
A portfolio-based analysis method
for competition results
Nguyen Dang #

University of St Andrews, United Kingdom

Abstract
Competitions such as the MiniZinc Challenges or the SAT competitions have been very useful sources
for comparing performance of different solving approaches and for advancing the state-of-the-arts of
the fields. Traditional competition setting often focuses on producing a ranking between solvers
based on their average performance across a wide range of benchmark problems and instances. While
this is a sensible way to assess the relative performance of solvers, such ranking does not necessarily
reflect the full potential of a solver, especially when we want to utilise a portfolio of solvers instead
of a single one for solving a new problem. In this paper, I will describe a portfolio-based analysis
method which can give complementary insights into the performance of participating solvers in
a competition. The method is demonstrated on the results of the MiniZinc Challenges and new
insights gained from the portfolio viewpoint are presented.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases algorithm portfolio, algorithm selection, constraint programming

Funding Nguyen Dang: is a Leverhulme Early Career Fellow

1 Introduction

In many algorithmic communities, competitions have been the sources for comparing both
established and newly developed solving techniques and for advancing the state-of-the art
solving approaches over the years. Examples include the SAT competitions [11, 4] for SAT
solvers, the MiniZinc Challenge [19, 20] for constraint solving approaches, the International
Planning competitions for the planning community [14, 21]. In a typical competition setting,
each participating solver is evaluated on a set of benchmark problems and its average
performance across the whole benchmark set is recorded. A ranking among all participants
is then produced based on the collected average performance of each solver. While this is a
sensible way to assess the relative performance of participating solvers, such ranking does
not necessarily reflect the full potential of a solver. For example, a solver with a low overall
rank but uniquely performs well on a small subset of the benchmark problems may still
be very useful in practice. This is particularly true in the context of algorithm portfolios
and algorithm selection [13, 12], where the aim is construct and utilise a set (a portfolio) of
solvers with complementary strengths.

There are recent initiatives [10] that call for a new type of “cooperative” competitions such
as the Sparkle SAT challenge 2018 [15] and the Sparkle Planning challenge 2019 [16]. In those
challenges, an algorithm selector is built on a portfolio of all participating solvers. Each solver
is then ranked based on its marginal contribution [22] to the performance of the selector. More
specifically, given a portfolio of n algorithms A = {a1, a2, .., an}, the marginal contribution
of an algorithm ak to A on an instance set I is defined as P (A, I) − P (A \ {ak}, I), where
P (A, I) is the performance of an algorithm selector constructed from A measured on I. Such
type of competitions gives a different view on the performance of a solving approach and
can give credits to the solvers that appear to be weak in a traditional competition setting.
The algorithm selector will act as the new state-of-art (SOTA) by standing on the shoulders
of the participating solvers, and the aim of a newly developed solver would be to join the

mailto:nttd@st-andrews.ac.uk
https://orcid.org/0000-0002-2693-6953

2 A portfolio-based analysis method for competition result

SOTA portfolio and improve the SOTA performance via its marginal contribution to the
current portfolio.

The Sparkle setting brings a new and interesting view to competition organisation.
However, there are two things we need to consider when applying the setting to a new
domain. Firstly, the usage of an algorithm selector for measuring contribution of each solver
assumes that we have a pre-defined set of instance features across all possible problems of
the domain, and that those features are predictive of all participating solvers’ performance.
Those assumptions have been long shown to hold for SAT instance features such as the
ones used in the SATZilla system [23]. However, such assumptions may not always be met
when considering a new problem domain, or even on new solvers within the current domain.
Secondly, there has been criticism on the marginal contribution measurement used by the
challenges. Given a portfolio A, imagine the case where we have two solvers a1 and a2 in
A, both of which perform equally better than each of the rest of A on the same subset of
instances of I. If the size of such subset is large, it means that the average performance of
a1 and a2 are quite strong compared to the others. However, the marginal contribution of
both solvers to A will be zero, which does not give them the true credits for their overall
performance.

