assignments θ̄′ ∈ DX whenever there exists θ̄ ∈ DX such that θ̄ ≺ θ̄′, without
changing the satisfiability or optimal value of P .

Note that a dominance relation should be both transitive and irreflexive. In other words, if
P is satisfiable, then at least one optimal solution θ̄opt of P is not dominated by any other
solutions for a valid dominance relation.

3 Related Work

In this section, we review the main and recent research work of dominance breaking. We
first describe existing generic ways to identify dominance relations in Section 3.1, and then
discuss methods to exploit dominance relations in Section 3.2.
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3.1 Identification of Dominance Relations
Dominance relations are usually identified in a case-by-case manner in the literature [3, 7,
22, 25, 30, 42, 46], and there are a few attempts to automate the identification of dominance
relations in COPs. Yu and Wah [54] propose a machine learning method to find candidate
dominance relations in combinatorial optimization. While the method can be applied to
several optimization problems, the generated candidate dominance relations lack correctness
guarantees and require further manual inspection. Fischetti et al. [13, 14] propose a local
dominance procedure to detect dominance relations in mixed integer linear programs. The
idea is to identify a dominating node for a given search node in the BnB search by solving
an auxiliary problem. Some design choices, such as the heuristic selection of nodes to solve
the auxiliary problem, are required for efficient implementation.

Chu and Stuckey [8, 9] give the first generic method for deriving dominance breaking
constraints for COPs with soundness guarantees. The method starts with a set of candidate
mappings over the solution set of a given problem, followed by the derivation of dominance
breaking constraints based on sufficient conditions for the candidate mappings to map
solutions to better solutions. Manual efforts are required to select mappings, identify sufficient
conditions, and simplify the dominance breaking constraints. Mears and de la Banda [38]
automate the derivation process to a certain extent based on automated symmetry detection,
which restricts the candidate mappings to symmetries that map solutions to solutions and map
non-solutions to non-solutions. Their method still requires manual selection of symmetries
produced by the automated symmetry detection process to be effective. Different from
previous approaches, the framework of automatic dominance breaking [33, 34, 35] is a fully
automatic method to identify dominance relations in COPs with soundness guarantees for a
class of constraint optimization problems.

Symmetry relations are special classes of dominance relations, where solutions are equi-
valent in terms of the satisfaction of constraints and the objective value. Considerable
progress has been made in the automatic detection of symmetry relations at different levels
of abstraction. A substantial amount of research work [10, 16, 20, 39, 48, 50] focus on the
automatic detection of symmetry relations in a CSP instance. While the detected symmetries
can be exploited to speed up the solution process of a CSP, the detection may introduce
extra overheads. Therefore, there is a line of work [26, 51] to detect symmetries for a class of
CSPs so that the detected model-level symmetries can be applied to all CSPs in the class.
However, they can only detect relatively “simple” symmetries like interchangeable values
and interchangeable variables. Later, Mears et al. [40, 41] proposes a method that lifts the
detected instance-level symmetries to the model level by an inductive reasoning process.
Symmetries can also arise as a result of modeling decisions when a single problem solution
corresponds to multiple assignments to the variables in a constraint model. The automated
constraint modeling system CONJURE [1, 2] incorporates an rule-based method to detect
modeling symmetries when refining high-level specifications into constraint models.

3.2 Static and Dynamic Dominance Breaking Methods
The methods to exploit dominance relations can be roughly divided into two categories:
static and dynamic dominance breaking.

Static dominance breaking is a method to add additional dominance breaking constraints
before the BnB search, and the constraints make dominated solutions become non-solutions.
The method has been applied to speed up the solution process for various problems [25,
47, 24, 46, 42, 31, 11, 21, 52], and we give several example applications of static dominance
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breaking in recent papers. In the diameter constrained minimum spanning tree problem,
de Una et al. [11] adopt a dominance rule from Noronha et al. [44] and add dominance
breaking constraints to exclude solutions with higher cost from the search space. Gange and
Stuckey [21] study the global constraint for value symmetry breaking and use the concert
hall scheduling problem as a benchmark, in which dominance breaking constraints are added
to remove suboptimal solutions. Senthooran et al. [52] study a problem of training engineers
for service delivery, where they add dominance breaking constraints in the skill allocation
subproblem to favour skill addition to an engineer with a subset of skills when compared to
another engineer’s skills. In general, dominance breaking constraints are of different forms for
different problems, and they usually require sophisticated insights of the problem structure.

