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Abstract
Factorio is a 2D construction and management simulation video game about building automated
factories to produce items of increasing complexity. A core feature of the game is its blueprint system,
which allows players to easily save and replicate parts of their designs. Blueprints can reproduce any
layout of objects in the game, but are typically used to encapsulate a complex behaviour, such as
the production of a non-basic object. Once created, these blueprints are then used as basic building
blocks, allowing the player to create a layer of abstraction. The usage of blueprints not only eases
the expansion of the factory but also allows the sharing of designs with the game’s community. The
layout in a blueprint can be optimised using various criteria, such as the total space used or the
final production throughput. The design of an optimal blueprint is a hard combinatorial problem,
interleaving elements of many well-studied problems such as bin-packing, routing or network design.
This work presents a new challenging problem and explores the feasibility of a constraint model to
optimise Factorio blueprints, balancing correctness, optimality, and performance.

2012 ACM Subject Classification Theory of computation → Constraint and logic programming;
Computing methodologies → Planning and scheduling
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1 Introduction

Factorio, produced by Wube Software [16], is a game about building automated factories
to produce items of increasing complexity, within an infinite 2D world. The player must
optimise and expand their designs as the game progresses and their factory grows in both
scope and scale. The challenges players must solve to achieve this emulate many real-world
problems, such as bin-packing, routing, network design and scheduling. In the industry,
these problems seldomly appear in isolation. For example, the core problem for a logistics
company is the vehicle routing problem, which will get affected by other problems such as
the scheduling of its driver workforce or by how many vehicles can be brought to the field.
Factorio provides a contrived testbed for modelling combinations of such problems.

Various elements of Factorio have previously been studied. Leue [9] used Petri Nets and
Linear Temporal Logic to verify the performance of ‘belt balancing’ systems, allowing item
flow in the factory to be equally distributed across multiple conveyor paths. Reid et al. [14]
compared several techniques to optimise the placement of conveyor belts from one point to
another while avoiding obstacles, achieving results in an area of up to 12 by 12 tiles. Their
model aims to connect a single input and output, which is generally not representative of a
complete factory. While their findings are optimal for a single path, this optimality may not
hold when multiple routes are competing for space. Finally, Duhan et al. [2] showed interest
in optimising factories using deep reinforcement learning.

One of the main game features is a blueprint system, allowing players to save their factory
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designs. Blueprints copy the layout of player-built objects in an area of up to 10,000 by
10,000 tiles. Although this feature is useful in many in-game situations, its main use case
is to replicate efficient designs for the production of a given non-basic game object. This
allows complex parts of the factory to be abstracted, removing the need for the player to
focus on irrelevant details. Blueprint designs can also be uploaded to community websites
and workshops for other players to download and use.

This paper explores the feasibility of automatically generating and optimising Factorio
blueprints. More concretely, we contribute a set of models in Essence Prime [11], a well-
known declarative constraint modelling language. Moreover, we take advantage of Savile
Row [10], a sophisticated constraint reformulation tool supporting Essence Prime that is
able to generate CSP instances for various backend solvers.

2 Related Work

Iori et al. [6] describe the Two-Dimensional Orthogonal Packing Problem (2D-OPP) and
the Two-Dimensional Knapsack Problem (2D-KP). Both of these problems are well-studied
in the field of constraint programming [8, 1]. A Factorio blueprint has a limited area in
which to place rectangular objects on a discrete square grid. To increase the production rate,
players must add more objects to a factory. If there is no feasible packing of these objects
in the blueprint, then it is impossible to build such a factory. Checking whether 2D-OPP
can be satisfied for a given set of objects can therefore be used to give an upper bound on
the number of objects that can be placed in the blueprint. An efficient factory should also
maximise the number of objects which increase the production rate, such as assemblers, and
minimise the use of other objects such as conveyor belts. Similarly to 2D-KP, by weighting
objects by their contribution to the production rate, the most desirable set of objects can be
found.

Peng et al. [13] proposed a solution for the Non-Crossing Multi-Agent Pathfinding (NC-
MAPF), which is the problem of finding paths for multiple agents such that every agent
reaches its desired destination and their paths do not cross. This problem closely aligns
with the conveyor belt layout problem we face. However, conveyor belts carry additional
constraints. For example, paths carrying the same object may be merged together so the
number of belts used is reduced. Yu and LaValle [18] show that MAPF on graphs can be
reduced to a network flow problem. When maximising the flow rate of products, we can
trace some similarities with the railway traffic flow problem presented by Harris and Ross in
1955 [5, 3]. However, we face some additional complexities, such that Factorio blueprints
may have multiple types of items whose routes must be kept separate, and multiple source
nodes. These differences mean existing maximum flow optimisation techniques alone are not
sufficient to optimise a Factorio blueprint, but their fundamental concepts are likely to be
relevant.