Another method for measuring the importance of a solver in a portfolio based on the
Shapley values [18], a concept taken from coalitional game theory, was proposed in [7]. This
measure takes into account the marginal contribution of each solver to every subset of the
portfolio rather than just the full portfolio. The Shapley value of a solver is the average value
of those contributions. In [7], the authors calculated the Shapley values of participating
solvers on several SAT competitions, and show that the resulting ranking can be quite
different from the official ranks of the competitions, which reveal additional interesting
insights into the competition results.

Following those ideas, in this paper, I will present a portfolio-based method for analysing
competition results. In contrast to the Sparkle setting, I will consider a simplified algorithm
portfolio setting where we make use of a portfolio by just running all solvers in parallel on
each given instance, and we stop when one of the solvers has solved the instance. This setting
is extremely easy to use, and is not too impractical due to the popularity of multiple-core
processors and high performance computing systems nowadays. Moreover, in all previous
works, only running time is used as solver performance (runs where instances are unsolved
are penalised using PAR2 or PAR10, which is equivalent to multiplying the timeout limit by
a factor of 2 or 10), while the analysis in this paper will take into account both running time
and solution quality as performance measure by utilising the MiniZinc challenge scoring
method 1.

More concretely, the analysis consists of three steps:

Step 1: find the smallest portfolios that can achieve the best possible performance. This
step will tell us whether we need all solvers to achieve the best performance, or if there is
a small subset of solvers that completely dominate the rest (Section 3).
Step 2: given the portfolios found in step 1, find the best subset of solvers for each subset
size. This will give us an idea about the trade-off between reducing the number of solvers
in a portfolio and the resulting performance (Section 4).
Step 3: measure the importance of each solver under the portfolio viewpoint using the
Shapley values. This step provides a summary of the observations in step 2 (Section 5).

1 https://www.minizinc.org/challenge2021/rules2021.html

https://www.minizinc.org/challenge2021/rules2021.html

N. Dang 3

I will analyse the results of the MiniZinc Challenges based on the steps described
above and show the new insights gained from such portfolio viewpoint compared to the
traditional ranking method. However, I am not proposing to replace the current ranking
methods of the MiniZinc Challenges with portfolio-based rankings. This analysis is rather
a complementary viewpoint to the current results of the challenges and may be useful
for the algorithm developers and the community when adopting those solvers for their
specific use cases. The source code and data used in the analysis are available on github at
https://github.com/ndangtt/portfolio-based-analysis.

2 Background

This section describes the concepts and terminologies that will be used throughout the whole
analysis, including: (i) the scoring method used by the MiniZinc Challenges(Section 2.1);
(ii) the definition of the Oracle and the Participant-Oracle (Section 2.2), the two baselines
used for measuring performance of a portfolio of solvers from a competition; and (iii) the
performance measure of a solver portfolio (Section 2.3).

2.1 MiniZinc Scoring Method

The Sparkle challenges and many algorithm selection systems typically focuses on decision
problems, where the performance measure only takes into account the running time of each
solver (with penalty on timeout runs). However, for optimisation problems, solution quality
is another important aspect of performance. The MiniZinc scoring method is a nice way to
aggregate both running time and solution quality into a single measure. Given two solvers A

and B, a problem constraint model P and an instance I of the same problem, the MiniZinc
scoring method assigns a score to each of the two solvers such that the better performing
one gets a higher score, and the sum of the two scores is equal to 1. More concretely, if P is
a decision problem, solver A is considered better than solver B on an instance I if: (i) A can
solve I within the time limit while B cannot (in such case A get the full score of 1 and B

gets 0 score); or (ii) I is solvable by both solvers within the time limit and A is faster than B