Static dominance breaking may not always be effective in the BnB search, since dominated
solutions may improve the objective bound and allow additional pruning of search space.
There are empirical evidences [15, 23] showing that dominance breaking constraints can have
negative impact on the performance of the BnB search. Theoretical study by Ibaraki [27]
also shows that the removal of dominated solutions in the BnB search with depth first search
is guaranteed to reduce the number of search nodes only when the dominating solutions
have been visited. Therefore, dynamic dominance breaking methods modify the search
procedure to exclude only dominated solutions that cannot enable additional search space
pruning. Most dynamic dominance breaking methods are problem specific [7, 15, 22, 49, 12].
For example, Focacci and Shaw [15] give a local search method for the travelling salesman
problem, which prunes the current branch if it cannot be extended to a solution that is better
than the current best solution.

There is few work on generic approaches for dynamic dominance breaking. Chu and
Stuckey propose [9] dominance jumping, where the propagators of dominance breaking
constraints only check the validity but never prune any values from the domain. When
the BnB search reach a failure node, the search is restarted, and a temporary strategy is
used to guide the search towards another part of the search space which contains better
solutions potentially. In this way, the dominating solutions are visited first to obtain stronger
objective bounds for pruning. Another generic approach is automatic caching via constraint
projection [6], in which a caching key is computed and stored for each visited subproblem.
Conditions on keys are given to check whether all solutions in the current subproblem are
dominated by solutions in a cached subproblem. If the conditions are meet, the current
subproblem will not be explored to avoid redundant search.

4 Automatic Generation of Dominance Breaking Nogoods

In this section, we describe an automated method to identify and generate dominance
breaking constraints in COPs. The main difficulty for automation lies in the various forms of
dominance breaking constraints for different problems, and it is overcome by restricting the
form of constraints to be nogood constraints [28], which are elementary since any constraints
can be represented as a conjunction of several nogood constraints in constraint programming.
The workflow of the automated method is as follows (Figure 1):
1. Construct generation CSPs from the objective and constraints of a COP P .
2. Enumerate all solutions of the generation CSPs using a constraint solver.
3. Generate one nogood constraint for each solution of the CSPs.
4. Add all generated nogood constraints to the COP P .
5. Solve the COP with extra constraints by a constraint solver.
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CP solver

(2) solve

constraint x[5] != 3 \/ x[11] != 1;
constraint x[10] != 4 \/ x[17] != 3;
constraint x[12] != 2 \/ x[19] != 2;
constraint x[9] != 1 \/ x[19] != 0;

Dominance Breaking Nogoods
(3) generate

(1) build

(4) combine
Constraint 

Optimization 
Problem

Generation 
CSPs

Augmented 
Constraint 

Optimization 
Problem

(5) solve

Figure 1 Workflow of Automatic Dominance Breaking for COPs

In this framework, the solution of the generation CSPs are pairs of partial assignments of
P over a scope of the same size, where one is dominating, and the other is dominated. The
constraints in generation CSPs are sufficient conditions to ensure that the derived nogood
constraint from a dominated partial assignment is a valid dominance breaking constraints
for P . The key step is to build generation CSPs automatically based on the COP P .

In the remaining of this section, we first provide theoretical explanations on how to
construct generation CSPs for a class of COPs with efficiently checkable objectives and
constraints (Section 4.1), followed by the technique called common assignment elimination
for more efficient generation of nogoods (Section 4.2). Functional expressions are common in
modelling COPs, and we show how to exploit functional constraints to enable automatic
dominance breaking for problems with nested function calls (Section 4.3).

4.1 Automatic Dominance Breaking
Chu and Stuckey [8] investigate dominance relations over full assignments, and we generalize
it to dominance relations over partial assignments. Let DXθ = {θ̄ ∈ DX | θ̄[var(θ)] = θ} be a
subset of DX in which full assignments are extending from θ. We say that θ dominates θ′

with respect to P iff ∀θ̄′ ∈ DXθ′ ,∃θ̄ ∈ DXθ such that θ̄ ≺ θ̄′ for some dominance relation ≺ of
P . When the context is clear, we also let θ ≺ θ′ denote θ dominates θ′ with respect to P .

