
Automated Nogood-Filtered Fine-Grained
Streamlining: A Case Study on Covering Arrays
Orhan Yiğit Yazıcılar #

School of Computer Science, University of St Andrews, St Andrews, Fife, KY16 9SX, United
Kingdom

Özgür Akgün #

School of Computer Science, University of St Andrews, St Andrews, Fife, KY16 9SX, United
Kingdom

Ian Miguel #

School of Computer Science, University of St Andrews, St Andrews, Fife, KY16 9SX, United
Kingdom

Abstract
We present an automated method to enhance constraint models through fine-grained streamlining,
leveraging nogood information from learning solvers. This approach reformulates the streamlining
process by filtering streamliners based on nogood data from the SAT solver CaDiCaL. Our method
generates candidate streamliners from high-level Essence specifications, constructs a streamliner
portfolio using Monte Carlo Tree Search, and applies these to unseen problem instances. The key
innovation lies in utilising learnt clauses to guide streamliner filtering, effectively reformulating the
original model to focus on areas of high search activity. We demonstrate our approach on the Covering
Array Problem, achieving significant speedup compared to the state-of-the-art coarse-grained method.
This work not only enhances solver efficiency but also provides new insights into automated model
reformulation, with potential applications across a wide range of constraint satisfaction problems.

2012 ACM Subject Classification Theory of computation → Constraint and logic programming

Keywords and phrases Constraint Programming, Constraint Modelling, Constraint Satisfaction
Problem

1 Introduction

Constraint Programming (CP) and SAT are ways of solving complex combinatorial problems.
Both of these methods require the problem to be formalised in a model that can be understood
by the solvers. Even with the help of the modern modelling techniques and software some
of these problem classes can be difficult to solve as their search spaces can be too vast to
search in a reasonable amount of time. Therefore, to make these hard instances solvable
the model can be constrained further so that the solver can strengthen its reasoning. These
additional constraints can speed up the search by removing branches from the search space
and detecting dead ends earlier.

These additional constraints can be categorised based on their soundness – constraints
that retain at least one solution if the instance is solvable – and ones that compromise
soundness in order to significantly accelerate the problem-solving. Implied constraints are
created from the initial model and therefore do not alter the solution set. Implied constraints
have been successfully created with Manual [18, 28] and Automated [7, 33, 10] approaches.
Other strategies include symmetry-breaking [12, 13, 15, 16, 19] and dominance-breaking [8, 27]
constraints effectively eliminate duplicate solutions within the same equivalence class while
ensuring the preservation of at least of solution in each class. These techniques, therefore,
align with the sound constraints category. When these techniques do not provide sufficient
reduction in search space or are inapplicable, streamlining constraints [20] can be employed for

mailto:oyy1@st-andrews.ac.uk
https://orcid.org/0009-0000-5665-6584
mailto:ozgur.akgun@st-andrews.ac.uk
https://orcid.org/0000-0001-9519-938X
mailto:ijm@st-andrews.ac.uk
https://orcid.org/0000-0002-6930-2686

2 Automated Nogood-Filtered Fine-Grained Streamlining

satisfiable instances. Streamliners do not guarantee soundness but offer significant speedups
by dissecting the search space to focus the search effort in promising areas.

Creating streamlined constraints for a specific model used to be a difficult and time-
consuming process. Small instances of a problem class were manually inspected to identify
patterns that could be exploited and used to support the creation of streamliners [20, 22].
Spracklen et al. [29] developed a pipeline to automatically generate candidate streamliners
from a model specification in the abstract constraint specification language Essence [17, 14]
using the automated constraint modeling system Conjure [3, 1, 2]. These candidate
streamliners were then applied to training instances using a Multi-Objective Monte Carlo
Tree Search (MO-MCTS) [32] with two objectives:

Applicability: The proportion of training instances that yield a solution when the
streamliner is applied.
Reduction: The average search reduction on satisfiable training instances.

Upon evaluating these streamliners against the listed objectives, a portfolio of streamliners is
constructed. This portfolio holds a collection of the most promising streamliners, optimized
for applicability and search reduction. The portfolio is then deployed on unseen instances
using various methods.

