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Abstract
Many puzzle video games, like Sokoban, involve moving some agent in a maze. The reachable
locations are usually apparent for a human player, and the difficulty of the game is mainly related
to performing actions on objects, such as pushing (reachable) boxes. For this reason, the difficulty
of a particular level is often measured as the number of actions on objects, other than agent walking,
needed to find a solution. In this paper we study CP and SAT approaches for solving these kind
of problems. We review some reachability encodings and propose a new one. We empirically show
that the new encoding is well-suited for solving puzzle problems in the planning as SAT paradigm,
especially when considering the execution of several actions in parallel.

2012 ACM Subject Classification Computing methodologies → Artificial intelligence; Planning and
scheduling → Planning for deterministic actions

Keywords and phrases AI Planning, SAT, ASP, MiniZinc, st-Connectivity, Connected Components,
Reachability

Supplementary Material Software and Benchmarks: https://github.com/udg-lai/ModRef2023

Funding Grant PID2021-122274OB-I00 funded by MCIN/AEI/10.13039/501100011033 and by
ERDF A way of making Europe.

1 Introduction

The problem of reachability can be understood as whether a vertex can be reached from
another in a graph. Given its generality and usefulness, reachability is used in many and
varied settings, where it is normally not used alone but as part of a more complex problem.
For example, in (single agent) puzzle video games like Sokoban [9, 29], the difficulty of a
level is often measured with the number of times the agent needs to move a reachable object
in a grid. There are two main reasons for this: first, moving the agent from one location to
another is almost trivial for a human player, because it consists of determining if there exists
a path from one location to another; second, pushing an object may close or open free paths.

Some works devise methods to focus the search efforts on certain parts of the problem.
In [18], the authors show how a reachability derived predicate can be specified with axioms
and agent moving actions can be completely avoided in the model. The idea is to ensure
with the reachability predicate that the pushing location is reachable from the current agent
location. This results in shorter plans and in a significant reduction of the search space and
hence in the time required to solve the instances. Similarly, a proposal to automatise the
inference of axioms and to reformulate the problem accordingly is given in [22]. This is done
with success for Sokoban and reachability, as shown by using axiom supporting model-based
planners with Integer Programming (IP) and Answer Set Programming (ASP) technologies.
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In this paper we review some well-known reachability encodings and propose a new one.
To demonstrate its effectiveness, we use two case studies based on hard (PSPACE) video
games [9, 17]. The main contribution of the work is on the suitability of the presented
encoding for computing connected components in undirected graphs. In particular, it can
be used to compute the connected component of an agent in a grid-based puzzle game at a
given time step, i.e., the set of reachable locations by the agent. We argue that the proposed
encoding results in a reduced search space in this setting, compared to existing reachability
encodings, making it more efficient.

The paper proceeds as follows. In Section 2 we revisit some existing graph reachability
encodings and introduce a new one. Section 3 introduces the two case studies we consider
for our experimental evaluation, namely the games A good Snowman is hard to build and
Sokoban. In Section 4 we briefly recall the planning as SAT approach and provide different
solutions for the Snowman game: without reachability, with reachability and with reachability
and parallelism. We also summarize our MiniZinc solutions with and without reachability.
Finally, in Section 5, we make an empirical evaluation of the distinct methods proposed for
the Snowman game, devise a specific algorithm for seeking optimality while using parallelism,
and show that the new reachability encoding is the best suited for parallelism in Snowman
as well as in a large set of Sokoban instances.

2 Graph Reachability Constraints

Here we review some standard encodings for reachability constraints, and propose a new one.

2.1 st-Connectivity
The problem of st-connectivity consists in determining, for a pair of vertices s and t in
a graph, whether t is reachable from s. This problem has been widely studied due to its
practical interest. Its complexity, for the restricted case of planar graphs, has been studied
in [1], showing that it is complete for nondeterministic logspace (NL). We are interested in
declarative approaches to st-connectivity.

A thorough study on logic-based characterizations of acyclicity and reachability conditions,
and their corresponding encodings in the language of answer set programming can be found
in [13]. A generic encoding for reachability would look like the following:

reachable(T,S) :- S = T.
reachable(T,S) :- reachable(T,S1), adjacent(S1,S).

The way of characterising reachability is intrinsically different in SAT than in ASP. In
particular, we cannot mimic the above rules, where a location t is reachable from s either if
s equals t or there is some neighbour s′ of s such that t is reachable from s′. The reason
is that, whereas ASP adheres to the closed-world assumption (i.e., all unknown values are
assumed to be false), this is not the case for SAT. In other words, the direct translation
of ASP reachability rules to SAT would be satisfied by any model where all corresponding
reachability variables are set to true, hence not encoding reachability at all.

Nevertheless, ASP programs can be translated into SAT and, in fact, some ASP solvers
use a SAT solver as a backend. The standard way of eliminating the closed-world assumption
for an atom p is by adding the rule p← not not p [21]. But, naturally, reachability can be
directly encoded in SAT. In order to deal with the open-world assumption, we essentially
need to break cyclic relations, i.e., paths from source to target must be encoded as a transitive
and antisymmetric relation.
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As described in [12], acyclicity can be easily modelled with SMT, by imposing an ordering
on locations based on numeric values associated to them. Considering a directed graph
G = (V, E) and a source vertex s ∈ V , the encoding goes as follows. For every v ∈ V , a
Boolean variable rv denotes if vertex v is reachable from s. For every edge (v, v′) ∈ E, a
Boolean variable evv′ to indicates if edge (v, v′) is in the reachability path. Moreover, to avoid
cycles in those paths, an integer variable av ∈ 1..|V | is included for each vertex v ∈ V . Cycles
are forbidden by enforcing a topological ordering between the vertices in the reachability
path. The constraints are:

rs ∀v∈V \{s}
(
rv →

∨
(v′,v)∈E ev′v

)
∀(v,v′)∈E

(
evv′ → rv ∧ av < av′

)
Additionally, a unit clause rt must be imposed to require reachability from s to some

desired vertex t. Note that the last are SMT constraints because of the presence of difference
logic atoms av < av′ . MiniZinc provides the global constraint path for st-connectivity, whose
implementation resembles very much this one. Related work on global constraints and
propagators for reachability can be found in [4, 10, 24].