3 Factorio

A brief introduction to Factorio can be found in the 2016 gameplay trailer [17]. The game
contains many interconnected systems that must be aligned in order to create a successful
factory. Factorio is played in an infinite two-dimensional grid of square tiles. Each tile can
contain natural resources such as trees, stone, ore, and water. These resources are the basic
ingredients needed to produce all other items, so the player is encouraged to find a starting
location in close proximity to as many as possible. However these resources are finite and

https://www.youtube.com/watch?v=KVvXv1Z6EY8&ab_channel=Factorio
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Figure 1 An assembler in-
game1

1 https://wiki.factorio.
com/Assembling_machine_1

Figure 2 An inserter in-
game2

2 https://wiki.factorio.
com/Inserter

Figure 3 A path of convey-
ors in-game3

3 https://wiki.factorio.
com/Transport_belt

as the game progresses, players will exhaust what they have nearby and must expand their
factory outward. Tiles may also contain obstacles such as cliffs which cannot be traversed or
built across, providing an additional challenge when expanding. In addition to providing
their factory with the necessary resources, players must generate electricity, defend against
enemies, and more. The game’s systems are configured such that players must care about
more than the production rate of their factory to play effectively. An example is limiting the
rate at which the factory pollutes the environment because pollution scales the difficulty of
enemy attacks.

To make the development of a constraint model feasible, a minimal set of the game’s
buildings are considered from which a functional item-based blueprint can be produced:

Assemblers (Figure 1) take one or more items as input and produce a new, more
complex item as output. The player must select a recipe for the assembler to execute,
which indicates the types and quantities of the items consumed and produced by the
assembler. Each recipe produces a single type of item, and each item is the product of at
most one recipe. This would not be true if fluids were considered in addition to items,
which we omit for simplicity. Products are stored in the assembler’s internal inventory
and can only be removed manually by the player in real-time or automatically by an
inserter. Ingredients can also be provided in these ways. We assume that there are no
real time interactions between the player and the game, and that there are no limits to
the assembler’s inventory size. In the game world, an assembler is 3 by 3 tiles in size.
Inserters (Figure 2) are robotic arms that pick items up from their input tile and place
them on their output tile, which is opposite of the input tile. The direction of an inserter
is the direction from the input to the output tile. Inserters can access the inventories of
assemblers and conveyors. An inserter can hold one item at a time, transporting up to 50
items per minute. If the output tile is not accepting items due to its capacity being full,
the inserter will keep hold of the item and wait for the tile to start accepting items again.
They occupy a single tile in the game world.
Conveyors (Figure 3) transports items placed on them from one tile to another. They
can be connected together to create long routes. In game, conveyors carry items in two
lanes. However, for simplicity, we shall assume that there is only one lane. At maximum
capacity, a conveyor lane can transport 450 items per minute. This is a much higher
throughput than an inserter, allowing multiple inserters to interact with a single line of
conveyors.

https://wiki.factorio.com/Assembling_machine_1
https://wiki.factorio.com/Assembling_machine_1
https://wiki.factorio.com/Inserter
https://wiki.factorio.com/Inserter
https://wiki.factorio.com/Transport_belt
https://wiki.factorio.com/Transport_belt
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The blueprint problem

A blueprint is a layout of a rectangular area that can be copied. Blueprints typically contain
unterminated transport networks that the player is expected to connect to the rest of their
factory in order to provide the needed resources. Since these copies can be connected to
form bigger factories, there are indications of the tiles where the items go into and out of
the blueprint area (which we shall refer to as blueprint sources and blueprint destinations
respectively), as well as their types. For simplicity, we will consider blueprints with possibly
multiple sources but only a single destination. The problem we are trying to model is one
where the dimension of this blueprint area and the ingoing-outgoing items types and positions
are given beforehand. Furthermore, the input rate of the blueprint sources (in the number of
items per minute) is also given.

The blueprint problem aims to find a layout of assemblers, inserters and conveyors which
takes the input items and produce the required output items in the specified places. The
recipe for each assembler used should also be determined, which are chosen from a library of
available recipes. Needless to say, the layout must respect the game mechanics. In addition
to that, we are also interested in finding the optimal layout. We define optimality in this
context as a layout which maximises the production rate (number of outgoing items in a
minute) and minimises the cost. The cost is related to the number of buildings needed. We
shall give further detail to our objective functions later.

4 The Model

This section starts by describing the model parameters and constants in Section 4.1. In
Section 4.2 we describe the viewpoint taken for modelling the core components of Factorio.
Given preliminary experimental results, a single optimisation model was shown to be infeasible
for solving non-trivial blueprints. Therefore, in the spirit of a Benders decomposition approach,
we implemented a multi-stage solution that splits the problem into three models, which is
described in Section 4.3.

4.1 Model Parameters and Constants

The width w and height h of the blueprint are given to the model as two integers binW and
binH. In all models, we define xs and ys to be the domains int(1..binW) and int(1..binH)
respectively.

The number of item types present in the blueprint is given using an integer parameter
num_items. The items types are identified as integers from 1 to num_items. The integer
parameter out_item indicates the type of item the blueprint should output.

The blueprint destination is given in a 0/1 matrix outputs of size w × h. The blueprint
sources are given in a matrix input_items of the same size, whose entry indicate the item
type (as an integer) that is available in the corresponding tile. Similarly, each entry of
input_qtys indicates the number of items of the specified type that is available in the
corresponding tile in a minute.