I Theorem 3. If θ dominates θ′ with respect to P , then removing all assignments in DXθ′

preserves the same satisfiability and optimal value of P .

Theorem 3 is a direct consequence of Theorem 2 since all full assignments in DXθ′ are
dominated. Note that removing all dominated full assignments in DXθ′ only requires to add
a dominance breaking nogood ¬θ′ to P . While generating all such nogoods is impractical,
we can formulate it as constraint satisfaction to identify and exploit only a subset of such
nogoods. Thus, we give a sufficient condition for θ ≺ θ′ with respect to P .

I Theorem 4. Let P = (X,D,C, f) be a COP where θ and θ′ are two partial assignments
over S ⊆ X. If there exists a bijective mapping σ : DXθ′ 7→ DXθ such that:

irreflexivity: the transitive closure of σ is irreflexive,
betterment: ∀θ̄′ ∈ DXθ′ , f(σ(θ̄′)) ≤ f(θ̄′), and
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1:6 Automatic Generation of Dominance Breaking Nogoods

implied satisfaction: ∀θ̄′ ∈ DXθ′ , θ̄′ ∈ sol(P ) implies that σ(θ̄′) ∈ sol(P ),
then θ ≺ θ′ with respect to P .

The idea is to construct a relation ≺ by taking the transitive closure of σ, and show that
≺ is a dominance relation in P . By Theorem 4, we need to find a bijection mapping to
map full assignments in DXθ′ to those in DXθ to fulfill irreflexivity, betterment and implied
satisfaction. For the ease of analysis, we are interested in a pair (θ, θ′) of assignments with
the same scope, i.e., var(θ) = var(θ′), and define the mutation mapping for θ and θ′ in P .

I Definition 5. Let θ, θ′ ∈ DS be two assignments in a COP P = (X,D,C, f) over the scope
S ⊆ X. The mutation mapping µθ′→θ : DXθ′ 7→ DXθ maps θ̄′ ∈ DXθ′ to θ̄ ∈ DXθ such that:

θ̄[x] = θ[x] and θ̄′[x] = θ′[x] for x ∈ S, and
θ̄[x] = θ̄′[x] for x /∈ S

In other words, the full assignment µθ′→θ(θ̄′) “mutates” the θ′ component of θ̄′ to θ. The
irreflexivity condition turns out to be simple under the mutation mapping.

I Proposition 6. If θ 6= θ′, then the mutation mapping µθ′→θ is irreflexive, and its transitive
closure is also irreflexive.

What remains is to check the betterment and the implied satisfaction condition in Theorem 4.
To generate dominance breaking nogoods efficiently, we add sufficient conditions, which are
constraints over θ and θ′, to generation CSPs to find pairs of partial assignments.

I Example 7. Consider a simple COP P to minimize the objective x1 + 4x2 + 2x3 + 8x4
subject to the constraint 3x1 + 2x2 + x3 + x4 ≥ 3, where xi ∈ {0, 1} are binary variables for
i = 1, . . . , 4. The problem P has a linear objective function and a linear inequality constraint,
and a generation CSP consists of:

Sufficient conditions for betterment:
∑
xi∈S aiθ[xi] ≤

∑
xi∈S aiθ

′[xi],
Sufficient conditions for implied satisfaction:

∑
xi∈S biθ[xi] ≥

∑
xi∈S biθ

′[xi]
where a = [1, 4, 2, 8] and b = [3, 2, 1, 1] are two arrays of integers, and S = var(θ) = var(θ′)
is the scope for θ and θ′. One solution pair is (θ, θ′) such that θ = {x1 = 1, x3 = 1, x4 = 0}
and θ′ = {x1 = 1, x3 = 0, x4 = 1}. The derived dominance breaking nogood ¬(x1 = 1∧ x3 =
0 ∧ x4 = 1) can remove suboptimal solutions in P by Theorem 3.

Note that sufficient conditions for betterment and implied satisfaction correspond to the
objectives and constraints of COPs, and we say that objectives and constraints with such
sufficient conditions are efficiently checkable. There are other efficiently checkable objectives
and constraints in addition to linear objectives and linear constraints in Example 7, and we
refer interested readers to the paper [33] for more details.