Translation of Ordering Constraints to SAT

The previous ordering constraints on the values of the numeric variables a associated to
vertices can be easily translated to SAT. We propose not to encode the numbers to binary
form, but to encode the acyclicity relation directly to SAT.

A strict partial order is a relation < that is irreflexive and transitive (which implies
antisymmetry as well). This is all we need to ensure acyclicity. We can encode such a relation
by adding the constraints ¬tvv (irreflexivity) and tvv′ ∧ tv′v′′ → tvv′′ (transitivity) where tvv′

are Boolean variables, for vertices v, v′. Notice that transitivity constraints tvv′ ∧tv′v′′ → tvv′′

are only needed for neighbours v′ of v, since transitivity follows by induction. The encoding
is then O(NM) size (for N vertices and M edges), with O(N2) variables.

A similar encoding is given in [12], based on the transitive closure of the relation
corresponding to the underlying graph: variables tvv′ indicate that (v, v′) is in the transitive
closure, variables evv′ for edges (v, v′) imply tvv′ , transitivity is expressed by evv′∧tv′v′′ → tvv′′ ,
and cycles are forbidden by evv′ → ¬tv′v. This encoding is also O(NM) size, with O(N2)
variables. Therefore, no numeric variables are needed at all. By replacing the third group of
constraints by ∀(v,v′)∈E (evv′ → rv ∧ tvv′), we obtain a full SAT encoding which is O(NM)
size, with O(N2) variables.

Note that this encoding computes a directed acyclic graph covering some subset of the
reachable vertices (including the desired target). For this reason, in the following we will
refer to it as DAG encoding.

2.2 A Simple Encoding for Grids
Grids are a particular case of graphs, and a simpler encoding for reachability in them is
possible. The idea is to build a path from the source to the target as follows:

Define a Boolean variable for each location denoting if it is included in the path, and
impose that (i) the source and target are in the path, (ii) if the source and target are different
then each of them has exactly one neighbour in the path, and (iii) any location in the path
different from the source and the target has exactly two neighbours in the path.

This encoding is O(N) size, with O(N) variables, given that the number of neighbours
of each location is at most 4. Since it computes a path from the source to the target, we
will refer to it as path encoding. It is worth noting that a path cannot cycle back through a



4 On Grid Graph Reachability and Puzzle Games

neighbour, e.g., (1, 1)− (1, 2)− (1, 3)− (2, 3)− (2, 2) would not be allowed, since (1, 2) has 3
of its neighbours in the path. But this is correct if all we are interested in is reachability.
Moreover, the proposed constraints allow for unrelated cycles in addition to the path. Note
that the trick of restricting the source and destination to have only one neighbour in the
path is precisely what avoids a cycle, but then paths which are disconnected from the source
and the destination are possible, in form of a cycle. These disconnected cycles cannot be
easily avoided with additional constraints, since this is again a matter of connectedness.

2.3 A New SAT Encoding for st-Connectivity in Undirected Graphs

As said, the standard encoding for st-connectivity given in Section 2.1 computes a directed
acyclic graph covering some subset of the reachable vertices (including the desired target).
In this section we present a stronger encoding, which computes a tree rooted at the source
vertex that covers all reachable vertices, i.e., a spanning tree of a graph covering all reachable
vertices. This makes sense especially for undirected disconnected graphs, where we may want
to know the connected component of a vertex.

The encoding is given for undirected graphs without self-loops. In the following constraints,
the variables rv denote if a vertex v is reachable from the source s, and the tvv′ variables
denote the existence of a path from vertex v to v′ in the tree rooted at s.

rs (1)
∀(v,v′)∈E rv → rv′ (2)

∀v∈V :(s,v)∈E tsv (3)

∀v∈V \{s} rv →
∨

(v,v′)∈E

tv′v (4)

∀(v,v′)∈E, (v,v′′)∈E, v′ ̸=v′′ ¬tv′v ∨ ¬tv′′v (5)
∀(v,v′)∈E, v′′∈V, v′ ̸=v′′ tvv′ ∧ tv′v′′ → tvv′′ ∧ ¬tv′′v (6)

∀(v,v′)∈E tvv′ ∨ tv′v → rv (7)

Equation (1) sets the source vertex s as reachable, and Equation (2) propagates reachability
to neighbours. Equation (3) sets outgoing paths from s to its neighbours. Equation (4)
forces at least one path into each reachable vertex, except for s, while Equation (5) forces at
most one path into each vertex. Therefore, Equations (4) and (5) force exactly one path into
each reachable vertex, except for s. Moreover, Equation (6) defines transitivity of paths and
forbids cycles. Therefore, Equations (3)–(6) define a tree rooted at s of vertices reachable
from s. Moreover, thanks to Equations (1) and (2), that tree will span to all reachable
vertices. Finally, Equation (7) sets to reachable any vertex in a path.

It is worth noting that the tree of paths defined by the tvv′ variables is essential for
setting to reachable exactly the vertices that are reachable from the source. The key idea is
the following. Since in Equation (4) we are forcing some path into every reachable vertex
different from the source, and cycles are forbidden by Equation (6), at least one vertex must
be set to unreachable in areas disconnected from the source. Then, in setting that vertex to
unreachable, unreachability spreads out to its neighbours by Equation (2) (if reachability
spreads out, so does non-reachability).