The recipes are described in recipe_qtys, a matrix of size input_items × input_items.
For i ≠ j, the (i, j)-th entry in the matrix indicates the number of Item j needed to produce
Item i. The number of Item i produced is indicated in the (i, i)-th entry of recipe_qtys,
and the rate of production (in number of items produced per minute) is indicated in the i-th
entry of the parameter recipe_rates, a list of length input_items. To give the user extra
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Figure 4 In game repres-
entation of a conveyor route.
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Figure 5 Incremental rep-
resentation of Figure 4.
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Figure 6 Directional rep-
resentation of Figure 4.

control over the model, the user can also indicate the rate of item transfer of an inserter, in
an integer parameter inserter_rate.

4.2 Representing the Game World
Modelling conveyors and inserters routes

Two representations of the conveyors are considered: the incremental representation, which
labels conveyors incrementally as the route advances towards the destination; and the
directional representation, which labels conveyors based on the direction of flow (where
integers 1 to 4 are used to indicate North, South, East and West respectively). See Figures 4–
6 for an example, where the top-centre and bottom-left tiles are sources, and the right-middle
tile is a destination. Like conveyors, inserters must face in one of four directions, meaning
these representation can also be used.

More specifically, the incremental representation, similarly described in [4], comes with
the following constraints:
1. Source tiles contain a 1;
2. Destination tiles must be greater than 1;
3. The tile with the largest value must be a destination tile;
4. A non-zero value in a tile that is not a destination implies a larger value exists in an

orthogonal tile.
As we shall see later, we will be attempting to form routes to connect buildings in the
blueprint. So the source and destination here may not correspond to the blueprint source
and blueprint destination defined in Section 3. A critical challenge to overcome is the
prevention of cycles, where sources or destinations are self-connected. The fourth constraint
of the incremental representation inherently prevents cycles forming because the end of
the cycle will have a larger value than the start. It also allows multiple paths to merge,
since the constraint only specifies a ‘larger value’ instead of a ‘consecutive value’. However,
this representation does not scale efficiently. Our solution to the issue is to combine the
incremental and directional representations to allow efficient cycle breaking and easy access
to the directions. The variable routes represents the combination of conveyors and inserters
that brings items from given sources to given destinations. Listing 1 gives the viewpoint and
the channelling constraint used.

Listing 1 Combined incremental and directional representation for transport routes.

find conveyors : matrix indexed by [ys, xs] of int(0..4)
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find inserters : matrix indexed by [ys, xs] of int(0..4)
find routes : matrix indexed by [ys, xs] of int(0..binW+binH)
forall y : ys . forall x : xs .

routes[y, x] > 0 <-> (conveyors[y, x] > 0 \/ inserters[y, x] > 0)

We require all conveyors and inserters to belong to a transport route. A route either
starts from a conveyor on a blueprint source tile or from an inserter taking items out of
an assembler. So these starting tiles will have 1 in the corresponding entries in routes.
Conveyors or inserters which do not start a route increment the longest route they are part
of. Inserters can only receive input from one space, but conveyors can receive input from
multiple routes. By ensuring all directions providing input have a smaller route value than
the current space, the longest route is extended, producing the expected behaviour.

Note that the domain of routes is limited by w + h instead of the area w × h. A naive
upper bound of the domain w × h does not scale well. While it is true that you can get from
a source to any destination in w + h steps, it may not be true with the presence of obstacles.
Since the only possible obstacles are assemblers and inserters, we conjecture that a solution
which requires routes longer than w + h can be rearranged so that the routes are within the
w + h bound. Furthermore, a solution that maximises the output rate and minimises the
cost would likely need an efficient routing system, limiting the scope for long routes.

Inserters have a lower item throughput than conveyors, so to maximise item flow in the
factory, they should not be used when a conveyor would suffice. Therefore, our objective
function punishes overuse of inserters (see Listing 2). The penalties can take any value as
long as we have conveyor_penalty > inserter_penalty.

Listing 2 Objective function for routing to minimise the number of inserters.

minimising sum y:ys. sum x:xs. (conveyor_penalty * (conveyors[y, x ] > 0))
+ (inserter_penalty * (inserters[y, x] > 0))

Modelling item flow

To determine if a blueprint is valid, the model must track which items are present on which
tiles. Constraints can then be placed on inserters passing ingredients to assemblers to ensure
that only items required by the assembler’s recipe are being provided. Similarly, assemblers
can be constrained to ensure all ingredients required by their recipe are provided.

In Factorio, multiple types of item can be present on the same conveyor. Sometimes the
quantity of an item is not sufficient to use the entire throughput of the conveyor, and if
multiple low-quantity items are being transported to the same place, it can be more space
efficient to place them all on the same conveyor. This increases the density of conveyor
networks, potentially allowing more assemblers and inserters to be packed into the space and
improving the production rate of the factory. The cost of properly modelling this feature is
likely to be too expensive. Allowing any and all items to be present on each tile requires a
3D matrix of size num_items × binW × binH, or an explicit equivalent, which scales poorly.

