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Abstract
We present our ongoing work on MaxiCP-Modelling, a symbolic modelling layer for the MaxiCP
solver. Models in MaxiCP-Modelling consist of a functional linked list of symbolic constraints; the
models can later be concretised on an underlying solver. Decisions made during the resolution
process can be progressively added to these lists to create new models that represent the current
status of the solver. This mechanism creates a functional tree of models. We show how to take
advantage of this framework in the context of parallel and distributed resolution, pre-processing,
and the use of multiple types of solvers (hybridisation).
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1 Introduction

This paper presents ongoing work on MaxiCP-Modelling, a modelling layer built above
MaxiCP1.

MaxiCP-Modelling emphasises the importance of making models (symbolic representa-
tions of problems) a priority - the so-called first-class citizens, and to ensure these models are
immutable and serializable, so they can be easily shared between multiple threads, processes,
or machines. The concepts underlying MaxiCP-Modelling originated from a Constraint
Programming research project that involves hybridisation, automated and real-time reformu-
lation of problems, and parallel computing. To continue this line of research effectively, a
modelling language that simplifies and seamlessly integrates these functionalities is crucial.
Specifically, we need:

To treat problems/models as first-class citizens: This allows for straightforward refor-
mulation and the development of algorithms that can deduce characteristics about the
problem structures.
To implement this in a host language, not an ad hoc one: the chosen language needs to
be commonly used to maximise the reach and impact of our work.
To use the same model (and variations of it) multiple times concurrently, in parallel or in
a distributed manner.
To enable the application of various types of solvers to the same models.
To enable interaction between different solvers via the modelling layer.

1 MaxiCP is an in-development solver, derived from the MiniCP[7]. While MiniCP was made for
education-related purposes, MaxiCP aims at being its research-focused counterpart.
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To maintain deep interaction with underlying solvers, particularly with Constraint Pro-
gramming (CP) ones: this ensures that we can continue to leverage the full potential of
these problem-solving tools. A particular point of attention is that we want to be able to
be able to interact at the inference/fixed-point-algorithm level.

The main contribution of this paper is the formalisation of the concept of model (approximately
linked lists of symbolic constraints) in MaxiCP-Modelling, and the tools used to interact
with them.

Related works & comparison with other languages and frameworks
The Constraint Programming community has indeed extensively researched the subject of
modelling layers, frameworks, languages, and techniques throughout its history. This has
resulted in a considerable number of tools, each with their own strengths and weaknesses.
Most solvers, such as Choco[12], Gecode[5], and OscaR[10], offer well-designed domain-specific
languages. However, these are usually focused on the solving process and typically do not
provide the ability to directly manipulate the structure of a problem. Moreover, they rarely
offer hybridisation capabilities.

MiniZinc[9] is an ad hoc, independent modelling language that is not tied to a specific
underlying solver. Compatible solvers can ingest a flattened version of MiniZinc, called
FlatZinc, that is generated by the MiniZinc compiler. As an independent domain-specific
language, rather than a usual programming language, MiniZinc thus has limited potential
for in-depth interactions with solvers. Moreover, when MiniZinc models are translated into
their flattened counterpart, FlatZinc, a significant portion of the original structure is lost.
This poses a dilemma: we are left with either a structured but complex-to-parse language
or a simpler, easy-to-parse language devoid of useful structural information. XCSP3[1] is
another attempt at an independent language. XCSP3 is declarative rather than imperative:
it structures models/problems in XML files that explicitly focus on structures. It has
some capabilities to indicate search heuristics, like MiniZinc, but it is similarly limited
when interacting directly, at runtime, with solvers. It is, however, far easier to parse in its
structured form. Some works have already used tools like MiniZinc/FlatZinc and XCSP3 to
work on the structures of problems at runtime. As an example, see the first implementation
of Embarrassingly Parallel Search[14] that takes a FlatZinc file and divides it in multiple
FlatZinc files to be solved independently. Even with XCSP3, this kind of solution mostly
forbids interacting deeply with solvers and requires multiple compilation/parsing passes,
which are sometimes wasteful and cumbersome. MiniZinc and XCSP3 thus do not fulfil
our requirements; it is, however, important to note that they accomplish one feat that is
probably incompatible with our requirements: they are able to work with many, many kinds
of solvers and provide a way to build benchmarks for them.