Recall that our method enumerates all dominance breaking nogoods arising from the
solutions of generation CSPs, while Theorems 3 and 4 only consider the soundness of adding
one nogood constraint into P . We also need to ensure that all generated nogoods are
compatible in the sense that not all optimal solutions of P are eliminated.

I Theorem 8. If (θ, θ′) satisfies betterment and implied satisfaction, and θ <lex θ′, i.e. θ is
lexicographically smaller than θ′, then the lexicographically smallest optimal solution always
satisfies ¬θ′.

Theorem 8 implies that all generated nogoods ¬θ′ derived from the solutions of the generation
CSPs are compatible, and adding all nogoods to the COP preserves the optimal value of
P . The idea can be further generalized for more relaxed sufficient conditions that imply
compatibility of dominance breaking nogoods [33], and hence the generation CSPs are less
restrictive, resulting in more generated nogoods for search space pruning. Note that θ <lex θ′

also implies θ 6= θ′, and therefore implies the irreflexivity in Theorem 4.
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4.2 Common Assignment Elimination
An important advantage of the method in Section 4.1 is the ability to generate dominance
breaking nogoods of different lengths. Example 7 gives an example nogood constraint of
length 3, and the same reasoning can be applied to find nogoods of different length. In
practice, we usually set the maximum scope size to a fixed integer L and attempt to augment
the COP with all nogoods of length l ≤ L. However, some long nogoods may be useless in
pruning in the present of short nogoods, and common assignment elimination is a technique
to strengthen generation CSPs and avoid generation of such redundant nogoods.

In a constraint programming solver, the domain of variables in a COP P = (X,D,C, f)
is usually enforced to be generalized arc consistent [37] with respect to all constraints c ∈ C.
By definition, the domain is GAC with respect to a nogood constraint iff (a) there exists two
decisions that are not subsumed, or (b) there is one decision that is falisified. The propagator
maintaining GAC for ¬θ is triggered when all but one of the decisions are subsumed, and
the value θ[x] is removed from D(x) for the left decision x = θ[x].

I Proposition 9. If θ̃ ⊆ θ, then (1) ¬θ̃ ⇒ ¬θ, and (2) the domain is GAC with respect to
¬θ implies that the domain is GAC with respect to ¬θ.

Proposition 9 implies that ¬θ is both logically and propagation redundant [5] and contributes
no extra pruning in a constraint solver. Therefore, if ¬θ̃ ∈ C, then we can remove ¬θ and
save the runtime cost of the propagator for ¬θ in constraint propagation.

In order to avoid generating redundant nogoods, we can further enhance the generation
CSPs with extra conditions. In particular, we are interested in the case where a variable x
is assigned to the same value in both θ and θ′. We say that a literal (x = v) is commonly
eliminable with respect to a constraint c iff for all pairs (θ, θ′) such that (x = v) ∈ θ

and (x = v) ∈ θ′, (θ, θ′) satisfies c implies that (θ̃, θ̃′) satisfies c where θ̃ = θ \ {x = v},
θ̃′ = θ′ \ {x = v}, and (x = v) is commonly eliminable with respect to a generation CSP if it
is commonly eliminable with respect to all constraints in the generation CSP.

I Theorem 10. Let c be a constraint over a pair of partial assignments. If a literal (x = v)
is commonly eliminable with respect to c, then for all (θ, θ′) that satisfies c, there must be
(θ̃, θ̃′) satisfying c such that x ∈ S ⇒ (θ[x] 6= v ∨ θ′[x] 6= v), where S = var(θ) = var(θ′).

Theorem 10 implies that if (θ, θ′) is a solution pair of a generation CSP such that (x =
v) ∈ (θ ∩ θ′) is commonly eliminable with respect to all constraints in the generation
CSP, then there must exist another solution (θ̃, θ̃′) of smaller size, and ¬θ′ is logically
and propagation redundant with respect to ¬θ̃′. Therefore, we can add extra condition
x ∈ S ⇒ (θ[x] 6= v ∨ θ′[x] 6= v) for every commonly eliminable literal (x = v) in order to
avoid generating redundant dominance breaking nogoods. Further, if for every v ∈ D(x),
(x = v) that is commonly eliminable with respect to the generation CSP, we can add a more
succinct constraint x ∈ S ⇒ (θ[x] 6= θ′[x]) to generation CSPs.