A compromise is made to ensure the model is of an acceptable complexity: each tile
may only carry one type of item. This causes optimality to be lost as the conveyor-density
improvement discussed above is no longer available. Fortunately it is unlikely that this
increased density will provide enough additional, usable space to significantly increase the
performance of a factory except in very specific edge cases. It is rare for more than two items
to be present on a given conveyor due to inserters picking up any item they come across,
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(a) The in-game illustration of the blueprint.
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(b) An illustration of the decision variable
carrying, which indicates which item is
present on each tile.

Figure 7 shows a blueprint containing two assemblers. The assembler on the left takes Item 1,
provided to the blueprint via the bottom-left tile, and produces Item 2. The assembler on the
right takes Items 1 and 2 and produces Item 3, which is outputted from the blueprint from the
bottom-right tile.

and efficient factories will typically devote entire transport routes to the most commonly
used items due to their high demand.

We model item flow as a matrix carrying indexed by [ys, xs] of int(0..num_items),
with the following constraints (see Figure 7 for an example).
1. Tiles carry an item if and only if there is a game object present.
2. Conveyors carry all items passed to them from adjacent tiles.
3. Inserters carry any item carried on their input tile.
4. Assemblers carry the item they produce.

Modelling item flow rate

One of our aims is to maximise the production rate. This requires knowing the item flow rate
through each conveyor tile. However, recipe duration and item flow rates are both continuous
variables. Approximations and unit conversions can be used to convert continuous variables
to discrete variables at the cost of resolution. The representation used should be able to
model an item with a recipe duration of 1 item per minute, but also a full conveyor lane
transporting 7.5 items per second, or 450 items per minute. In our experiments, a domain
of int(1..450) is too large to be applied over every tile of the blueprint. There is no way
of modelling continuous item rates accurately in Essence Prime without causing state
explosion. Any representation which does not cause state explosion achieves this by reducing
the resolution to a point of unusability. A unified constraint optimisation model (COP)
model was therefore deemed not feasible. Hence we decided to proceed with a multi-stage
COP model.

4.3 Multi-Stage COP Model
A multi-stage model allows the modelling of item rates and the blueprint’s space to be
handled separately. If the routing stage can be given the optimal layout of assemblers and
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inserters as a parameter, the problem becomes one of pathfinding again, and not of flow
rates. In fact, it appears very similar to the problem investigated by Reid et al. [14], but
involving multiple paths. For each transport route, all other routes provide the obstacles
that must be routed around. The model attempts to find an assignment which allows all
routes to reach their destination, if such an assignment exists.

This must be the final stage, since the layout of assemblers and inserters must be known. A
stage deciding this layout also needs to model the 2D space of the blueprint, so it cannot also
model item rates. It could model a bin-packing problem in which the number of assemblers
and inserters are given, and a valid packing in the blueprint must be found. This would be
an extension of classic packing problems because inserters need to be adjacent to assemblers.
This leaves an initial stage, which decides the number of assemblers and inserters, and the
recipes used. The model does not need to care about where the objects are placed in the
blueprint, as long as the area they occupy does not exceed its area. Figure 8 illustrates the
purpose of each stage and how they interact with each other. In summary, we have:
1. Recipes Stage: This model takes recipes and items as parameters, and finds the number

of assemblers and the recipe followed by each which maximises the production rate.
Additionally, knowing how much each item needs to be provided to each assembler to
achieve this optimal rate, the number of inserters attached to each assembler is found.

2. Bin-packing Stage: This stage uses the number of assemblers and the number of
inserters attached to each from the Recipe Stage, to ensure it can fit in the blueprint. An
important note is that this stage does not take into account the item types. Meaning
that we do not take into account which recipes are assigned to which assemblers, and
what items the inserters carry.

3. Layout Stage: This stage takes the assembler positions and the number of inserters
attached to each assembler to generate a routing system so that all assemblers receive
the items they need. This means that the output of Stage 2 does not fix the locations
of the inserters interacting with the assemblers. Furthermore, the assemblers in Stage 2
have not correlated with the assemblers in Stage 1, so we shall do that in this stage also.

The parameters for each stage can be generated programmatically based on the output
of the previous stages. In the case of the first stage, its parameter file is generated from the
parameters described in Section 4.1, which we shall refer to as the main parameters. If a
stage is unsatisfiable, the previous stage must generate a new solution, continuing until the
final stage is satisfied or all solutions have been attempted.

The models, the code to construct the parameters and some sample inputs and outputs
can all be found in the GitHub repository [12].

4.3.1 Stage 1: Recipes

The stage parameters are taken from the main parameters using little to no preprocessing. Two
additional parameters are calculated from the main parameters to give finite domains for de-
cision variables: max_rate is calculated as the maximum of the recipe rates; max_assemblers
is calculated as ⌊w/3⌋ × ⌊h/3⌋, which gives us the finite domain assemblers, defined to be
domain int(1..max_assemblers).

