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Abstract
Constraint-solving techniques are used in a range of high-stakes applications ranging from schedul-

ing production lines [9] to automated verification of computer programs [10]. These applications
require constraint solvers to provide correct and reliable solutions to the constraint specifications.
However, modern solvers and modelling languages are complex pieces of software, which are inevit-
ably prone to bugs. Bugs in a solver or modelling language can cause a range of undesired behaviour:
from crashes of the program to returning an invalid solution to the constraints, with a potentially
major impact on the application at hand.

To mitigate the number of bugs in computer programs, it is good practice to use some kind of
automated testing during software development. Unit testing is such a technique to test isolated
parts of the code. A unit test consists of a small use case of the code and is typically written by the
developers of the software. While unit testing is very useful to verify the intended behaviour of a
program, it is time-consuming for developers [3]. Moreover, tricky edge cases may be overlooked by
developers when designing the test suite.

Fuzz testing is an aggregate of several techniques which test computer programs on random
inputs. These techniques can either be generation-based or mutation-based. The former generates
input for the program from scratch, while the latter uses given inputs and applies mutations on
them to generate a new input. In the field of Constraint Programming (CP), generation-based
fuzz-testing has already been adopted as an automatic testing technique for solvers. For example,
the propagation algorithms of the MINION solver have been automatically tested throughout the
solvers’ development [2]. The input used for testing such propagation algorithms is a randomly
generated CSP instance within the grammar supported by the solver. The output of the solver is
verified using other equivalent algorithms.

Mutation-based fuzz testing has been applied to test SAT Modulo Theory (SMT) solvers in
the form of metamorphic testing [11, 15]. Given a satisfiable set of expressions, the goal is to
combine these using a solution preserving mutation. The combined expressions are then used as
input to the solver. Depending on the type of expressions and mutations, this technique can result
in deeply nested expressions. SMT solvers accept such nested structures by default, and can hence
be thoroughly tested using such a technique.

While CP-solvers do not expect nested expressions as input, constraint modelling languages do.
These languages automatically flatten, rewrite and decompose nested expressions into individual
constraints accepted by the solver as input. Therefore, constraint modelling languages are an
essential tool to make effective use of constraint solvers. The CP community has developed many
such languages. Popular examples are the text-based MiniZinc [12] language, the XML-based
language XCSP [14], the Essence system [1] and the Python-based language CPMpy [6]. To the
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best of our knowledge, the metamorphic testing framework has not been employed to test the logic
of any of these modelling languages.

Hence, we propose a method to fuzz-test constraint modelling languages using mutational testing.
We take inspiration from the work on SMT testing, as well as taking the specifics of constraint
solvers into account: namely the use of global constraints, optional objective functions and integer
decision variables/expressions.

The very simple and general approach to using metamorphic testing for modelling languages can
be summarized by the following algorithm:

Algorithm 1 TestMetamorphic
Input: Input constraints C, set of solution preserving mutations M

1 while sat(C) do
2 M ← pick a mutation from M
3 E ← pick n (sub)expressions from C
4 C ← C ∪ (M(E))

To investigate the use of metamorphic testing, we apply our method to the CPMpy constraint
modelling language. The system is able to translate high-level user constraints to solvers belonging
to several constraint-solving paradigms. These include CP (OR-Tools [13]), MIP (Gurobi [7]), SMT
(Z3 [5]), SAT (PySAT [8]), knowledge compilers (PySDD [4]) and even to MiniZinc [12]. Thereby
supporting any solver supported by MiniZinc. CPMpy allows a user to arbitrarily nest Boolean and
numerical expressions, making it perfect to use in a metamorphic testing framework. To transform
the high-level user specification to solver-specific constraints, CPMpy uses a set of mutation functions.
This is one of the uses of mutations we wish to test.

In this talk, we discuss several types of metamorphic mutations that are applicable to constraint
models, including logical mutations, semantic fusion, and solution-preserving mutations that are
inherent to modelling language rewrite systems.

While the work is still ongoing, we will present some initial results, and discuss follow-up issues
such as how to not overwhelm the developer with instances causing a bug.

▶ Example 1. Finishing this abstract, we present one interesting bug found during initial experi-
mentation. It involves a mutation which uses the “XOR” (⊕) operator to combine two constraints
c1 and c2 in the following way:

1. ¬(c1 ⊕ c2) 2. ¬c1 ⊕ c2 3. c1 ⊕ ¬c2 4. ¬(¬c1 ⊕ ¬c2)

By construction, adding any of these constraints to the constraint set C will not change the set of
solutions as they are implied by c1 ∧ c2. To discover the bug, our method sampled a starting model
with one constraint: C = {Circuit(x)} with x a list of variables, and applied these logical mutators:

1. Negation morph: C = {Circuit(x),¬¬Circuit(x)}
2. Xor morph: C = {Circuit(x),¬¬Circuit(x),¬Circuit(x)⊕ ¬¬Circuit(x)), . . . }

After solving the transformed model, no solution was returned. Because the mutations should be
solution-preserving, we know there is some underlying bug. After debugging, we noticed reified Circuit
constraints were incorrectly handled, due to new variables being introduced in the decomposition.
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