MaxiCP-Modelling is related to three more recent attempts at creating new modelling
and solving languages. The first is CPMPy[6], a Python library that checks almost all the
requirements listed above: models are a first-class citizen, can be instantiated into various
solvers, that can be used concurrently and interacted with. The amount of interactivity
allowed is, however, limited by the agnostic stance of the library; it does not assume anything
about the underlying solver, and has no concept of search trees or even search heuristics.
These can still be defined by directly accessing the underlying solver (which is allowed by
the library and by the use of a "true" programming language like Python), but this access is
itself limited by the API exposed by the solvers. Currently CPMPy supports OR-Tools [11]
as its main CP solver; OR-Tools is in C++, not in Python, so the amount of interactivity is
constrained by the existing APIs. This, of course, can be circumvented, but at the price of
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extending OR-Tools in addition to CPMPy.
In 2013, Michel & Van Hentenryck introduced Objective-CP[15], a new CP library built

around the Objective-C language. MaxiCP-Modelling takes many ideas from Objective-CP
such as concretizations (which can actually be traced back to Comet[8]). Objective-CP
focuses a lot on the way search strategies are defined, which is not an important point in
our context. An extension to Objective-CP, Ocpmcl[4] introduces the concept of Model
Combinators, that allows for the linking together of different solvers running concurrently in
a declarative way. We have yet to implement this in MaxiCP-Modelling (mainly because
it is too early in the development and because it does exclude some useful scenarios like
hybridisation at the fixed-point level) but it is definitely a goal.

A third source of inspiration is OscaR-Modelling (whose architecture was never formally
published), the modelling layer of the OscaR solver, from which MaxiCP-Modelling borrows
a lot of implementation ideas.

2 Theoretical Framework

In this section, we formalise the concept of model in MaxiCP-Modelling as a constraint
satisfaction/optimisation problem that sightly differs from the usual definition, but is as
expressive. Let us first define the concepts of variables and constraints:

▶ Definition 1 (Variable). A (integer) variable v is an object with a domain Dv ∈ Z, which
is the set of possible values that v can represent.

▶ Definition 2 (Constraint). A constraint c = ⟨Vc, Rc⟩, defined over the subset of variables
Vc = {v1, v2, . . . , vk}, is represented by a relation Rc ⊆ D1 ×D2 × . . .×Dk, the set of domain
value selections that satisfy the constraint.

We use a recursive definition of what a model is. Intuitively, a model inherits from
another model and its constraints, by adding a new constraint to an existing model:

▶ Definition 3 (Models). A satisfaction model M is a tuple ⟨cM , parent(M)⟩ containing a
constraint and another satisfaction model, called the parent model. The root model M∅ is
defined as an empty model, without constraints or parent. A model thus implicitly represents
a list of constraints, accessible via ctrs(M) = {cM } ∪ ctrs(parent(M)), with ctrs(M∅) = ∅.

We say that M is the child of parent(M). All the children of a model, and their own chil-
dren, ..., recursively, are called the offspring of the model. The parent, grandparent, ..., models
are called ancestors. Model loops are prohibited: a model cannot be an offspring/ancestor of
itself.

The function vars(M) =
⋃

c∈cstrs(M) Vc returns the list of variables in M . An assignment
of a model A is a tuple assigning a value to each variable, Ai being the value assigned to
variable vi ∈ vars(M). An assignment A is a solution if it respects all the constraints in the
model, i.e. ∀c ∈ ctrs(M) : {Ai | vi ∈ Vc} ∈ Rc. The set of all solutions is given by sols(M).

An optimisation model is a tuple containing a satisfaction model M and an objective
function fM : Z|vars(M)| → R, which provides a total order on sols(M). Optimal solutions
are defined as those being the smallest in the set.

For simplicity, in the remainder of this paper, we focus in the remainder of this paper on
satisfaction problems; the definitions and reasoning can be adapted for optimisation problems
at the expense of some verbosity, which we wish to avoid here.