The model aims to find the number of assemblers needed, the recipes assigned to each
assembler and their productions rates. These forms the decision variables num_assemblers,
assembler_recipes and assembler_rates. The recipes are identified by the item it pro-
duces, since there are at most one recipe that produce a given item.
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Figure 8 The structure of the multi-stage model.

The number of assemblers and the maximum possible assemblers may be different.
Assemblers which could theoretically be present but are not used in the solution are called
inactive assemblers. They are given a recipe 0, which does not correspond to an item. Some
symmetry is broken by forcing inactive assemblers to the end of the array.

The model should also decide the number of inserters carrying items in and out of the
assemblers, and the item type they carry. Intuitively, the number of inserters matches the ratio
of items in the recipe, taking into account the rate at which each item is present. The ingoing
inserters are tracked in a decision matrix inserters_in indexed by [assemblers, items].
Since each assembler has only one output item type, the outgoing inserters are tracked with
an array inserters_out of indexed by assemblers.

Each assembler can be assigned to up to 12 inserters (3 on each side), which suggests a
domain of of size 12. However, max_inserters_in is calculated from the recipes to restrict
the domain (see Listing 3). The main idea is that if no item is consumed in a quantity greater
than k inserters can provide, there is never a need for more than k inserters providing that
item to an assembler. The domain of inserters_out is bounded by max_inserters_out,
which is calculated similarly.

Listing 3 Limiting the number of inserters transporting items into an assembler.

letting max_consumption = max(
[ (recipe_qtys[i, j]*recipe_rates[i]) | i: items, j: items, i != j ] )

letting max_inserters_in = (max_consumption / inserter_rate)
+ ((max_consumption % inserter_rate) != 0)

Knowing the consumption rate (how much of each item is demanded by each assembler)
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is important for calculating production rates. This is kept track of using the decision variable
consuming, a matrix indexed by [assemblers, items] of int(0..max_consumption).

If the solution to this stage does not have a valid packing in the next stage, this stage
will be repeated to find the next solution. To prevent the same solution being generated each
time, parameters describing the previous solutions are given so constraints can be written to
guarantee uniqueness (see Listing 4).

Listing 4 Parameters describing solutions that have already been considered in the later stages.

given num_attempts : int(1..)
given assembler_attempts :

matrix indexed by [int(1..num_attempts), assemblers] of int(0..num_items)
given inserter_attempts :

matrix indexed by [int(1..num_attempts), assemblers] of int(0..12)

The inserter counts are given as an overall sum for each assembler because changing which
item each inserter interacts with will not cause a valid packing to exist where one previously
did not. The assignments of assembler_recipes, inserters_in and inserters_out are
checked against the previous solutions. If it is the same as any of them, it is rejected.

The objective function aims to maximise the production of the output item. A small
penalty is applied so that solutions achieving the same rate with fewer assemblers and
inserters are prioritised (see Listing 5).

Listing 5 The objective function maximises the production rate and penalises number of buildings.

maximising (sum i: assemblers.
(assembler_rates[i] * (assembler_recipes[i] = output) )

- (sum i: assemblers. (9 * (assembler_recipes[i] > 0))
+ (sum item: items. inserters_in[i, item])
+ inserters_out[i] )

Most of the game rules can then be modelled as constraints in a straightforward way.
Some notable constraints regarding the production and consumptions rules and symmetry
breaking are described below:

The consumption rate of an item cannot exceed its production rate, because the item
must exist in the blueprint in order to be consumed. Likewise, the production rate of an
item cannot exceed its recipe rate.
If a number of inserters are assigned to interact with an assembler, all of the inserters
should be handling items at a non-zero rate. Furthermore, all inserters should operate at
their maximum rate, excluding one inserter handling the remaining items in case their
flow rate is not a multiple of the inserter rate. This means that for an assembler with
n > 0 inserters and inserter rate r, the rate at which the assembler’s production rate
must be between nr and (n − 1)r. Similar is true for the consumption rate.
An ordering is forced on the decision variables to eliminate symmetry. Active assemblers
are ordered by the item they produce, with ties broken by their inserter count. Each
solution now represents a unique assignment of assemblers and inserters.

4.3.2 Stage 2: Bin-Packing
This stage is given the number of assemblers (num_assemblers), along with their number
of attached inserters (as an array inserters of length num_assemblers). The blueprint
sources and destination tiles are given as an 0/1 matrix reserved indexed by [ys, xs].
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The decision variable assembler_layout indicates the tiles containing assemblers using
the occurrence representation [7]: an 0/1 matrix the same dimension as the blueprint. The
presence of an assembler is indicated with a 1 in the top-left tile containing the assembler.
To disambiguate which assembler an inserter is attached to, the axis of movement is needed,
but the exact direction is not important. This can be modelled as horizontal = 1 and
vertical = 2. So the decision variable inserter_layout representing the inserter layout is
similar to assembler_layout, but with int(0..2) as its domain. Additionally, an auxiliary
decision variable positions, which maps the assemblers to their attached inserters, is
included for more succinct constraints.