(in such case the scores of each solver is proportional to the other solver’s running time). If
P is an optimisation problem, A is better than B if: (i) A can solve I to optimality while B

cannot, or (ii) A produces better final solution quality than B; or (iii) both solvers produce
the same final solution quality or both solve the instance to optimality but A is faster than
B. In the first two cases, A gets the full scores of 1, while in the last case, the scores of A

and B are proportional to each other’s running time.
The official ranking of the MiniZinc Challenges is based on the scoring method described

above and the Borda counting system [6]. For each instance, the method is applied to every
pair of solvers. The final score of each solver is its average score across all instances of the
competition and solvers with higher scores get better ranks. Note that in the MiniZinc
scoring method, if both solvers fail to solve an instance, the first one of the pair will get a
score of 1 while the second one gets 0. This design is on purpose due to the fact that the
Borda counting will calculate the scores of the same pair in both directions. Eventually both
solvers will get the same total score of 1, indicating that their performance is indistinguishable
on the given instance.

https://github.com/ndangtt/portfolio-based-analysis

4 A portfolio-based analysis method for competition result

2.2 The Oracle and the Participant-Oracle
Given an algorithm portfolio A, the Virtual Best Solver of A, denoted as VBS(A) is defined
as the hypothetical best solver that we can obtain from the portfolio. This can be achieved
by either having a perfect selector that can choose the best performing algorithm for a given
instance, or by simply running all algorithms in the portfolio in parallel.

In the MiniZinc Challenges, there are a number of solvers that are not participating in
the competition, but their performance on the all benchmark instances are used together
with the participating solvers’ performance data when calculating the Borda scores for the
competition ranking. In our analysis, we will consider two scenarios in a competition, one
where only participating solvers are considered, and one where non-participating solvers
are also included. The VBS of the first one will be called the Oracle, denoted as O, while
the VBS of the second one, namely the Participant-Oracle is denoted as Opar. Obviously,
performance of the former one is at least as good as the latter one. Those two oracles will be
used as the baselines for the analysis in this paper. More concretely, they are for measuring
how good a portfolio is, as detailed in the next part of this section.

2.3 Measuring a Portfolio’s Performance
Given a pair of portfolios A1 and A2, we can compare the performance of the two portfolios
by calculating the total MiniZinc scores of VBS(A1) and VBS(A2) across all instances. The
ratio between the two scores will tell us how much one portfolio is better than another.

In a competition setting, the performance of an arbitrary portfolio A w.r.t. the Oracle O
can be defined as:

PO(A) = score(VBS(A))/score(O) (1)

where score(.) is the total MiniZinc scores calculated for the pair of A and O across
all competition instances. Note that PO(A) ≤ 1 since A ⊆ O. If A only consists of the
participating solvers, we can also measure the performance of A w.r.t. the Participant-Oracle
Opar:

POpar
(A) = score(VBS(A))/score(Opar) (2)

We know that Opar is never better than O. Using the performance measure described in
this part, the performance difference between the two can be quantified. Figure 1 shows
PO(Opar) (per track) for the nine MiniZinc Challenges from 2013 to 2021. We can see
that the participating solvers never dominate the non-participating ones on the competition
instance set. In fact, in most cases, Opar achieves well below 80% the performance of O.
The ratio is particular low for the year 2016 (< 40% for all tracks) and for the fd track of
the year 2020 (13.5%), indicating significant rooms for improvement in the performance of
the participating solvers on the competition benchmark instance sets.

3 Minimum-sized Portfolios with Oracle Performance

In the first step of the analysis, we will look into finding the smallest portfolio(s) that can
achieve the Oracle performance. This is equivalent to solving the set cover problem. More
specifically, given a portfolio of n algorithms A = {a1, a2, ..., an and a set of instances I, we
can define Ik ⊆ I as the set of instances on each of which algorithm ak is the best performing
solver. We want to find a portfolio A∗ ⊆ A such that

⋃
ak∈A∗ Ik = I and |A∗| is minimised.

N. Dang 5

Figure 1 Performance of the Participant-Oracle w.r.t. the Oracle for the MiniZinc Challenges
2013–2021. Results are for three tracks of the competition: fd, free and par.