This model definition is purely symbolic (it is purely represented by its variable with
their default values and a list of constraints) and is decoupled from any resolution technique.
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Figure 1 An example of a model tree. A model in MaxiCP-Modelling is a tuple composed of a
constraint and a link to another model. Each white node in this example is thus a model. Some of
them have been named A,B,C and D. The model A is thus composed of constraints 1-4, the model
B of constraints 1-2 and 5, the model C of constraints 1-2 and 5-7, and the model D of constraints
1-2, 5-6 and 8.

The model implicitly defines its solutions but does not describe how to compute them: it
is purely declarative. Models form a model tree rooted on the model M∅, as shown in the
example in Figure 1.

2.1 Transformations & Concretisations
We define two additional types of operations on models: transformations, which allow for
the preprocessing of a model and modification of its content, and concretisations, which
instantiate the model in a solver and allow it to be solved.

▶ Definition 4 (Transformation). A transformation t(M, ·) = M ′ produces a model M ′ based
on an existing model M . The new model may or may not share an ancestor with the old
one, except for the root model M∅ (by definition of a model). A transformation is termed
relaxing if the set of solutions is expanded after the transformation (sols(M) ⊆ sols(M ′)),
equivalent if the set is identical (sols(M) = sols(M ′)), and restrictive if the set is reduced
(sols(M ′) ⊆ sols(M)). Any transformation must keep the empty model as-is: t(M∅, ·) = M∅.

An online transformation is a transformation ot(M1, M ′
1, M2, ·) = M ′

2 that, after having
converted an initial model M1 to another model M ′

1, can take another model M2 that is a
child of M1 and transform it into a model M ′

2 that is itself a child of M2. It can be used as a
standard transformation by setting t(M, ·) = ot(M∅, M∅, M, ·).

In general, transformations are not required to be stateless, particularly online ones, i.e. they
may require to maintain additional information to work properly between calls. Moreover,
some of them may have to introduce, remove, or modify the meaning of variables; in which
case, they provide a method to recover the value of the initial symbolic variables from the
transformed model and its children.

▶ Definition 5 (Concretization). A concretization M of a model M is an instantiation of
the model in a given solver (that can be a constraint programming solver, an integer linear
programming solver, or any other type of solver). In a concretisation, variables are mutable
and can be updated by the solver; constraints are parts of the solver algorithms that modify
the domain of the variables.

In order to differentiate the variables/constraints "outside" and "inside" the solver, we
call them symbolic or concrete variables/constraints respectively.
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It is not expected that every type of solver will be capable of concretising every model.
For instance, a linear programming solver is not capable of concretising non-linear constraints.
However, an ad hoc (equivalent or relaxing) transformation may be applied to make a model
compatible, for instance, by linearising or removing certain constraints.

A concretisation is a stateful (i.e. an object maintaining state between interactions),
mutable object: it is possible to interact with it. The main operations of any concretisation
are:

Retrieving information about the domains of the (concrete) variables in the underlying
solver, which are in general more precise than the ones available in the related symbolic
variables
Adding a new constraint (or, equivalently, jumping to a child model, that is adding all
the constraint between the currently concretised model and another symbolic one that
inherits from the first)
Saving the current state (that is, storing the list of currently concretised constraints) and
being able to roll back to previously saved states, in a stack-like manner (as is common
in CP solvers).

Each concretisation may have particular methods attached to it, related to the underlying
solver.

2.2 Partially Symbolic Concretisations

Certain categories of solvers, such as typical constraint programming or integer linear
programming solvers, fundamentally employ a branch-and-bound algorithm (or a variant).
They have a method that infers properties about the variables and constraints from the
current model; this method helps reduce the variable domains without excluding any solutions.
At the end of this inference phase, it is rare that the problem is solved, i.e., is it rare that the
Cartesian product of the domains forms the set of solutions. The branch-and-bound algorithm
then performs a branching operation: it operates a modification on the model (typically
adding a constraint), then calls the inference algorithm recursively, and when that call is
completed, it performs the opposite operation (generally adding the negation of the constraint)
and again calls itself recursively. Using the definitions above, this branching behaviour of
model M can be seen as the creation of two models Mleft = ⟨c, M⟩ and Mright = ⟨¬c, M⟩,
both children of M . The search tree created by the branch-and-bound algorithm thus forms
a tree of models as defined above.