To find commonly eliminable literals, we need to examine constraints in generation
CSPs. Recall in Section 4.1 that a solution pair (θ, θ′) of a generation CSP should fulfil: (1)
lexicographical ordering: θ <lex θ′, (2) sufficient conditions for betterment arising from the
objective of P , and (3) sufficient conditions for implied satisfaction arising from constraints of
P . It is straightforward to show that for an arbitrary literal (x = v) is commonly eliminable
with respect to the lexicographical ordering constraint.

I Proposition 11. Let θ, θ′ be partial assignments over S = var(θ) = var(θ′). If x ∈ S and
θ[x] = θ′[x], then θ <lex θ′ implies that θ̃ <lex θ̃′, where (θ̃, θ̃′) = (θ[S̃], θ′[S̃]), and S̃ \ {x}.

ModRef2022
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The commonly eliminable literals are specific with respect to sufficient conditions for better-
ment and implied satisfaction of COPs.

I Example 12. Consider the sufficient conditions for betterment and implied satisfac-
tion in Example 7. Since (x1 = 1) ∈ (θ ∩ θ′), we must have (1)

∑
xi∈S\{x1} aiθ[xi] ≤∑

xi∈S\{x1} aiθ
′[xi], and (2)

∑
xi∈S\{x1} biθ[xi] ≤

∑
xi∈S\{x1} biθ

′[xi]. Therefore, there must
be another solution pair (θ̃, θ̃′) such that θ̃ = {x3 = 1, x4 = 0} and θ̃′ = {x3 = 0, x4 = 1},
and the nogood constraint ¬θ′ ≡ ¬(x1 = 1 ∧ x3 = 0 ∧ x4 = 1) is logically and propagation
redundant with respect to ¬θ̃′ ≡ ¬(x3 = 0 ∧ x4 = 1).

Overall, the eliminability is checked by examining the form of objective and constraints in a
COP, and thus common assignment elimination can be applied mechanically by analyzing
the COP in only one pass. Empirical evaluation confirms the benefits of the technique in
nogood generation, and we refer interested readers to the paper [34] for more details.

4.3 Exploiting Functional Constraints
The techniques described in Sections 4.1 and 4.2 is restricted to COPs with only objectives
and constraints that are all provably efficiently checkable. This prevents the use of automatic
dominance breaking for COPs with varying objectives and constraints, especially the ones
with nested function calls. In this section, we describe a method to exploit functional
constraints and their properties to derive sufficient conditions for betterment and implied
satisfaction automatically.

Functional expressions are ubiquitous in problem modelling in a high-level modeling
language [19, 43]. In practice, however, COPs are usually specified normalized/flattened into
a form with only standard constraints.

I Example 13. Consider the COP in Example 7 with a new objective to minimize x1 −
2 max(x2, x3) + 8x4, which is not efficiently checkable due to the max function. After
normalization, the COP can become:

minimize obj
subject to obj = x1 − 2y1 + 8x4, y1 = max(x2, x3),

y2 ≥ 3, y2 = 3x1 + 2x2 + x3 + x4,

x1, x2, x3, x4 ∈ {0, 1}, y1, y2, obj ∈ Z

(1)

Note that y1 and y2 are newly introduced intermediate variables, and obj is the objective
variable to be minimized. They are functionally defined by y1 = max(x2, x3), y2 = 3x1 +
2x2 + x3 + x4, and obj = x1 − 2y1 + 8x4 respectively. We call these functional constraints,
while y2 ≥ 5 is a non-functional constraint.

In this section, we assume that a COP P = (X,D,C, obj) is the result of applying some sort
of flattening procedure, such as the one used in the MiniZinc compiler [36] and similar to that
shown in Example 13, to a problem model. We have a set CY ⊆ C of functional constraints
in the form of y = h(xi1 , . . . , xik ), where h : D{xi1 ,...,xik

} 7→ D{y} is a function mapping any
assignment on variables {x1, . . . , xk} to a unique assignment on a defined variable y ∈ Y .
For ease of presentation, we treat each non-functional constraint c ∈ (C \ CY ) as a function
returning 0/1 and define a (reified) functional constraint cb ≡ (b = c(xi1 , . . . , xik )), where
b ∈ {0, 1} is a reified variable such that θ̄[b] = 0 iff θ̄ satisfies c1. We let CB denote the set of