In this section, the set cover problem is written in the constraint modelling language
essence [8] and is solved via the essence Pipeline [1], whose the solving procedure includes
a translation of model and instance into solver input format using the automated modelling
tools conjure [2] and savilerow [17] followed by a call to the constraint solver minion [9].
This problem is solved for all four tracks of the MiniZinc competitions 2013–2021. We will
look into two scenarios, one where only participant solvers are considered, and one where
non-participants are also included. It only takes a few seconds for the essence pipeline
to solve each set cover problem instance in our case. Interestingly, for every case, only one
single optimal solution is found, i.e., the minimum-sized portfolio with Oracle performance is
unique.

First, we will look at the scenario with participant solvers only. Figure 2 shows the ratio
of the minimum-sized found to the number of all solvers. The ratios are consistently high,
with many cases well above 80%. Notably, they are equal to 100% for the fd track of 6/9
years. Those numbers suggest that the participant solvers are often complementary to each
other, and they should be used together if possible to achieve the best possible performance.

Figure 2 |A∗|/|A|, where A is the set of all participant solvers in the competitions, and A∗ is
the minimum-sized portfolio with Participant-Oracle performance (i.e., PVBS(A)(A∗) = 1)

Now we will look into the case where non-participants are also included in the portfolio.
The percentages of the minimum numbers of solvers needed to achieve the Oracle performance
are shown in Figure 4. In contrast to the previous scenario, the ratios are now mostly below
60%, with a few cases where an amount of less than 40% of solvers is sufficient to cover the

6 A portfolio-based analysis method for competition result

whole portfolio’s performance. This observation suggests that some solvers are completely
dominated by others and can be removed from the original portfolio without affecting its
overall performance. A closer look into the proportions of participants and non-participants
in the minimum-sized portfolios found indicate complementary strengths between both solver
groups. In fact, for most cases the non-participant solvers never completely dominate the
participant ones as shown by the presence of the blue color in all charts of Figure 4, with the
two exceptions of track free and track open of year 2016.

Figure 3 |A∗|/|A|, where A is the set of all solvers including the non-participants, and A∗ is the
minimum-sized portfolio with Oracle performance. Each bar also shows the amount of participants
and non-participants being chosen in A∗.

4 Trade-off between portfolio size and performance

The analysis in the previous section tells us that many solvers have complementary strengths
and we need a good number of them being included in the portfolio to achieve the best
possible performance. Even in the second scenario (where the non-participants are included),
although the percentages shown in the plots are less than 40%, the actual numbers of required
solvers range from 5 to 17 due to the large size of the original portfolio. What happens if we
can only afford a handful of solvers due to resource limit? The second step of the analysis,
presented in this section, will investigate the trade-off between reducing the number of solvers
and its impact on the resulting portfolio’s performance. From now on, for brevity, I will
focus on one track of the MiniZinc Challenges, the free track, but the same analysis can
be applied to any other tracks.

Given the minimum-sized portfolio with Oracle performance A∗ found in the previous step
and a portfolio size k ≤ |A∗|, we can use brute-force search to find the best subset of solvers
with size k. More concretely, we find K∗ ⊆ A∗ such that K∗ = argmax K⊆A∗,|K|=kPVBS(A∗)(K).
Figure 4 shows the proportions of solvers needed to achieve various levels of the Oracle
performance for the free track of all years 2013–2021. In most cases, we need around 50%
of the solvers in A∗ to achieve at least 80% performance of the whole portfolio. And in

N. Dang 7

almost all cases, an amount of less than 80% of |A∗| is sufficient to achieve at least 95% of
the Oracle performance.

Figure 4 The minimum proportions of solvers in A∗ needed to achieve 80%, 90%, and 95% Oracle
performance (track free). Top: participants only, bottom: non-participants also included.