Apart from the enhancements implemented during the modelling phase, solvers contribute
significantly to expediting the search process by learning [11] nogoods while navigating
through the search space. Nogoods are essentially combinations of variable assignments
that are identified as not leading to a solution. Recognizing these can prevent the solver
from wasting time exploring useless paths. This learning mechanism is essential to modern
SAT and CP solvers, promoting a more informed and thus faster search. Modern SAT
solvers, including notable examples like CaDiCaL [5] and Kissat [6], incorporate an advanced
technique known as conflict-driven clause learning (CDCL) [24] to optimize their search
process. CDCL enables the solver to learn from its encounters with conflicts within the
search space. Whenever the solver reaches a contradiction or a dead end – where no variable
assignment can satisfy the constraints – instead of backtracking, it analyzes the conflict to
derive a new clause. This clause represents a nogood and is added to the problem’s constraint
set, ensuring that the same conflicting scenario is not revisited. CP solvers like Chuffed
[9] use lazy clause generation (LCG) [25, 30], a technique similar to CDCL. In, LCG the
solver dynamically generates clauses during the search process, rather than statically before
execution. LCG combines the power of SAT solving with the expressiveness and flexibility of
CP.

Shishmarev et al. revealed that nogoods inferred by learning solvers such as Chuffed during
model execution could be leveraged to enhance model performance [28]. They identified that
when model constraints don’t propagate strongly enough to prevent search failure, nogoods
come into play. Connecting the nogoods to the constraints that produced them, they were
able to manually modify existing constraints or introduce new implied constraints, enhancing
propagation and overall model performance. Zeighami et al. enhanced the process explained
above by turning it into a semi-automatic process rather than a manual one [33].

This paper’s primary contribution is to generate fine-grained streamliners by utilising the
information derived from the nogoods produced by learning solvers and implementing this
knowledge automatically. To accomplish this, we utilized the existing pipeline developed by
Spracklen et al. to construct a portfolio of streamliners. Unlike the original approach, which
divided the variable domains into two bins, our method splits them into ten bins. While the
preexisting pipeline is theoretically capable of handling ten bins, the exponential increase

O. Y. Yazıcılar, Ö. Akgün, I. Miguel 3

in possible combinations as more bins are added renders the training time computationally
infeasible.

Our approach leverages nogoods generated by the SAT solver CaDiCaL to pinpoint
areas where extensive search activity occurs, as nogoods indicate locations where the search
encounters dead-ends. By identifying these critical areas, we can implement streamlining
constraints that enable the solver to avoid these dead-ends. This strategic avoidance
significantly accelerates the search process, demonstrating the practical benefits of our refined
streamliner generation method. Our approach not only enhances the efficiency of the solver
but also sets a precedent for future research in optimizing search algorithms through the
application of information gained by nogoods.

2 Covering Array Problem

The Covering Array Problem was specifically chosen for our experiments due to its demon-
strated responsiveness to streamlining techniques. In previous research by Spracklen et al.,
this problem class showed remarkable speedups when solved using the CDCL Lingeling
SAT solver [4] in conjunction with their coarse-grained streamlining approach. Given these
promising results, we were particularly interested in exploring how our new fine-grained,
nogood-filtered streamlining method would perform on a problem class already known to be
highly responsive to streamlining. This choice allows us to not only evaluate the absolute per-
formance of our new method but also to directly compare its effectiveness against a previously
successful approach, potentially highlighting the incremental benefits of our fine-grained,
nogood-informed streamlining strategy. The Covering Array Problem is a fundamental
combinatorial design problem with significant applications in software testing, hardware
testing, and experimental design. It involves constructing a matrix with specific coverage
properties, which can be used to efficiently test interactions between different components or
parameters of a system.

Formally, a covering array CA(t, k, g) of size b and strength t is a k × b array A = (ai,j)
over Zg = 0, 1, 2, . . . , g − 1 with the property that for any t distinct rows 1 ≤ r1 < r2 <

· · · < rt ≤ k, and any member (x1, x2, . . . , xt) of Zt
g, there exists at least one column c such

that xi = ari,c for all 1 ≤ i ≤ t. The covering array number CAN(t, k, g) is defined as the
smallest b such that there exists a CA(t, k, g) of size b [21].