1 Note that this is different from the convention that 0 means false and 1 means true.



J. H. M. Lee and A. Z. Zhong 1:9

(reified) functional constraints and B denote the set of reified variables.
Without loss of generality, let (Z, Y,B) and (CB , CY ) be a partition of variables X

and constraints C respectively in a COP, where obj ∈ Y . In case a variable y ∈ Y is
introduced by the flattening procedure, we set the domain for y to be the largest possible
set. We say that a full assignment θ̄ is functionally valid iff (a) θ̄[b] = c(θ̄[xi1 ], . . . , θ̄[xik ]) for
(b = c(xi1 , . . . , xik )) ∈ CB and (b) θ̄[y] = h(θ̄[xi1 ], . . . , θ̄[xik ]) for (y = h(xi1 , . . . , xik )) ∈ CY .
Note that θ̄ in a normalized COP will correspond to a full assignment in the original non-
flattened problem model iff θ̄ is functionally valid. In the remaining of this section, we
consider only functionally valid full assignments in DX .

Our aim is to find pairs (θ, θ′) of partial assignments over S ⊆ Z such that θ ≺ θ′ with
respect to P . Recall that θ ≺ θ′ requires ∀θ̄′ ∈ DXθ′ ,∃θ̄ ∈ DXθ such that θ̄ ≺ θ̄′ for some
dominance relation over DX . It is expensive to check whether there exists θ̄ for each θ̄′ in DXθ′ ,
and we propose to check only if a specific θ̄ dominates θ̄′ by utilizing a mutation mapping in
Definition 5. Since values of variables in Y ∪B are determined by values of variables in Z,
we redefine the mutation mapping to incorporate functional constraints as follows.

I Definition 14. The mutation mapping µθ′→θ for two assignments θ, θ′ over the scope
S ⊆ Z maps a full assignment θ̄′ ∈ DXθ′ to another full assignment θ̄ ∈ DXθ such that:

θ̄[z] = θ[z] for z ∈ S,
θ̄[z] = θ̄′[z] for z ∈ Z \ S,
θ̄[y] = h(θ̄[xi1 ], . . . , θ̄[xik ]) where y ∈ Y is defined by y = h(xi1 , . . . , xik ) ∈ CY ,
θ̄[b] = c(θ̄[xi1 ], . . . , θ̄[xik ]) where b ∈ B is defined by b = c(xi1 , . . . , xik ) ∈ CB.

In other words, the mutation mapping µθ′→θ not only “mutates” the θ′ component of θ̄′

to become θ, but also assigns the values of variables in Y ∪ B accordingly. The following
proposition characterizes some useful properties of the mutation mapping.

I Proposition 15. The followings are true for all θ̄′ ∈ DXθ′ and θ̄ = µθ
′→θ(θ̄′):

If z ∈ S, then θ̄[z] = θ[z] and θ̄′[z] = θ′[z].
If z ∈ Z \ S, then θ̄[z] = θ̄′[z].

The following result is a direct consequence of Theorems 4 and 8.

I Theorem 16. If a pair of assignments θ, θ′ ∈ DS satisfies (1) lexicographical ordering:
θ <lex θ

′, (2) betterment: ∀θ̄′ ∈ DXθ′ , µθ
′→θ(θ̄′)[obj] ≤ θ̄′[obj], and (3) implied satisfaction:

∀b ∈ B, ∀θ̄′ ∈ DXθ′ , µθ
′→θ(θ̄′)[b] ≤ θ̄′[b], then θ dominates θ′ with respect to P .

The lexicographical ordering is a constraint for the pair (θ, θ′), while the betterment and
implied satisfaction are predicates in the form of quantified inequalities. Our approach is
to recursively find sufficient conditions for these quantified inequalities until the conditions
without quantification so that they are constraints involving only θ and θ′.