A closer look into the best subset of solvers for each portfolio size k reveals some interesting
facts. Table 1 lists the best participant subsets of years 2019–2021 for each size k and their
performance wrt the Participant-Oracle. OR-Tools appears in every single subset, indicating
its superior performance on the competition datasets, in other words, if we can only pick a
few solvers to use in a portfolio, OR-Tools should definitely be included. This is also inline
with the competition rankings as OR-Tools got the gold medals for the free track of all
three years. Interestingly, for year 2019, the competition’s bronze-medal solver Picat-SAT is
suggested to be included alongside with OR-Tools for k = 2 rather than the silver-medal solver
SICStus Prolog. Results of year 2020 suggests that flatzingo has very good complementary
power to the winner OR-Tools, as it was included in all portfolio sizes from 2 onward.
Notably, a combination of only two solvers OR-Tools and flatzingo can already reach 70%
the performance of the full set of all participants. This is despite the fact that flatzingo was
only ranked 4th in the competition. A similar observation is seen for the solver Yuck in the
2021’s results, using Yuck alongside with OR-Tools can help to boost the performance to
12%, although Yuck was ranked second to last in the competition, and is the last one within
the minimum-sized portfolio with Oracle performance.

5 Portfolio-based solver importance with Shapley values

In the previous section, we have looked into the trade-off between portfolio size and the
resulting performance, which would help us to choose the best portfolio when we can only

8 A portfolio-based analysis method for competition result

P K∗

year: 2019, track: free
36.1% or-tools,
55.6% or-tools, picatsat
67.4% or-tools, picatsat, sicstus
79.2% or-tools, picatsat, yuck, sicstus
91.5% or-tools, picatsat, izplus, yuck, sicstus
96.2% or-tools, picatsat, izplus, yuck, jacop, sicstus
98.2% or-tools, picatsat, izplus, yuck, concrete, jacop, sicstus
99.5% or-tools, picatsat, izplus, yuck, concrete, oscarcbls, jacop, sicstus
100% or-tools, picatsat, izplus, yuck, concrete, oscarcbls, jacop, choco, sicstus

year: 2020, track: free
59.7% or-tools,
71.7% or-tools, flatzingo
81.0% or-tools, sicstus, flatzingo
90.2% or-tools, sicstus, mistral, flatzingo
94.0% or-tools, sicstus, mistral, flatzingo, oscarcbls
96.9% or-tools, sicstus, mistral, picatsat, flatzingo, oscarcbls
98.2% or-tools, sicstus, mistral, picatsat, choco, flatzingo, oscarcbls
99.4% or-tools, jacop, sicstus, mistral, picatsat, choco, flatzingo, oscarcbls
99.8% or-tools, jacop, sicstus, mistral, picatsat, choco, flatzingo, optimathsat-int, oscarcbls
100% or-tools, jacop, sicstus, mistral, picatsat, choco, flatzingo, optimathsat-int, oscarcbls, yuck

year: 2021, track: free
49.8% or-tools-cp-sat,
62.0% or-tools-cp-sat, yuck
75.6% or-tools-cp-sat, picatsat, yuck
82.9% or-tools-cp-sat, picatsat, choco-4-10-7, yuck
88.5% or-tools-cp-sat, picatsat, choco-4-10-7, jacop, yuck
92.1% or-tools-cp-sat, picatsat, coin-or-cbc, choco-4-10-7, jacop, yuck
95.6% izplus, or-tools-cp-sat, picatsat, coin-or-cbc, choco-4-10-7, jacop, yuck
97.6% izplus, or-tools-cp-sat, picatsat, coin-or-cbc, mistral-2.0, choco-4-10-7, jacop, yuck
100% izplus, or-tools-cp-sat, flatzingo, picatsat, coin-or-cbc, mistral-2.0, choco-4-10-7, jacop, yuck

Table 1 The best subset of solvers for each portfolio size k (column K∗) and their performance
vs the Participant-Oracle, i.e., PVBS(A∗)(VBS(K∗)) (column P)
.

afford a limited number of solvers due to resource constraint. We have also seen that there
are cases where a solver looks rather weak based on the competition ranking system is
actually very well complementary to the winner and seems to have strong impact on portfolio
performance. In this section, we will use the Shapley value as a summary measure for
quantifying the contribution of a solver to a portfolio’s performance. The idea of using the
Shapley value for analysing the importance of a solver in a portfolio were proposed by the
authors of [7] and were demonstrated on several SAT competitions. In this third step of the
analysis, we can make use of this idea in combination with the performance measure defined
in Section 2.3 for measuring the quality of each solver from a portfolio point of view, where
both solution quality and running time are taken into account.