Like in the previous stage, it is possible that solutions of this stage are rejected by the
next stage. The model must remember previous solutions to avoid recreating them. Only
the assembler layout is stored because the next stage will check all possible arrangements of
inserters around each assembler (see Listing 6). The attempts matrix represents each layout
as a flattened array of length wh. Each coordinate (x, y) is mapped to index (y − 1)w + x.

Listing 6 Making sure that the solution is different from previous attempts.

given num_attempts : int(1..)
given attempts : matrix indexed by

[int(1..num_attempts), int(1..binW * binH)] of int(0..1)
forall n : int(1..num_attempts) .

flatten(assembler_layout) <lex attempts[n, ..] \/
flatten(assembler_layout) >lex attempts[n, ..],

Other constraints are straightforward and available from the linked repository.

4.3.3 Stage 3: Layout
The parameters are taken directly from the solutions of the previous stages. They describe
the blueprint dimension, the blueprint source and destination locations and item types, the
total number of item types, the recipes, the number of assemblers, and for each assembler:
which recipe it follows; how many inserters provide each item type; and how many inserters
retrieve the product from the assembler. This stage aims to generate a transport route so
that all assemblers receive the items they need. The decision variables regarding routing
and item carrying are as described in Section 4.2. Note that Stages 1 and 2 only model
inserters which interact with assemblers. Inserters used for splitting transport routes were
not considered.

The assembler_layout parameter, taken from the solution of Stage 2, defines which
tiles contain assemblers, but not which assemblers they contain. This increases the versatility
of each solution from the previous stage since all possible assignments of assemblers to
positions are evaluated, reducing the amount of communication between the stages. A
decision variable assignments is declared to track the mapping between the assemblers and
assembler_layout. Finally, as noted above, the positions of the inserters interacting with
the assemblers are not fixed in Stage 2, we merely check that they can fit in the blueprint
area. In this stage, we shall determine the final positions of these inserters.

The constraints modelling the routes and item flow are described in Section 4.2. Other
constraints are straightforward. Because item flow rates are no longer modelled, there is
a risk that optimality is lost in this stage. The model does not know how much of each
item is travelling along each route, so if a route is split, the items may not be distributed by
inserters in the optimal ratio. It is assumed that the optimal layout is so densely packed
that there is limited scope for this to occur.
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5 Result and Discussion

We have described a working solution for a new and interesting problem. The models, the
code to construct the parameters and some sample inputs and outputs can all be found in
the GitHub repository [12]. The presented solution is able to find solutions for non-trivial
problems, and could be effectively used as a game companion. Preliminary experiments
showed that a unified model able to tackle non-trivial inputs is not easily achievable. We
identified the need to represent the flow rates in Essence Prime as the main reason why
our unified model approach has not worked.

The developed multi-stage approach needs to generate parameter files, read solutions,
and step back to previous stages when an attempt fails. This back-and-forth communication
between each stage is detrimental to the model’s performance, as there are limits to what
information can be shared between stages. This weakness identifies a potential area for
future work.

More concretely, blueprints with an area of around 100 tiles can be generated in several
minutes. Beyond this size, runtimes increase rapidly and soon become intractable due to
the number of failed attempts and subsequent retrying of each stage. Given that there are
hundreds of items in Factorio that the player needs to produce to complete the game, it is
clearly unfeasible to optimise a complete factory. However, 100 tiles is enough to contain
several assemblers, meaning if each intermediate item is given its own blueprint, a modular
factory could be designed using this model. Clearly, the factory generated by this approach
is not necessarily optimal. Still, we conjecture that each sub-factory within it being optimal
would mean that the overall result would not be far from it.

Solutions generated by the presented approach have been closely inspected and observed
to be correct in the sense that they can be built in Factorio and will generate the intended
product, because the simplifications made do not introduce new behaviours to the model
that are not present in the game.

Removing some game features means that the rates of production predicted by the model
may not be the same as the in-game production rate. The most obvious display of this
inaccuracy is when item flow rates are low. The model cannot identify cases where inserters
will be starved of input, and may consider a layout valid despite some assemblers never
receiving their ingredients. This was a necessary compromise in order to develop a tractable
model. There also exist scenarios where item distribution on conveyors is sub-optimal due to
the final stage of the model not considering flow rates. This compromise had to be made to
ensure the model could solve even trivial instances.

We finally highlight that in gameplay terms, the usage of the term ‘optimal’ is subjective.
Through the paper we have tried to optimise the throughput of the factory. Still, some
players might instead prefer blueprints that can be scaled easily at the cost of maximum
efficiency.

5.1 Case Studies
We now illustrate the success of our approach with some example outputs. Figures 9a–9c
show outputs for a minimal 3x5 factory with assembler recipes having, respectively, 1:1, 2:1
and 1:2 ratios between the ingredient (Item 1) and the product (Item 2). The number of
inserters carrying items into and out of the assembler matches the ingredient-product ratio
of the recipe so that the assembler can work at full capacity, while also not having more
ingoing items than it could process nor more outgoing items than its production rate.

Figure 10 shows an output for a 5x6 instance with a 2:1 recipe ratio. As in the previous
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(a) Recipe requires Item 1 and
produce Item 2 in 1:1 ratio.