Note also that Equation (7) is not needed to correctly set the value of the rv variables,
but it forces the tvv′ variables to false in disconnected components, thus reducing the search
space.
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Figure 1 Left: a Sokoban problem instance. Right: Andy level of the Snowman game, showing
the execution of the optimal solution l luRurDlldddrUluRuurrrdLulD. Letters represent the direction
of movement. Uppercase letters indicate snowball movements.

This encoding is again O(NM) size, with O(N2) variables, for N vertices and M edges.
We will refer to it as spanning tree encoding.

3 Puzzle Games

We are interested in analyzing the suitability of the presented approaches and encodings for
reachability in solving puzzle problems. Here we describe the puzzle games that we consider.

3.1 A Good Snowman is Hard to Build
A Good Snowman Is Hard To Build is a single-agent puzzle video game where the goal is to
push snowballs in a maze to build some snowmen by stacking three snowballs of decreasing
size. Snowman was released in 2015, and proved PSPACE-complete in 2017 [17].

The game elements are the agent (i.e., the black character controlled by the player),
the playable cells, which may or not contain snow, and the snowballs, which are initially
distributed on the playable cells. Snowballs have three possible sizes: small, medium and
large. The only allowed action is moving the agent in one of four directions. The results of
moving depend on the cells in front:

Move: When the agent walks into a free cell, he simply moves to that cell.
Roll: When the agent walks into a cell with a single snowball, and there is a free cell in
front of the snowball, the snowball gets pushed and the agent occupies the cell previously
occupied by the snowball. If a snowball is pushed into a snow cell, the snow disappears
and the snowball increases in size, up to a maximum. Still, the snow is always removed.
Push: A snowball can be pushed on a stack of snowballs if the size of the snowball in the
top is bigger than the one being pushed. Then, the agent occupies the cell previously
occupied by the pushed snowball like when rolling.
Pop: Trying to walk into a stack of snowballs will pop the topmost snowball but will
not change the location of the agent. This action can only happen if the snowball falls
directly into a cell without any snowball.

The agent is not allowed to pull snowballs. The goal is to build snowmen composed by a
pile of three snowballs of decreasing size. The scenarios considered consist of three, six or
nine snowballs, hence, one, two or three snowmen. Snowmen can be built anywhere. Figure 1
(right) depicts an example of how to solve one of the levels of the game.

3.2 Sokoban
Sokoban is a well-known PSPACE-complete [9] challenging puzzle game. Each puzzle consists
of a maze formed by inaccessible wall squares and accessible floor squares. There is a single



6 On Grid Graph Reachability and Puzzle Games

agent (the Sokoban) which can walk on floor locations (unless occupied by some box), and
push single boxes onto unoccupied floor locations. The goal is to push all boxes onto a set of
designated storage locations. One of the sources for the difficulty of this game is that many
pushes are irreversible, leading to dead-end states from which reaching the goal is impossible.
An example of the maze is given in Figure 1 (left).

4 Reachability in Puzzle Games

4.1 Planning as SAT

The problem of planning, in its most basic form, consists in finding a sequence of actions (a
plan) that allows to transform an initial state into a goal state [16]. In the classical planning
setting, finding out if there is a plan is PSPACE complete [8], while deterministic planning
with numerical variables is undecidable in general [7].

A planning problem can be defined as a tuple (V, A, I, G), where V is a finite set of state
variables, A is a finite set of action templates, I is the initial state and G is the goal. A state
is a valuation over V , i.e., a function mapping each variable v ∈ V to a value in its domain
({true, false} in the Boolean case). The goal is a set of states (usually defined as a set of
propositions that a goal state must satisfy). Actions a = ⟨Pre, Eff ⟩ ∈ A are defined as pairs
of preconditions and effects. Preconditions describe which are the requirements on the state
to execute the action, whilst effects describe how the state is changed after its execution.
Both preconditions and effects are typically given as sets of literals.

Plans and ASP stable models (or answer sets) are connected, as described in [27].
Moreover, propositional satisfiability and answer set programming are two closely related
research areas [21]. Some ASP solvers, like clasp [15], combine the high-level modeling
capacities of ASP with state-of-the-art techniques from the area of Boolean constraint solving.
In fact, the primary clasp algorithm relies on conflict-driven nogood learning. Moreover, as
said, some ASP solvers use a SAT solver as a backend. It also often occurs that planning
problems can be directly encoded into SAT with no major difficulty.

In the planning as SAT approach [20], a planning problem is encoded to a Boolean
formula, with the property that any model of this formula corresponds to a valid plan. Since
the length of a valid plan is not known a priory, the basic idea is to encode the existence of a
plan of T steps with a formula f(T ). Then, the method for finding the shortest length plan
consists in iteratively checking the satisfiability of f(T ) for T = 0, 1, 2, . . . until a satisfiable
formula is found. Variables need to be replicated for each time step. E.g., at denotes if
action a is executed at time t. Then, the general (standard) encoding goes as follows. First
of all, it is stated that the execution of an action implies its preconditions and effects: for
every a = ⟨Pre, Eff ⟩ ∈ A and t ∈ 0..T − 1, we have at → Pret and at → Eff t+1, where Pret

and Eff t+1 denote the corresponding formulas (conjunctions of literals) on the time-indexed
state variables. Moreover, a change in the value of a state variable v can occur only if an
action that can change this value is executed: for every variable v ∈ V and t ∈ 0..T − 1, we
have the frame axiom vt ̸= vt+1 →

∨
{at | a = ⟨Pre, Eff ⟩ ∈ A, v ∈ Eff }. Finally, it is stated

that exactly one action is executed at each time step t, and that the goal holds at time T .