Given a portfolio A and a performance measure P , the Shapley value of each solver a ∈ A,
denoted as SLA(a), is defined as the marginal contribution of the solver to the performance
of all subsets of A:

SLA(a) =
∑

K⊆A\{a}

(P(K ∪ a) − P(K)) (3)

Figure 5 shows the calculated Shapley values for all solvers in the minimum-sized portfolio
with Participant-Oracle performance found in step 1 using POpar

(·) as the performance
measure (years 2019–2021, track free). The MiniZinc Borda scores of those solvers are
also included in the figure for comparison. Since the Borda scores may change when solvers
are removed from a portfolio, two sets of MiniZinc scores are shown in the figure: one when
all participants are considered in the score calculation, and one where only the solvers in

N. Dang 9

the minimum-sized portfolio with Participant-Oracle performance are taken into account.
Nevertheless, the MiniZinc rankings of solvers in A∗ for both cases are exactly the same.

(a) year: 2019, track free

(b) year: 2020, track free

(c) year: 2021, track free

Figure 5 For each participant solver in the minimum-sized portfolio with Participant-Oracle
performance (A∗, found in step 1 of the analysis): (i) MiniZinc score (left: with all participants
included, middle: with solvers in A∗ only); and (ii) Shapley value (right)

The Shapley values confirm the significant importance of OR-Tools to the portfolio
performance as observed in the previous analysis step, as both MiniZinc scores and Shapley
value are the highest compared to the rest of the portfolio. Another solver with consistent
high rank both in term of competition scores and Shapley value is Picat-SAT in year 2019
and 2021, although in year 2020 its rank was swapped with flatzingo when Shapley value is
used. Lastly, the Shapley value of Yuck in 2021 confirms its important contribution in the
portfolio setting, despite its low rank in the competition ranking system.

6 Conclusion

Traditional ranking method in competition settings is a good way to measure performance of
solvers but it does not necessarily reveal the full potential of a solver. Following the ideas of
the Sparkle challenges [15, 16] and the work of [7], in this paper, a three-step portfolio-based
analysis method for studying solver performance in competitions is presented. The analysis
makes use of the Virtual Best Solver performance and assumes the simplest setting of utilising
an algorithm portfolio where all algorithms are run in parallel, hence does not require instance
features or a machine learning model for predicting solver performance. A demonstration on

10 A portfolio-based analysis method for competition result

the MiniZinc competition results shows additional insights into the relative performance of
solvers and how to choose among them given limited computational resources. The analysis
provides a useful complementary viewpoint to the current competition assessment system
and reveal interesting insights that were not shown in a traditional ranking system. For
future work, an integration of other scoring methods besides the MiniZinc Borda counting
system, such as the ones suggested in [5] and [3] can be added.

References
1 essence modelling pipeline:. https://constraintmodelling.org/.
2 Ozgur Akgun, Ian Miguel, Chris Jefferson, Alan M Frisch, and Brahim Hnich. Extensible

automated constraint modelling. In Twenty-Fifth AAAI Conference on Artificial Intelligence,
2011.

3 Roberto Amadini, Maurizio Gabbrielli, and Jacopo Mauro. Portfolio approaches for constraint
optimization problems. Annals of Mathematics and Artificial Intelligence, 76(1):229–246, 2016.

4 Tomás Balyo, Marijn Heule, and Matti Jarvisalo. SAT competition 2016: Recent developments.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 31, 2017.

5 Frédéric Boussemart, Christophe Lecoutre, Arnaud Malapert, and Cédric Piette. About
benchmarking and competitions of solvers in constraint programming. The International
Planning Competition (WIPC-15), page 1, 2015.

6 Yann Chevaleyre, Ulle Endriss, Jérôme Lang, and Nicolas Maudet. A short introduction to
computational social choice. In International Conference on Current Trends in Theory and
Practice of Computer Science, pages 51–69. Springer, 2007.