(b) Recipe requires Item 1 and
produce Item 2 in 2:1 ratio.

(c) Recipe requires Item 1 and
produce Item 2 in 1:2 ratio.

Figure 9 shows that the ratio of the ingoing and outgoing inserters adapt to different recipes.

Figure 10 Result for a 5x6
blueprint, where the top-left and
the top-right tiles are the blue-
print source and destination tiles
respectively.

(a) Item 2 is provided in the tile
to the right of the bottom-left tile.

(b) Item 2 is provided in the tile
two tiles to the right of the bottom-
left tile.

Figure 11 Results for 5x8 blueprint instances where Item 1
is provided in the bottom-left corner, but with different Item 2
source locations.
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Figure 12 An unintuitive result for an 8x8 blueprint instance.

example, the number of inserters matches the ratio of the recipe. This blueprint is large
enough to contain two assemblers, but it is not possible to configure a valid factory with two
assemblers, given the input and output locations. This example shows that the model is able
to handle situations where the optimal number of assemblers differs from the maximum.

Figure 11 exhibits several interesting behaviours. The output of one assembler is used
by another, showing that intermediate products can be created and transported for use as
an ingredient. Item 2 is demanded by two assemblers executing different recipes, which
are served by a continuous conveyor route, exhibiting the branching of transport routes.
Note that if Item 2 is provided at a rate of inserter_rate or lower, no items will reach the
second inserter. Because the layout stage does not model flow rates, this situation cannot be
handled optimally by the model; the optimal outcome would be the model identifying that
no valid blueprint exists. It should also be noted that the Factorio blueprint system does
not account for this - the player using the blueprint is responsible for providing items at a
sufficient rate to prevent starvation.

The bottom assembler uses a recipe which takes Items 1 and 2 and produces Item 3
in a 2:1:1 ratio. In Figure 10a, due to the location of the source tile of Item 2, there are
not enough spaces for the ingoing inserters to match the recipe ratio. However, the ratio is
matched in Figure 10b, where the source tile for Item 2 is one tile further to the right.

Figure 12 identifies complicated patterns that a human player is likely to miss. The
optimal blueprint may contain an unintuitive layout of objects in order to maximise the
number of assemblers. The objects seem randomly placed throughout the space in a pattern
a human player would probably never consider, opting instead for neat rows of assemblers
and straight transport routes.

Again, this raises an interesting point regarding the definition of an optimal factory. This
design is optimal for an 8x8 blueprint, but the optimal 9x9 blueprint for the same items
and recipes could look very different. Given that Factorio focuses heavily on expansion, an
easy-to-expand but slightly suboptimal blueprint might be preferred to an optimal blueprint
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that cannot be expanded. The concept of a blueprint being tileable is difficult to accurately
define and therefore constraint.

5.2 Future Work
In all examples analysed, most of the blueprint space is occupied by buildings. This matches
the assumption made previously that optimal blueprints are likely to be densely packed,
limiting the available space for transport routes longer than w + h tiles. A unified model
would allow us to mechanically search for the existence of optimal layouts with routes longer
than w + h tiles.

A solving technique that supports modelling continuous variables would greatly simplify
the model, hopefully allowing it to operate in a single stage. SMT solvers such as Z3[15]
have the expressive power to do so, and therefore it is something worth exploring.

More features of the game could be added to the model. The implementation of electrical
grids, underground conveyors, and more would enrich the model, making its output more
applicable for direct use in Factorio. However, this is also a tradeoff between fidelity and
model performance.

Different metrics could also be optimised. Instead of maximising the production rate in a
given area, the model could be given a target production rate and find the smallest factory
that achieves it. This would require a different set of models, since new parameters and a
different objective function would be needed.

As previously noted, an undesirable feature of the multi-stage approach is the lack of
communication between models. Therefore there are patterns identified by the solver on one
stage that are not carried to the next, which can result in some fruitless search. Finally, the
models can be improved by considering implied and symmetry breaking constraints. How
these can be as effective as possible considering the multi-stage approach should be studied.

References
1 Thiago Alves de Queiroz, Pedro Henrique Del Bianco Hokama, Rafael Crivellari Saliba

Schouery, and Flávio Keidi Miyazawa. Two-dimensional disjunctively constrained knapsack
problem: Heuristic and exact approaches. Computers & Industrial Engineering, 105:313–328,
2017. doi:https://doi.org/10.1016/j.cie.2017.01.015.

2 Shivam Duhan, Chengming Zhang, Wenyu Jing, and Mingqi Li. Factory optimization using
deep reinforcement learning ai. In Purdue Undergraduate Research Conference, 2019. URL:
https://docs.lib.purdue.edu/purc/2019/Posters/57.

3 L. R. Ford and D. R. Fulkerson. Maximal flow through a network. Canadian Journal of
Mathematics, 8:399–404, 1956. doi:10.4153/CJM-1956-045-5.

4 Martin Gebser, Tomi Janhunen, and Jussi Rintanen. SAT Modulo Graphs: Acyclicity. In
Logics in Artificial Intelligence - 14th European Conference, JELIA 2014, Funchal, Madeira,
Portugal, September 24-26, 2014. Proceedings, pages 137–151, 2014.