4.1.1 Sequential Plans

Here we propose an encoding for solving the Snowman problem, following a planning as SAT
approach. It can be straightforwardly adapted for the similar yet simpler Sokoban problem.
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For clarity and space limitations we do not provide the whole encoding, but the viewpoint
(state variables) and an excerpt of the formulas including the goal and relevant transition
constraints and frame axioms. The encoding is valid for any number of snowmen.

We represent states with Boolean variables stating, for each location, whether (i) there is
snow or not, (ii) there is a snowball of a particular size or not, and (iii) there is the agent
or not. The actions considered are only four, corresponding to a snowball movement per
possible direction. This will eventually result in rolling, pushing or popping a snowball,
depending on the current state. In other words, we only need to know the direction of the
action. We consider L to be the set of valid (non-wall) locations, and T the number of time
steps considered. For all l ∈ L and t ∈ 0..T , we have the following variables: st

l (there is
snow at location l at time t), bst

l , bmt
l , blt

l (there is a small, medium or large snowball at
location l at time t), ct

l (the character is at location l at time t). And for all t ∈ 0..T − 1:
nt, st, et, wt (direction of action is north, south, east or west). The goal consists in requiring
no partial snowman at any location: ∀l ∈ L (bsT

l ↔ bmT
l ) ∧ (bmT

l ↔ blT
l ). For each time

step t in 0..T − 1 we have the following constraints:
Exactly one action (nt, st, et, wt) is executed.
Action preconditions and effects (excerpt of the action to move the character north):
Let Ln be the set of valid locations with a wall at north and let Lnn be the set of valid
locations with a wall two locations ahead at north. When the agent is at any location
in Ln, it cannot go north: ∀l ∈ Ln ct

l → ¬nt. Otherwise, if the agent walks north and
it has a wall two locations ahead, there cannot be any snowball in front of him, and at
the next time step his location has changed accordingly (here ln denotes the location
at north of l): ∀l ∈ Lnn \ Ln ct

l ∧ nt → (move : ¬ct+1
l ∧ ct+1

ln
∧ ¬bst

ln
∧ ¬bmt

ln
∧ ¬blt

ln
).

Finally, if the agent walks north without having a wall two locations ahead, apart from
moving, it can also roll a snowball north, push a snowball into a stack of snowballs or
pop a snowball from a stack of snowballs. For the sake of brevity we only describe the
push north action (here lnn denotes the location two steps ahead at north of l):

∀l ∈ L \ {Ln ∪ Lnn} ct
l ∧ nt → (move : · · · ∨ push : ¬ct+1

l ∧ ct+1
ln
∧

((bst
ln
∧ ¬bmt

ln
∧ ¬blt

ln
∧ ¬bst

lnn
∧ (bmt

lnn
∨ blt

lnn
) ∧ ¬bst+1

ln
∧ bst+1

lnn
) ∨

(¬bst
ln
∧ bmt

ln
∧ ¬blt

ln
∧ ¬bst

lnn
∧ ¬bmt

lnn
∧ blt

lnn
∧ ¬bmt+1

ln
∧ bmt+1

lnn
))

∨ roll : · · · ∨ pop : · · · )

Frame axioms impose that the state cannot change without a reason: snow cannot be
created, or if it disappears from a location it must be because a snowball occupies that
location, etc.: ∀l ∈ L (¬st

l → ¬st+1
l )∧ (st

l ∧¬st+1
l → bmt+1

l ∨ blt+1
l )∧ · · · . Note that in

some cases we don’t use the actions as the reason for change, but it is enough to consider
some of their effects, such as a snowball appearing.

4.1.1.1 Reducing the Search Space

In order to keep the search space small, we can consider the agent walking to a snowball
and rolling, pushing, popping it in one direction as an atomic action. As is usually done in
Sokoban, we could also consider rolling a snowball a certain number of locations as a single
action but, since the snowball can remove snow (and increase its size) when rolling, this
should be restricted to locations with no snow. Collapsing actions is motivated by the fact
that the agent will walk only to move some snowball, so considering walking an action on its
own is superfluous. Since reachability is obvious for a human player, the walking actions
shouldn’t be considered when measuring the difficulty of a scenario.
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The presented encoding can be easily adapted to collapsing actions. Removing move (i.e.,
walk) actions essentially reduces to require the agent being at most at one location, and this
location being reachable from the previous one, before each snowball action taking place.
Any of the reachability encodings presented in Section 2 could be used, considering walls as
well as snowballs as obstacles, with the path encoding being the best suited.

Some simple invariants can also be considered. For instance, since snowballs cannot
decrease their size, it can be imposed that the number of large snowballs never exceeds the
number of snowmen, and there are at least as many small snowballs as snowmen.

4.1.2 Parallel Plans
Another way to further reduce the search space, as well as to break symmetries, is to consider
the execution of several actions in parallel. This has been extensively studied in the AI
planning community [25, 28, 2].

Here we consider solving the Snowman problem by adhering to the so-called ∀-step
semantics of parallel plans.1 This implies that any ordering of the actions in the parallel plan
must result in a valid sequential plan. Therefore, interfering actions cannot be scheduled at
the same time.

Thanks to reachability constraints, we are omitting move (walking) actions. Therefore,
we only need to consider roll, push, and pop actions. What is more, reachability will play a
crucial role in avoiding interference between such actions.

Direct Interference In Snowman, by direct interference between a pair of actions we refer
to the case where the affected locations (i.e., the source and destination of the involved
snowballs) do intersect. Constraints avoiding this kind of interference are straightforward.