Informally, this definition means that any t distinct rows of the covering array must
encode, column-wise, all numbers from 0 to gt −1, allowing repetitions. This property ensures
that all possible t-way interactions between the parameters are tested at least once.

For example, consider a covering array CA(3, 5, 2) over the Boolean alphabet 0, 1. A
solution is shown in Figure 1. In this array, any t = 3 rows encode all numbers from 0 (when

0 0 0 0 0 1 1 1 1 1
0 0 0 1 1 0 0 1 1 1
0 0 1 0 1 0 1 0 1 1
0 1 0 0 1 0 1 1 0 1
0 1 1 1 0 1 0 0 0 1

Figure 1 A Solution for CA(3, 5, 2).

the respective elements are 0, 0, 0) to 23 − 1 = 7 (when the elements are 1, 1, 1). For instance,
the top three rows encode the sequence 0, 0, 1, 2, 3, 4, 5, 6, 7, 7 from left to right, while the
bottom three rows encode 0, 3, 5, 1, 6, 1, 6, 2, 4, 7.

The Essence specification of the Covering Array Problem is as follows:

4 Automated Nogood-Filtered Fine-Grained Streamlining

1 language Essence 1.3
2 given t : int (1..)
3 given k : int (1..)
4 given g : int (2..)
5 given b : int (1..)
6 where k>=t, b>=g**t
7 find CA: matrix indexed by [int (1..k), int (1..b)] of int (1..g)
8 such that
9 forAll rows : sequence (size t) of int (1..k) .

10 (forAll i : int (2..t) . rows(i -1) < rows(i)) ->
11 forAll values : sequence (size t) of int (1..g) .
12 exists column : int (1..b) .
13 forAll i : int (1..t) .
14 CA[rows(i), column] = values (i)
15 such that forAll i : int (2..k) . CA[i -1 ,..] <=lex CA[i ,..]
16 such that forAll i : int (2..b) . CA[..,i -1] <=lex CA[..,i]

Figure 2 An Essence specification of the Covering Array Problem (Problem 45 at CSPLib.org).

This specification defines the structure and constraints of the Covering Array Problem,
forming the basis for our streamlining experiments. By applying our fine-grained streamlining
approach to this problem, we aim to demonstrate the effectiveness of our method in reducing
search effort and improving solver performance.

3 Architecture

We begin by explaining the architecture of the underlying system that generates, evaluates,
and selects streamlining constraints for a problem class of interest. The streamlining
implementation has three distinct phases. Firstly, candidate streamliners are generated from
an Essence specification using the automated modelling tool Conjure. Secondly, these
candidate streamliners are joined together to create a portfolio of streamliners. Lastly, given
an unseen instance streamliners are selected from the portfolio and used in solving.

3.1 Phase 1: Generating Candidate Streamliners
Given a problem specification in Essence the automated modelling tool Conjure generates
candidate streamliners using a set of encoded rules. There are different rules for each of the
possible decision variable types in an Essence specification. Spracklen et al. [29] explain
the detailed process of how Conjure derives these candidate streamliners by leveraging the
high-level structure of the Essence specification.

Our current approach generates a larger set of candidate streamliners. This is achieved
by retaining the original candidates generated by Spracklen et al. and by splitting each
dimension of a given decision variable in 10 bins, we create additional candidate streamliners
that apply to each of these bins. The new rules are fully described and the generation process
is explained in Section 4.

3.2 Phase 2: Creating a Portfolio of Streamliners
Once the candidate streamliners are generated, the next phase involves combining these
streamliners to form a robust portfolio. This is achieved by evaluating the effectiveness of

O. Y. Yazıcılar, Ö. Akgün, I. Miguel 5

each streamliner individually and in combination with others. The objective is to create a
portfolio that balances the trade-off between reducing the search space and maintaining a
high probability of finding a solution. This involves a search process that explores various
combinations of streamliners, using metrics such as applicability and search reduction to
guide the selection of the most effective combinations.