I Example 17. Consider the COP in Example 13 and suppose we want to find θ, θ′ ∈ DS
where S = {x1, x2} such that θ ≺ θ′ with respect to P . Let θ̄ denote µθ′→θ(θ̄′) for all full
assignment θ̄′ ∈ DSθ′ . By Theorem 16, it requires: (1) betterment: ∀θ̄′ ∈ DXθ′ , θ̄[obj] ≤ θ̄′[obj],
and (2) implied satisfaction: ∀θ̄′ ∈ DXθ′ , θ̄[b] ≤ θ̄′[b], where b is a reified variable defined by
b = (y2 ≥ 3). We find sufficient conditions for betterment as follows:
1. Variable obj is defined by obj = x1 − 2y1 + 8x4. The betterment condition must hold if

∀θ̄′ ∈ DXθ′ , θ̄[x1]− 2θ̄[y1] + 8θ̄[x4] ≤ θ̄′[x1]− 2θ̄′[y1] + 8θ̄′[x4] (2)

2. Since the summation function is monotonically increasing, (2) must be true if we have

∀θ̄′ ∈ DXθ′ , θ̄[x1] ≤ θ̄′[x1] ∧ −2θ̄[y1] ≤ −2θ̄′[y1] ∧ 8θ̄[x4] ≤ 8θ̄′[x4] (3)
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3. By Proposition 15, θ̄[x1] = θ[x1], θ̄′[x1] = θ′[x1] and θ̄[x4] = θ̄′[x4], and (3) is implied by

(θ[x1] ≤ θ′[x1]) ∧ (∀θ̄′ ∈ DXθ′ ,−2θ̄[y1] ≤ −2θ̄′[y1]) (4)

4. Since y1 = max(x2, x3), and “max” is monotonically increasing. Therefore, the condition

(θ[x1] ≤ θ′[x1]) ∧ (∀θ̄′ ∈ DXθ′ , θ̄[x2] ≥ θ̄′[x2] ∧ θ̄[x3] ≥ θ̄′[x3]) (5)

implies (4). By Proposition 15 again, (5) is implied by (θ[x1] ≤ θ′[x1]) ∧ (θ[x2] ≥ θ′[x2])
since x2 ∈ S while x3 /∈ S.

Similarly, we can find the sufficient condition 3θ[x1] + 2θ[x2] ≥ 3θ′[x1] + 2θ′[x2] for implied
satisfaction, which is the same as that in Example 7. Overall, if (θ, θ′) satisfies

the lexicographical ordering: θ <lex θ′

sufficient conditions for betterment: (θ[x1] ≤ θ′[x1]) ∧ (θ[x2] ≥ θ′[x2]), and
sufficient conditions for implied satisfaction: 3θ[x1] + 2θ[x2] ≥ 3θ′[x1] + 2θ′[x2],

then θ ≺ θ′ with respect to P , and ¬θ′ is a dominance breaking nogood for P . One example
solution pair is (θ, θ′) such that θ = {x1 = 0, x2 = 1} and θ′ = {x1 = 1, x2 = 0}.

The above derivation procedure utilize the functional constraint and properties such as
monotonicity to derive sufficient conditions, and it can be formalized and automated as a
derivation algorithm. We refer readers to the paper [35] for more details on the derivation
algorithm as well as the soundness and termination results of the algorithm. Empirical study
in the paper [35] demonstrates its ability to reveal dominance relations in the literature
and discover new dominance relations on problems with ineffective or no known dominance
breaking constraints.

5 Experimental Evaluation

In this section, we give experimental results on several benchmarks to show the utility of
automatic dominance breaking. For more results of empirical study, we refer interested
readers to the papers [33, 34, 35].

We use MiniZinc [43] as the high-level modeling language and implement our nogood
generation method by modifying2 the publicly available MiniZinc compiler with version 2.6.2.
In a flattened model, we treat constraints with the annotation “defines_var” as functional
constraints, while others are non-functional constraints that should be reified. The generated
nogoods for each problem are output as text and then appended to the MiniZinc model of
the corresponding problem. The augmented models are submitted to MiniZinc for solving
using the Chuffed solver [45] with version 0.10.4. All experiments are run on Xeon E5-2630
2.60GHz processors. We give results on three benchmark problems, 20 random instances for
each problem size:

Team-n-m. The Team Assignment Problem appears in MiniZinc Challenge 2018 [53].
The problem consists of n×m players, where players have different ratings and need to
be assigned to n teams. There are requests regarding which pair of players want to be in
the same team. The objective is to satisfy as many requests as possible while balancing
the total rating among all teams. The search strategy is to select the variable with the
smallest domain and assign the minimum value to it first.