Indirect Interference Let’s consider a set of actions that do not directly interfere and,
moreover, their locations are reachable from the current agent location. Indirect interference
between these actions is possible if executing some of them makes some other action location
unreachable, thus preventing its execution.

Avoiding this kind of interference is not straightforward. In particular, given a set of
(candidate) parallel actions, it is not enough to require all action locations to be reachable
before and after executing all of them. The following example shows a situation with two
actions whose locations are reachable both before and after their parallel execution, but
there is no way of sequencing them.

▶ Example 1. In the following grids, greyed squares denote walls, denotes the current
location of the agent, circles denote snowballs (of different sizes), and arrows denote both
action locations and the direction of the action (for locations reachable by the agent).

←

→

1 The same ideas are valid for the simpler case of Sokoban.
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As can be observed, two roll action locations are reachable by the agent both before and
after executing them (left-left and left-right figures). But this does not imply the actions can
be serialized. If we first move the small snowball, we get a situation where the other action
location becomes unreachable (right-left figure). If we first move the medium snowball, an
analogous situation occurs (right-right figure).

Therefore, we need to be more restrictive in parallel scenarios. A simple idea, in order
to be able to serialize the execution of parallel actions, is to ask for reachability of all
action locations considering the present and future snowball locations as occupied. This
way, as we are only adding obstacles to the current situation, future reachability of action
locations is guaranteed.2 However, this limitation is way too restrictive: although it allows
for serialization of parallel actions fulfilling it, it can prevent the execution of single actions
under certain circumstances. The following example illustrates this situation.

▶ Example 2. In the situation below, if we consider the present and future location of the
snowball as occupied, the action could not be performed.

→

Therefore, when a single action is blocking itself the path used to reach its location, we
cannot be so restrictive. The solution we propose is to add a new action to jump (walk) to a
reachable location. This action will be used exclusively, while maintaining the aforementioned
constraints on reachability (considering present and future snowball locations) only for roll,
push and pop actions. This way, roll, push and pop actions can be executed safely in parallel,
while jumping will be performed individually, when needed. It is worth noting that, thanks
to the proposed reachability restrictions, the agent can stay put during any sequence of
(combined) roll, push and pop actions. This contributes to reduce the search space.

It is not difficult to see that the proposed system is sound and complete with respect
to finding a valid sequential plan. Concerns about optimality are discussed in the next
subsection.

Upper Bounds and (Sub)optimality

From the serialization of a parallel plan we will obtain a valid plan. Note however that this
plan will not only contain snowball actions (roll, push and pop), but possibly some walking
(jump) actions. Moreover, the number of snowball actions may easily become suboptimal.
A parallel plan of a minimal number of timesteps can nevertheless contain useless actions like,
e.g., rolling some snowball back and forth while other necessary actions are being performed.
However, this is not the only source of suboptimality. As the following example shows, two
parallel plans of the same number of steps can result in two sequential plans of different
length, even if none of the parallel plans contains any useless action (i.e., when removing
some of the actions would result in an invalid plan).

▶ Example 3. The left group shows a parallel plan consisting of three steps, where two
actions are performed in parallel at the first step. The right group shows an alternative

2 Observe that, with this restriction, the parallel execution of the two actions of Example 1 would be
forbidden, but they could be individually performed.
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parallel plan of three steps, which is already a sequential plan. Both plans are valid and
contain no useless actions. However, when serializing them, the first one results in a four
steps plan.

→

→

↑

↓

←

↑

↓

The previous example demonstrates that parallel plans are inherently suboptimal. In
other words, the serialization of a minimal length parallel plan does not necessarily turn
into a minimal length sequential plan, even when containing no useless actions. Therefore, a
parallel plan will give us an upper bound on the number of necessary snowball actions.

4.2 Planning as CSP

Following a similar solving approach as the one described in previous section, here we
consider the more expressive CSP framework using the MiniZinc [23] language. A state of the
Snowman game can be naturally modelled with the coordinates of the agent and a matrix of
integer variables. We can use a unique integer for each possible state of a cell. For example,
1 to denote a small snowball, 2 a medium one, 3 a small one on top of a medium one, . . . 7 a
complete snowman, etc. Identifying the goal state consists in certifying the existence of as
many cells of complete snowmen as required by the instance. This can easily be done by
counting the amount of 7 with the count global constraint.

Recall that the only allowed action is moving the agent around the maze in a given
direction. Again, the four directions are encoded using unique integers. A movement will
translate into rolling, pushing or popping snowballs next to the agent, or simply walking
into a free cell. To encode the movement of snowballs, we use three auxiliary variables
per timestep: action indicates the position of the snowball to be moved, next indicates the
resulting position of the snowball once the action is performed, and prev the position from
where the agent pushes the snowball. These variables make the encoding of preconditions
and effects easier. For example, when pushing a snowball, we disallow the next location to
be a wall or to contain snowballs smaller than the one pushed.

We evaluate two MiniZinc models, one considering the movement of the character cell by
cell, and another only enforcing that consecutive cells where actions take place are reachable.
Respectively, we either enforce that the agent must be in the prev location, or that the prev
location must be reachable from the current agent location. The reachability constraint
can be stated using the path global constraint. This constraint implements st-connectivity
similarly to the DAG encoding described in Section 2.1. It only differs by having a variable
representing the distance from the source to each node, instead of an ordering variable. The
distance to a node is defined by adding 1 to the distance from the source to its previous
node in the path. Note that this approach forbids cycles. Alternatively, by using the global
constraint count we also replicate the path encoding of Section 2.2 with MiniZinc.