7 Alexandre Fréchette, Lars Kotthoff, Tomasz Michalak, Talal Rahwan, Holger Hoos, and Kevin
Leyton-Brown. Using the shapley value to analyze algorithm portfolios. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 30, 2016.

8 Alan M Frisch, Matthew Grum, Christopher Jefferson, Bernadette Martínez Hernández, and
Ian Miguel. The design of essence: A constraint language for specifying combinatorial problems.
In IJCAI, volume 7, pages 80–87, 2007.

9 Ian P. Gent, Christopher Jefferson, and Ian Miguel. Minion: A fast scalable constraint solver.
In Proceedings ECAI 2006, pages 98–102, 2006.

10 Holger H Hoos. Sparkle: A PbO-based Multi-agent Problem-solving Platform. 2015.
11 Matti Järvisalo, Daniel Le Berre, Olivier Roussel, and Laurent Simon. The international SAT

solver competitions. Ai Magazine, 33(1):89–92, 2012.
12 Pascal Kerschke, Holger H Hoos, Frank Neumann, and Heike Trautmann. Automated algorithm

selection: Survey and perspectives. Evolutionary computation, 27(1):3–45, 2019.
13 Kevin Leyton-Brown, Eugene Nudelman, Galen Andrew, Jim McFadden, Yoav Shoham, et al.

A portfolio approach to algorithm selection. In IJCAI, volume 3, pages 1542–1543, 2003.
14 Derek Long and Maria Fox. The 3rd international planning competition: Results and analysis.

Journal of Artificial Intelligence Research, 20:1–59, 2003.
15 Chuan Luo and Holger Hoos. Sparkle SAT Challenge, 2018. Available from https://ada.

liacs.nl/events/sparkle-sat-18/.
16 Chuan Luo, Mauro Vallati, and Holger Hoos. Sparkle Planning Challenge, 2098. Available

from https://ada.liacs.nl/events/sparkle-planning-19/.
17 Peter Nightingale, Özgür Akgün, Ian P Gent, Christopher Jefferson, Ian Miguel, and Patrick

Spracklen. Automatically improving constraint models in Savile Row. Artificial Intelligence,
251:35–61, 2017.

18 L. S. Shapley. A Value for n-Person Games, pages 307–318. Princeton University Press, 2016.
19 Peter J Stuckey, Ralph Becket, and Julien Fischer. Philosophy of the MiniZinc challenge.

Constraints, 15(3):307–316, 2010.
20 Peter J Stuckey, Thibaut Feydy, Andreas Schutt, Guido Tack, and Julien Fischer. The minizinc

challenge 2008–2013. AI Magazine, 35(2):55–60, 2014.

https://ada.liacs.nl/events/sparkle-sat-18/
https://ada.liacs.nl/events/sparkle-sat-18/
https://ada.liacs.nl/events/sparkle-planning-19/

N. Dang 11

21 Mauro Vallati, Lukas Chrpa, Marek Grześ, Thomas Leo McCluskey, Mark Roberts, Scott
Sanner, et al. The 2014 international planning competition: Progress and trends. Ai Magazine,
36(3):90–98, 2015.

22 Lin Xu, Frank Hutter, Holger Hoos, and Kevin Leyton-Brown. Evaluating component solver
contributions to portfolio-based algorithm selectors. In International conference on theory and
applications of satisfiability testing, pages 228–241. Springer, 2012.

23 Lin Xu, Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. SATzilla: portfolio-based
algorithm selection for SAT. Journal of artificial intelligence research, 32:565–606, 2008.

	1 Introduction
	2 Background
	2.1 MiniZinc Scoring Method
	2.2 The Oracle and the Participant-Oracle
	2.3 Measuring a Portfolio's Performance

	3 Minimum-sized Portfolios with Oracle Performance
	4 Trade-off between portfolio size and performance
	5 Portfolio-based solver importance with Shapley values
	6 Conclusion