Before starting to run the training instances with the streamliners, we run them without
streamliners to establish a performance baseline. While running each of these training
instances, we store the learnt clauses generated by CaDiCaL [5] for each of them. These
learnt clauses are then parsed and binned according to which part of the decision variable
they apply. As these learnt clauses are only generated when the search fails, we can identify
where most of the search activity happens for a given problem class. An example of the
binning process for the Covering Array Problem can be seen in Figure 3. This activity metric
is then used to filter the candidate streamliners, retaining streamliners that only affect the
bins where most of the search activity occurs. For example, in the Covering Array Problem,
the approach by Spracklen et al. generates 144 candidate streamliners. Initially, our approach
generates 280 candidate streamliners, which would be extremely costly to create a portfolio
from. However, once filtered using the learnt clauses, we are left with only 48 streamliners.
The binning process is fully explained in Section 5.

Figure 3 Heatmap showing the distribution of matrix indices in CaDiCaL nogoods for the
Covering Array Problem. The values represent the percentage of occurrences within specific ranges
of row and column indices. Lighter colors indicate higher percentages of nogood occurrences in those
areas.

A Monte Carlo Tree Search (MCTS) method is then used to explore the space of
streamliner combinations, evaluating their performance on the training instances. The search
aims to identify non-dominated combinations, forming a Pareto front that represents the

6 Automated Nogood-Filtered Fine-Grained Streamlining

best trade-offs between applicability and search reduction. This method ensures that the
resulting portfolio contains streamliners with complementary strengths, enhancing the overall
performance across diverse instances. Portfolio creation is explained in detail in Section 6.

3.3 Phase 3: Streamliner Selection and Application
In the final phase, the constructed portfolio is used to solve unseen instances of the problem
class. Several methods can be employed to select the most appropriate streamliner or
combination of streamliners from the portfolio. These methods range from simple approaches
to more computationally expensive techniques.

One simple method is to select the single best streamliner based on average performance
across the training instances. Another approach is the applicability-first method, which
chooses the streamliner that maintains the highest applicability (i.e., the proportion of
instances for which the streamliner retains at least one solution). Alternatively, the reduction-
first method selects the streamliner that achieves the greatest average reduction in solving
time for the training instances.

For more complex methods, AutoFolio [23] can be trained on the training instances.
AutoFolio uses machine learning techniques to predict which streamliner to apply to test
instances based on instance features. This approach leverages the historical performance
data of the streamliners and the characteristics of the instances to dynamically select the
most effective streamliner for each unseen instance, leading to significant improvements in
solving time.

4 Candidate Streamliner Generation

The automatic generation of candidate streamliners is the foundation of our approach. This
process enables the exploration of a wide range of potential streamlining constraints without
manual intervention, a task that traditionally required substantial human expertise and time
investment. Our method capitalises on the rich structure present in Essence specifications
to produce streamliners that can significantly reduce the search space while retaining at least
one solution. Essence, as a high-level problem specification language, provides abstract
type constructors such as set, multiset, function, and relation.

4.1 Streamlining Rules
The generation of candidate streamliners is accomplished through the application of a system
of streamlining rules. These rules operate on the domains of Essence terms, which may
refer to decision variables or components thereof. Each rule takes such a domain as input
and yields a constraint that is then applied to the corresponding term. A key strength of our
approach lies in its ability to handle the complex, nested structures that Essence’s abstract
domains can embody. The language allows for arbitrary nesting of domain constructors, and
our streamlining rules are designed to exploit this hierarchical structure fully.

To achieve this, we employ a system of higher-order rules. These allow a rule initially
defined for a simple domain D to be “lifted” to operate on more complex domains constructed
from D. For instance, a rule can be automatically adapted to work on domains of the form
“set of D”, “multiset of D”, “function of D”, “relation of D”, and so forth.

This lifting mechanism greatly enhances the versatility and power of our streamliner
generation process. It allows a relatively small set of base rules to generate a wide variety of
streamliners, capable of capturing intricate patterns and regularities across diverse problem

O. Y. Yazıcılar, Ö. Akgün, I. Miguel 7

structures. Furthermore, it ensures that our system can handle the full expressive power of
Essence, adapting seamlessly to whatever complex domain structures a problem specification
might employ. To produce a diverse set of candidate streamliners, we employ rules that are
categorised into two classes:

1. First-order rules: These rules operate directly on the domains of decision variables,
imposing constraints that narrow the search space. For instance, they might restrict
integer variables to odd or even values, enforce monotonicity on function variables, or
apply specific properties to relation variables. These rules form the foundation of the
streamliner generation process, capturing fundamental patterns that may arise across
various problem classes.