Implied constraints similar to the invariants on the occurrences of snowballs of distinct
sizes described in Section 4.1.1.1 can be imposed using the global_cardinality_low_up
global constraint. Finally, we used a search strategy that sequentially decides on the ordered
timesteps, i.e., by first looking for values of variables of the first timestep, then the ones of
the second timestep, and so on.
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5 Empirical Evaluation

In this section we evaluate the efficiency of the presented encodings on the Snowman and
Sokoban problems. Experiments were run on a cluster of compute nodes equipped with Intel
Xeon E-2234 CPU @ 3.60GHz processors and 16 GB of memory. As SAT solver, we used
Kissat [5] in version 3.0.0. Kissat and its variations were the winners of various tracks of
the 2021 and 2022 SAT competitions [11]. For MiniZinc we used version 2.7.2 with Chuffed
0.11 as a backend solver.

5.1 Snowman
For the Snowman problem, we consider the 30 levels of the base game. Table 1 compares the
performance of Kissat and MiniZinc (with Chuffed) using the planning as SAT and planning
as CSP approaches described in Sections 4.1.1 and 4.2, respectively. In both cases, we
consider the setting with agent movements, and the setting where only snowball movements
are considered (where DAG and path denote the used reachability encodings). For Kissat we
only report on the path encoding described in Section 2.2, as the other reachability encodings
performed very similarly on the same benchmarks. For MiniZinc we report on both the DAG
encoding corresponding to the built-in path constraint, and the path encoding. As can be
observed, both the number of steps and the time required to find a solution dramatically
decrease when agent movements are ignored. The MiniZinc path encoding performs slightly
better than the DAG one, perhaps due to its compactness. When comparing SAT with
MiniZinc, clearly the SAT approach works better and solves more instances in all settings.
From now on, we will focus on the SAT approach.

As explained in Section 4.1.2, the search space can be further reduced in the planning as
SAT paradigm, by considering the execution of several actions at the same time. However,
not all reachability encodings are equally well-suited for a parallel approach. The spanning
tree encoding is probably the best-suited, since it sets to reachable exactly all reachable
locations, i.e., it determines the connected component of the agent. This means that it
needs no adaptation when moving from a sequential to a parallel setting and, moreover, it
translates to a small number of models. The DAG encoding can be easily adapted to the
parallel setting, by requiring reachability for all action locations. However, it can freely set
other reachable locations either to reachable or not. This, in general, is going to translate
into more (partial) models and, in case of a sequence of unsatisfiable instances (like the
ones we will face in a planning as SAT approach), it could be a drawback. Finally, the path
encoding, although probably being the best-suited for the sequential setting due to its small
size, cannot be easily adapted for the parallel case unless it is replicated for every considered
path. In case that many paths need to be considered simultaneously this would result in
a considerable increase of the formula size and, moreover, the resulting formula would be
highly symmetric.

In Table 2 we compare the performance of the different reachability encodings on the
Snowman problem, in the planning as SAT approach. For the sequential setting, we consider
the path encoding (labelled path sequential). For the parallel setting, we consider the three
different encodings: the first one (labelled path parallel) consists in replicating the path
encoding for each snowball, the second one (labelled DAG parallel) is adapted from the
DAG encoding by setting as reachable each action location, and the third one (labelled tree
parallel) is the original spanning tree encoding. We also increased the time limit from 1h to
8h. Therefore, the path sequential columns of Table 2 are almost the same as the SAT path
columns of Table 1, the only difference being that “Ben & Alan” is solved in just over an
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Table 1 Lower bounds on the number of actions for the base instances of Snowman, considering
all movements (left part), and only snowball movements (right part). Time in seconds (limit 1h, ’-’
for timeout). Best times, and best lower bound in case of timeout, are marked in bold.

Mzn SAT Mzn DAG Mzn path SAT path
LB time LB time LB time LB time LB time

Adam 52 - 67 1767.39 12 16.37 12 13.05 12 11.94
Alex 37 - 50 1246.96 13 34.25 13 26.95 13 11.10
Alice 28 - 45 - 14 - 14 - 19 102.68
Andy 19 390.41 19 74.42 6 5.19 6 4.60 6 7.07
Ben & Alan 27 - 31 - 10 - 10 - 27 -
Chris 31 114.52 31 78.28 7 5.70 7 3.83 7 6.62
Cynthia & Michael 32 - 51 - 10 - 10 - 30 1313.26
David 21 - 23 294.15 7 19.37 7 16.06 7 9.62
Freya 30 - 38 212.82 13 49.11 13 48.00 13 13.53
Helen 31 - 42 1437.00 11 24.38 11 21.98 11 7.52
Jack & Jill 26 - 45 - 13 - 13 - 16 9.22
Jessica & Amelia 27 - 43 - 10 - 10 - 16 23.69
Julian 30 - 47 - 13 641.80 13 610.05 13 14.10
Kate 36 571.20 36 556.82 10 12.15 10 9.83 10 6.49
Kevin 32 - 38 402.10 11 27.02 11 22.41 11 7.02
Lauren 40 - 42 215.79 11 14.56 11 9.02 11 4.56
Louise 33 138.07 33 144.10 13 22.31 13 17.2 13 9.39
Lucy 19 56.13 19 41.19 8 9.97 8 7.31 8 3.12
Lydia 27 42.64 27 55.33 7 7.36 7 4.33 7 2.37
Mary 41 79.06 41 142.78 10 7.74 10 5.40 10 2.75
Paul 34 - 64 3430.39 20 - 20 - 26 67.73
Rebecca 24 18.83 24 25.55 6 5.30 6 3.39 6 1.82
Rob, James & Matthew 19 - 35 - 8 - 8 - 18 -
Ryan 41 - 52 2705.31 15 51.74 15 40.64 15 15.41
Sally 48 - 60 1175.77 13 26.85 13 21.21 13 8.55
Sarah 26 219.26 26 73.32 8 7.41 8 5.52 8 2.97
Tanya 17 16.05 17 16.38 5 2.79 5 2.54 5 1.54
William 49 263.01 49 461.87 15 28.70 15 22.00 15 10.09
Willow 33 - 52 - 14 453.77 14 389.63 14 15.05
Zoe & Richard 24 - 50 - 10 - 10 - 17 33.08