5 T. E. Harris and F. S. Ross. Fundamentals of a method for evaluating rail net capacit-
ies. Research Memorandum, page 399–404, 1955. URL: https://apps.dtic.mil/sti/pdfs/
AD0093458.pdf.

6 Manuel Iori, Vinícius L. de Lima, Silvano Martello, Flávio K. Miyazawa, and Michele Monaci.
Exact solution techniques for two-dimensional cutting and packing. European Journal of
Operational Research, 289(2):399–415, 2021. doi:https://doi.org/10.1016/j.ejor.2020.
06.050.

7 Christopher Jefferson and Alan M Frisch. Representations of sets and multisets in constraint
programming. In Proc. of the 4th Int. Workshop on Modelling and Reformulating Constraint
Satisfaction Problems, pages 102–116. Citeseer, 2005.

https://doi.org/https://doi.org/10.1016/j.cie.2017.01.015
https://docs.lib.purdue.edu/purc/2019/Posters/57
https://doi.org/10.4153/CJM-1956-045-5
https://apps.dtic.mil/sti/pdfs/AD0093458.pdf
https://apps.dtic.mil/sti/pdfs/AD0093458.pdf
https://doi.org/https://doi.org/10.1016/j.ejor.2020.06.050
https://doi.org/https://doi.org/10.1016/j.ejor.2020.06.050


16 Towards Automatic Design of Factorio Blueprints

8 Richard E. Korf, Michael D Moffitt, and Martha E. Pollack. Optimal rectangle packing. Annals
of Operations Research, 179:261–295, 2010. doi:10.1007/s10479-008-0463-6.

9 Andre Leue. Verification of factorio belt balancers using petri nets. Master’s thesis, Technische
Universität, Darmstadt, 2021. doi:https://doi.org/10.26083/tuprints-00017621.

10 Peter Nightingale, Özgür Akgün, Ian P. Gent, Christopher Jefferson, Ian Miguel, and Patrick
Spracklen. Automatically improving constraint models in Savile Row. Artificial Intelligence,
251:35–61, 2017. doi:https://doi.org/10.1016/j.artint.2017.07.001.

11 Peter Nightingale and Andrea Rendl. Essence’ description. 2016. arXiv:1601.02865 [cs.AI].
12 Sean Patterson. Modref23-factorio, 2023. GitHub repository. URL: https://github.com/

stacs-cp/ModRef23-Factorio.
13 Xiao Peng, Christine Solnon, and Olivier Simonin. Solving the non-crossing mapf with

cp. In CP 2021 - 27th International Conference on Principles and Practice of Constraint
Programming, pages 1–17, 2021. doi:10.4230/LIPIcs.CP.2021.20.

14 Kenneth N. Reid, Iliya Miralavy, Stephen Kelly, Wolfgang Banzhaf, and Cedric Gondro. The
factory must grow: Automation in factorio. In Proceedings of the Genetic and Evolutionary
Computation Conference Companion, page 243–244. Association for Computing Machinery,
2021. doi:10.1145/3449726.3459463.

15 Microsoft Research. Z3 theorem prover, 2012. URL: https://github.com/Z3Prover/z3.
16 Wube Software. Factorio. https://factorio.com/, 2013. Accessed: (05/07/2023).
17 Wube Software and Daniel James Taylor. Factorio - gameplay trailer 2016. URL: https:

//www.youtube.com/watch?v=KVvXv1Z6EY8&ab_channel=Factorio.
18 Jingjin Yu and Steven M. LaValle. Multi-agent path planning and network flow. In Algorithmic

Foundations of Robotics X, pages 157–173. Springer Berlin Heidelberg, 2013. doi:https:
//doi.org/10.1007/978-3-642-36279-8_10.

https://doi.org/10.1007/s10479-008-0463-6
https://doi.org/https://doi.org/10.26083/tuprints-00017621
https://doi.org/https://doi.org/10.1016/j.artint.2017.07.001
https://github.com/stacs-cp/ModRef23-Factorio
https://github.com/stacs-cp/ModRef23-Factorio
https://doi.org/10.4230/LIPIcs.CP.2021.20
https://doi.org/10.1145/3449726.3459463
https://github.com/Z3Prover/z3
https://factorio.com/
https://www.youtube.com/watch?v=KVvXv1Z6EY8&ab_channel=Factorio
https://www.youtube.com/watch?v=KVvXv1Z6EY8&ab_channel=Factorio
https://doi.org/https://doi.org/10.1007/978-3-642-36279-8_10
https://doi.org/https://doi.org/10.1007/978-3-642-36279-8_10

	1 Introduction
	2 Related Work
	3 Factorio
	4 The Model
	4.1 Model Parameters and Constants
	4.2 Representing the Game World
	4.3 Multi-Stage COP Model
	4.3.1 Stage 1: Recipes
	4.3.2 Stage 2: Bin-Packing
	4.3.3 Stage 3: Layout


	5 Result and Discussion
	5.1 Case Studies
	5.2 Future Work