We call the operation of instantiating a model in a solver working in this way (or in a
similar way, for instance for an algorithm reordering the sequence of separated problems)
a partially symbolic concretisation. Such a concretisation of a model M allows interaction
during the resolution: at any given moment, the underlying solver has a current model Mc,
a set of open models yet unexplored Mwaiting, and a set of discovered solutions S, so that
sols(M) = sols(Mc) ∪ S ∪ (

⋃
Ma∈Mwaiting

sols(Ma)).
While a Partially Symbolic Concretisation is still a concretisation, that is, a mutable

object, the various elements introduced here are purely symbolic and immutable. At any
time, the mutable state of the underlying solver is represented by an immutable model.
The state of the solver can only be changed by creating a new model, inheriting from the
previous one, or by directly creating a new lineage of a model from an ancestor or from M∅
(transformation). The immutable aspect is useful in a context of parallelisation/distribution
[13], as it helps avoid race conditions, among other things. Furthermore, partially symbolic
concretisations will allow us to interact with the solver and simply divide the problems during
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runtime while continuing to benefit from these aspects of immutability. Moreover, it paves
the way to easy hybridisation, as we explain in the following subsection.

2.3 Proxies
Proxies are stateful, mutable objects that have the same interface as concretisations. Their
role is to redirect and (optionally) modify methods to other concretisations or proxies. We
separate the proxies into two kinds:

First are transformer proxies, whose role is to use an underlying (online) transformer and
to redirect the newly created model (or model lineage) to another concretisation or proxy.
They take care of transparently handling changes to the meaning of variables due to the
transformation, and transfer state-saving or rollback requests.
Second are one-to-n proxies, that redirect new constraints and state-saving or rollback
requests to multiple other proxies or concretisations. They also unify the various domains
being retrieved for each variable (by taking their intersection).

Proxies enable us to perform hybridisation: using various kinds of solvers at the same
time, and making them interact at will through the modelling layer. We could use a CP
concretisation of a model, then transform this main model into an LP relaxation (via a
transformer proxy and an LP concretisation of the relaxed model), and use this relaxation as
an external constraint on the objective, by linking the two with a one-to-two proxy and a
little amount of code.

Proxies are a lower-level concept than Model Combinators[4]: they are more complex to
use, but are less constrained (notably they can work at the search-tree and fixed-point level
if needed), and provide a suitable base to implement Model Combinators in a proper way
later in the development process.

2.4 In summary
Various kinds of links and interactions between solvers can be created in this framework:
hybridisation with other solvers, with multiple relaxations, online hybridisation (online)
autotabling, etc. Moreover, the immutable symbolic models allow for easy parallelism and
distribution: they remove the need for most synchronisation mechanisms and can be made
easy to serialise. Software using this framework are (or, at least, can be) able to reason
upon constraints in isolation of a solver, and to modify models before, during and after their
concretisation for underlying solvers.

3 Implementation

We rapidly describe here how the various aspects of immutable models as defined above
are implemented in MaxiCP-Modelling. We use the underlying solver MaxiCP, based on
MiniCP [7], made in Java. This solver has no notion of symbolism; when a constraint is
created, it registers itself (via callbacks) on the variables that are in its scope, and then the
solver directly loses the pointer to the constraint: the solver is not able, for example, to
enumerate the currently active constraints or to know their scope. Each variable has a list of
callbacks to perform that does not allow other interactions. The variables have a mutable
state: the solver is intended to be used by a single thread of execution at a time. In MaxiCP,
the notion of model is mixed with the notion of a solver instance. These comments apply to
MaxiCP as well as other solvers like Choco[12] or Gecode[5].
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Clearly, these definitions of variables/constraints/models are incompatible with those
defined at the beginning of this document. We will call the variables/constraints of the
underlying solver (here MaxiCP) concrete variables/constraints, which we will differentiate
from symbolic variables/constraints, which we will implement on top, in MaxiCP-Modelling.

This additional layer, called the modelling layer, is designed to preserve the properties
of MaxiCP: accessibility to various parts of the underlying solver, short distance between
abstraction and implementation, execution speed. The modelling layer does not restrict any
existing functionality, but adds new ones.

When using MaxiCP-Modelling, the user must first create a context, which is effectively
a pointer to the current model. The current model is the one reflected in various interactions
with MaxiCP-Modelling: inspection of variables, enumeration of constraints... As models are
immutable, adding a constraint means creating a new model with this constraint, inheriting
from the current model, and making the context point to the newly created model.