hour, increasing its lower bound from 27 to 28, whereas “Rob, James & Matthew” appears
to be a hard instance, keeping the same lower bound after 8 hours of computation. We also
observe a clear gain in time on the hard instances in the parallel setting, being the tree
based encoding the best performing on most of the hardest instances (marked in red). It is
worth noting the discrepancies in the upper bounds found, which are inherent to parallel
plans as explained in Section 4.1.2. Conclusions on performance of the encodings cannot be
drawn from a such a small set of instances since, as is well-known, many aspects can cause
the SAT solver to search differently, causing dramatic changes in the runtime on a given
instance (see, e.g., the time required on “Rob, James & Matthew” when using the DAG
encoding). It is apparent that the parallel approach performs better than the sequential
one, especially on the hardest instances. Moreover, the upper bounds found are, in general,
close to the optimum. Therefore, the question arises: which is the best strategy to solve the
problem? Our proposal is to first find an upper bound on the number of snowball movements
by following a planning as SAT strategy in parallel, then serializing the plan and seeking for
shorter plans sequentially, until we get a negative answer. This strategy forces to include
noop actions (i.e., null actions) since, sometimes, given a valid plan with n actions, a plan
with exactly n − 1 actions is not possible, but plans with fewer actions are. Interestingly,
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Table 2 Lower bounds (found sequentially) and first upper bounds (found in parallel) on the
number of snowball actions for the base instances of the Snowman problem, considering different
reachability encodings. Time in seconds (limit 8h). Best times in bold.

path sequential path parallel DAG parallel tree parallel
LB time UB time UB time UB time

Adam 12 11.94 15 7.66 14 3.38 14 7.32
Alex 13 11.10 13 9.78 13 4.98 13 9.74
Alice 19 102.68 19 89.60 19 67.07 19 82.12
Andy 6 7.07 6 6.99 6 2.25 9 6.59
Ben & Alan 28 4101.25 36 1062.17 38 271.69 34 201.32
Chris 7 6.62 7 7.14 7 2.42 7 6.42
Cynthia & Michael 30 1313.26 30 314.69 32 146.87 30 105.15
David 7 9.62 8 8.21 7 4.32 8 5.39
Freya 13 13.53 17 11.46 15 5.68 17 7.32
Helen 11 7.52 12 3.29 11 3.86 11 4.42
Jack & Jill 16 9.22 16 8.99 19 8.19 16 9.47
Jessica & Amelia 16 23.69 20 14.70 20 13.83 22 16.10
Julian 13 14.10 13 13.74 13 15.84 13 21.14
Kate 10 6.49 11 3.08 11 3.42 11 4.11
Kevin 11 7.02 12 6.44 14 7.04 13 8.33
Lauren 11 4.56 17 4.37 13 4.56 16 5.85
Louise 13 9.39 17 5.70 15 5.89 15 7.51
Lucy 8 3.12 9 2.09 11 2.29 9 2.96
Lydia 7 2.37 7 2.29 7 2.33 7 2.90
Mary 10 2.75 10 3.30 10 3.13 10 4.48
Paul 26 67.73 29 332.66 31 148.94 31 197.57
Rebecca 6 1.82 6 2.23 6 2.41 6 3.15
Rob, James & Matthew 18 - 43 5501.42 38 26509.42 44 4619.90
Ryan 15 15.41 15 25.64 15 22.22 15 26.84
Sally 13 8.55 18 4.90 16 6.32 18 7.86
Sarah 8 2.97 8 2.60 8 2.97 8 3.43
Tanya 5 1.54 7 1.34 7 1.51 7 1.55
William 15 10.09 15 8.72 15 9.51 15 11.55
Willow 14 15.05 16 9.01 16 11.85 18 14.65
Zoe & Richard 17 33.08 19 10.78 19 11.99 21 14.66

when this happens it allows to decrease more than one step at a time in the descending
process towards unsatisfiability.

Table 3 shows the results of this algorithm on the hardest instances. We give the total
times, including the bottom-up parallel process and the top-down sequential process (in other
words, the difference between the times in Table 3 and the times in Table 2 corresponds to
the time required by the descending process). It is worth noting that in all cases we used
the path encoding for descending, as it was the best performing one for the sequential case.
In conclusion, the recipe would be to use the spanning tree encoding for reachability when
ascending in parallel, and the path encoding for descending sequentially. Note that, this way,
we are able to solve “Ben & Alan” in 1561.04 seconds (compared to 4101.25 in the sequential
ascending approach; see Table 2), and “Cynthia & Michael” in 539.62 seconds (compared
to 1313.26 seconds). In the latter, most of the time is devoted to certify the optimal upper
bound already found when ascending in parallel. As for the hardest level, “Rob, James &
Matthew”, we are able to obtain an upper bound of 44 in 4619.90 seconds (about an hour
and a quarter), and to drop it to 32 after 8 hours. This is the only open instance left, with
an optimum between 18 and 32.