2 We modify the embedded Geas solver and use the free search option for solving the generation CSPs.
Our implementations are available at https://github.com/AllenZzw/auto-dom.
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basic 2-dom 3-dom 4-dom
Problem Total Solving Total Solving Total Solving Total
Team-6-5 24.48 10.57 12.49 9.70 32.00 8.88 427.73
Team-7-5 276.84 138.88 146.15 130.71 225.19 150.83 1745.96
Team-8-5 1983.53 819.58 829.05 767.52 1024.43 724.63 5191.70
MaxCover-45 75.91 53.47 53.79 5.07 9.96 0.27 83.93
MaxCover-50 615.04 464.81 465.53 26.31 34.92 1.12 134.99
MaxCover-55 3576.98 2859.60 2860.27 78.37 91.53 2.54 199.11
Sensor-50 156.84 138.65 139.44 94.05 108.99 57.34 297.18
Sensor-60 595.46 404.27 405.52 269.61 296.56 172.43 709.37
Sensor-70 1615.18 1144.17 1145.83 810.01 854.61 651.72 1724.70
Table 1 Comparison of solving time for the basic and L-dom methods.

MaxCover-n. The Budgeted Maximum Coverage Problem [29] is a variant of the set
cover problem. There is a ground set U and a collection T consisting of n subsets of U ,
where each subset is associated with a cost ci. The goal is to find a subset of T such that
the union covers the maximum number of elements subject to the constraint that the
total cost does not exceed a given budget. The search strategy is to select the unfixed
subset in T with the smallest cost first.
Sensor-n. The Sensor Placement Problem [32] is to select a fixed cardinality subset of n
locations to place sensors in order to provide service for customers. If we place a sensor
at location i, then it provides service to a subset of reachable customers, and the service
value for customer j is Mij . Each customer chooses the facility with the highest service
value from the opened sensors, and the goal is to maximize the total service value. The
search strategy is to select the unfixed location with the highest service value to the set
of customers that are reachable by the sensor placed at the location.

For all benchmarks, we attempt to generate all dominance breaking nogoods of length up
to L (L-dom), and compare our method to the basic problem model (basic). The timeout
for the whole solving process (nogood generation + problem solving) is set to 7200 seconds,
while we reserve at most 3600 seconds for nogood generation and use the remaining time for
problem solving in L-dom. If nogood generation times out, we augment the problem model
with all nogoods generated within the timeout.

In Table 1, we report the geometric mean of the problem solving time (Solving) and
the total time (Total) for all benchmarks. We first compare the problem solving time to
evaluate the usefulness of the generated nogoods, and we can observe that the generated
dominance breaking nogoods significantly reduce the solving time in three benchmarks. As
the maximum nogood length L increases and more generated nogoods are added to the
problem model, the solving time is usually shorter. To compare the total time (generation
time + solving time) of L-dom against basic, we highlight the smallest total time in bold.
The nogood generation time of L-dom increases with the maximum nogood length L of the
generated nogoods, and there is a trade-off between search space pruning and generation
time. The optimal nogood length depends on the problem structure. For Team-n-m, 2-dom
is the best and reduces up to 58.20% total time than basic. In MaxCover-n and Sensor-n,
3-dom usually comes on top, and the percentage decrease in runtime is up to 97.44% and
80.48% respectively compared with basic. The performance gain of L-dom in problem
solving outweighs the generation time in all three problems when the maximum length L of
nogoods is set appropriately.
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6 Discussion and Future Work

Automatic generation of dominance breaking nogoods is made possible by focusing on nogoods.
While nogood constraints are elementary, the propagation of nogood may not be efficient.
One direction of future work is to combine the framework with constraint acquisition [4], in
which the generated nogoods can be used as examples to learn and discover more succinct
constraints. The method of automatic dominance breaking requires a full constraint instance
to synthesize generation CSPs, and the automatic detection of dominance relations from
constraint models alone is an interesting line of future work. Also, the static generation of
dominance breaking nogoods may sometimes take too much time, and not all nogoods are
equally important in solving COPs. We expect dynamic detection of dominance relations
and its combination with dynamic dominance breaking methods [6, 9] will save the time for
the overall solution process.
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