Symbolic variables in MaxiCP-Modelling are implemented as relays with a default domain.
A model, as defined in the theoretical framework above, does not define (directly) a domain
for variables, except implicitly through constraints. However, for speed and simplicity, it
is allowed in MaxiCP-Modelling to define a default domain that will serve to instantiate
the concrete domains of the underlying solver. Symbolic variables are immutable: only
introspection functions, such as hasValue(v) or getMin(), are available. The behaviour of
these methods depends on the context: if it points to a symbolic model, method calls on the
variable will work on the default domain; if it points to a concrete model, calls are redirected
to the underlying concrete variable.

The context is in practice a thread-local variable: each thread has its own current model,
which may/will differ from other threads. This mechanism, in addition to variables that
redirect calls to concrete variables, allows for the implementation of parallelism using a single
instance of symbolic variables: everything being perfectly immutable, there is no competition
problem, and all threads can use the same instance. For concretised models, only one thread
is allowed to have them as context; but the user still uses the symbolic variable the entry
point to the solver. Listing 1 shows an example of the API currently proposed to the end user.

Listing 1 Usage of MaxiCP-Modelling: implementation of a n-queens model
int n = 12; Context context = Factory . makeContext ();

IntVar [] q = context . intVarArray (n, n);
IntExpression [] qLeftDiagonal = IntStream .range (0, q. length )

. mapToObj (i -> q[i]. plus(i)). toArray ( IntExpression []:: new );
IntExpression [] qRightDiagonal = IntStream .range (0, q. length )

. mapToObj (i -> q[i]. minus(i)). toArray ( IntExpression []:: new );

//Here , the context is symbolic . Adding new constraints actually
// creates new symbolic models , inheriting from each other
context .add(new AllDifferent (q));
context .add(new AllDifferent ( qLeftDiagonal ));
context .add(new AllDifferent ( qRightDiagonal ));

// Custom branching procedure
Supplier < Procedure []> branching = () -> {

int idx = -1; // index of the first variable that is not fixed
for (int k = 0; k < q. length && idx == -1; k++)

if (!q[k]. isFixed ())
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idx=k;
if (idx == -1) return EMPTY;
else {

// Even if this branching procedure is used in a concretised
// context , we can work with the ( symbolic ) IntVar and
// IntExpression that will transparently redirect calls to
// their methods to the concrete underlying variables
IntExpression qi = q[idx ];
int v = qi.min ();
Procedure left = () -> context .add(new Eq(qi , v));
Procedure right = () -> context .add(new NotEq(qi , v));
return branch (left ,right );

}
};

// Run the CP solver . Multiple threads can do this concurrently
context . runAsConcrete ( CPModelInstantiator . withTrailing , (cp) -> {

//here , the context points to the CP concretised model
SearchStatistics results = cp. dfSearch ( branching ). solve ();
System .out. println (" Total number of solutions : " +

results . numberOfSolutions ());
});
//here , the contexts again point to the latest symbolic model.

4 Status & future work

The work on MaxiCP-Modelling is ongoing, as is the work on the underlying solver MaxiCP.
The code for both is non-public: MaxiCP is based on the MiniCP solver made for education,
particularly on its teacher version. It thus contains all solutions to the various exercises of
the related MOOC. Until it has diverged sufficiently, the code will not be displayed publicly
but is still freely available upon request.

The ultimate goal for MaxiCP-Modelling is to be the base tool for a research project
about online reformulation, hybridisation and parallelism. The next step mainly consists of
improving the API and the "language" (the DSL) of the modelling layer, and to document it
thoroughly. We then want to add the concepts of Model Combinators [4] that will greatly
simplify the usage.

We have working implementations of Embarrassingly Parallel Search[14, 3] and Work-
Stealing on MaxiCP-Modelling, showing that the concepts work in a real-world context.
However, we need to streamline their usage, both for the sake of the users and for our own
too. Currently, it is only possible to concretise a model into the underlying CP solver, but
the implementation of the machinery needed to implement a relaxing transformation and
the related concretisation to a linear programming solver is ongoing. We will then tackle
Mixed-Integer Linear Programming and Cost Function Networks[2].
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