A comparison with state-of-the-art planners for the sequential case can be found in [6].
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Table 3 Best upper bounds of hard Snowman instances, found by first finding an upper bound in
parallel (seeking for increasingly long plans; see Table 2), then serializing the plan and sequentially
seeking for shorter plans. Total time in seconds (limit 8h). Best results in bold.

path parallel DAG parallel tree parallel
LB UB time UB time UB time

Ben & Alan 28 28 2673.75 28 2044.74 28 1561.04
Cynthia & Michael 30 30 753.61 30 638.02 30 539.62
Rob, James & Matthew 18 32 - 36 - 32 -

Table 4 PAR-2 scores and number of timed out instances out of 795 Sokoban instances (time
limit 1h), for each of the reachability encodings. Best results in bold.

path parallel DAG parallel tree parallel
PAR-2 3,737,743 3,345,659 3,052,851
timeouts 497 442 398

5.2 Sokoban

In order to observe how the efficiency of (the replication of) the path encoding degenerates
with the number of target locations, in this section we consider the Sokoban game. In
Sokoban, the number of objects to move can be much larger than the number of snowballs in
Snowman. Moreover, running a statistically significant amount of instances will allow us to
better evaluate the performance of the different reachability encodings. To this purpose, we
have selected 10 instance sets from a large Sokoban repository [26]. The selection was done
pseudo-randomly, by discarding sets with only a small number of objects. The selected sets
were bagatelle, cantrip, cantrip2, chessboards, dh1, GRIGoRusha 2001, Sasquatch IX, Sharpen,
SokoStation, and Tian Lang, resulting in a total of 795 instances. Table 4 summarizes the
results for the parallel approach (i.e., finding a first upper bound by ascending in parallel).
The different encodings have been ranked using the PAR-2 scheme: the score of a encoding is
defined as the sum of all runtimes for solved instances + 2× timeout for unsolved instances.
Similarly to the case of Snowman, we observe that the spanning tree encoding is the best
performing one, followed by the DAG encoding, and ending with the path encoding. We
additionally checked that the spanning tree encoding performs better than the DAG encoding
if we restrict to the commonly solved instances, with a total time of 105, 553.14 vs 161, 063.81
seconds, respectively.

Finally, for completeness, we also compare the performance of the planning as SAT
approach with that of well-known ASP solvers on Sokoban instances of the ASP competition.
We restrict to the Sokoban instances from the ASP Competition 2011, where “the sokoban
walking to a box and pushing it a certain number of locations in one direction” was an atomic
action. This was lifted in later editions and, lately, the Sokoban problem has not been
included in the competition anymore. We consider clasp [15] (a conflict-driven answer set
solving system, which took the first place in the ASP Competition 2011), BPSolver [29]
(based on a dynamic programming approach using mode-directed tabling to store subproblems
and their answers, which took the second place), and lp2sat [19] (based on translating an
ASP program to a set of clauses such that any SAT solver can be used to calculate its answer
sets). Both clasp and lp2sat are part of the Potsdam Answer Set Solving Collection [14].
For BPSolver we consider the same version submitted to the competition, as few changes
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seem to have been made subsequently. For clasp we consider its current version 3.3.9. As for
lp2sat, we use version 1.25 combined with Kissat 3.0.0 (instead of the old MiniSAT version
used in the ASP Competition 2011) for a fair comparison with our approach.

We consider both decision and optimization instances from the competition. It is not
easy to make a fair comparison since, in spite of ignoring walking actions, we do not consider
pushing a box a certain number of locations in one direction as an atomic action, which is
a disadvantage to our system. We have removed all unsatisfiable decision instances since,
moreover, we seek for the shortest plan step by step, whereas solvers from the competition
only had to check the instances for satisfiability, given a number of steps. Finally, we restrict
to the instances solved by all the solvers, since some instances raised an error in BPSolver.
This way, although unfair, the comparison is as fair as possible, without modifying any of the
solving methods. The first row of Table 5 shows the results of this unfair comparison, where
it can be observed that our system is competitive with BPSolver in spite of the disadvantage.

Table 5 PAR-2 scores (time limit 1h) for Sokoban benchmarks from the ASP Competition 2011.
Kissat stands for the sequential planning as SAT approach using the path encoding for reachability.

Kissat BPSolver clasp lp2sat + Kissat
unfair 314.34 327.90 548.55 1216.49
fair 3506.65 - 39336.81 19982.19

For a more fair comparison, we modified the ASP model of the Sokoban problem from
the competition so that pushing a box a certain number of locations in one direction is not
an atomic action anymore, but keeping reachability, i.e., ignoring walking actions as before.
Then, we ran all the ASP solvers on this modified model, by asking them for satisfiability
given the number of steps found by our system. The results are summarized in the fair
row. In this case, the superiority of kissat alone is even clearer, even though we include the
total time for finding the solution step by step. We do not include the results for BPSolver
since the version submitted to the competition had the translator for the ASP models built
in, making it impossible to execute it with other models. We must also mention that we
removed 6 instances for which, surprisingly, clasp reported an “unsatisfiable” answer, whereas
all other solvers reported “satisfiable”.

6 Conclusions and Further Work

We have reviewed some standard reachability encodings for graphs and presented a new one,
suitable for determining connected components in undirected graphs. We have compared
the performance of the different encodings on two puzzle problems using SAT and CP
based approaches. Specifically, we have devised an algorithm for solving hard instances
of video game puzzle problems, based on the planning as SAT paradigm. Considering the
simultaneous (i.e., parallel) execution of (non-interfering) actions at locations reachable from
the avatar, has turned out to be crucial to quickly find an upper bound on the number of
needed actions, and to consequently solve the problem in a reasonable time. The proposed
new encoding for reachability has shown to be the best performing on the hardest instances.

As seen, acyclicity is a property closely related to reachability in the context of SAT.
Some works have introduced SAT and SMT solvers with support for detecting acyclicity and
reachability in graphs [12, 3]. Therefore, an alternative approach could be to use a SAT or
SMT solver with built-in support for reachability, such as MonoSAT [3].
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