2. High-order rules: These more complex rules take other rules (either first-order or
higher-order) as arguments, extending their application to decision variables with nested
domains.

This two-tiered approach allows the system to generate streamliners of varying complexity,
from simple domain restrictions to intricate constraints on nested structures. The first-order
rules are identical to those created by Spracklen et al. [29], and therefore will not be
re-explained here. However, to generate the fine-grained streamlining rules, two additional
high-order rules were added.

Name matrixByRowBucket
Works on 2D matrices.

Param R (another rule)
Param b (bucket id, from 0 to 9)
Input X: matrix indexed by [I, J] of K
Define lb as lower bound of I
Define ub as upper bound of I
Define s as the bucket size, (ub - lb + 1) / 10
Output forAll r : int(lb+s*b .. min([ub, lb+s*(b+1)]))

. R(X[r,..])

Name matrixByColumnBucket
Works on 2D matrices.

Param R (another rule)
Param b (bucket id, from 0 to 9)
Input X: matrix indexed by [I, J] of K
Define lb as lower bound of J
Define ub as upper bound of J
Define s as the bucket size, (ub - lb + 1) / 10
Output forAll r : I

forAll c : int(lb+s*b .. min([ub, lb+s*(b+1)]))
. R(X[r,c])

Figure 4 Higher-order streamlining rules for matrix domains implemented for fine-grained
streamlining.

Figure 4 presents the two high-order streamlining rules designed for fine-grained stream-
lining of 2D matrices: matrixByRowBucket and matrixByColumnBucket. Both streamliners
operate on similar principles but focus on different dimensions of the matrix. They take two

8 Automated Nogood-Filtered Fine-Grained Streamlining

parameters: R, which is another rule to be applied, and b, a bucket identifier ranging from 0
to 9. Both of these streamliners work on a 2D matrix as shown by the input field. These
streamliners divide the matrix into 10 buckets along either the rows or columns.

The matrixByRowBucket streamliner focuses on rows. It calculates a bucket size by
dividing the number of rows by 10. The streamliner then applies the rule R to a subset of
rows determined by the bucket identifier b. For example, if b = 3, the streamliner would
apply R to rows in the fourth decile of the matrix. For each row r that is inside the selected
bucket, rule R is applied to the entire row X[r,..].

The matrixByRowBucket streamliner operates on columns. It calculates a bucket size by
dividing the number of columns by 10. The streamliner then applies the rule R to a subset
of columns determined by the bucket identifier b. This streamliner applies R to individual
elements within the selected column bucket for each row. Specifically, for each row r in the
matrix and each column c that is inside the selected bucket, rule R is applied to the individual
value X[r,c].

Both of these streamliners use the minimum function to ensure that the last bucket,
which might not contain the same number of rows/columns as other buckets is handled
appropriately. For example, if we had a matrix with 97 rows, each bucket would have⌈ 97

10
⌉

= 10 rows, except for the last one. The last bucket would contain rows 91 to 97.
However, without the minimum function, we would get the following range for the last bucket:
int(1+10*9..1+10*10), which simplifies to int(91..101). With the minimum function, we get
int(91..min(97, 101)) so the range is correctly set to int(91..97), accurately representing
the boundaries of the streamlined matrix.

The division of each dimension into 10 bins in these new streamlining rules was an arbitrary
choice in this initial implementation. We acknowledge that this selection was not based on
any specific theoretical or empirical optimization. The number 10 was chosen as a starting
point that seemed to offer a reasonable balance between granularity and computational
feasibility. It’s important to note that the optimal number of bins may vary depending on
the problem domain and instance size. While 10 bins allow us to demonstrate the concept
and potential benefits of this more granular approach to streamlining, we recognize there is
room for optimization. In future work, we plan to explore the impact of different bin sizes
(e.g., 5, 8, or 15) on both the quality of streamlining and computational efficiency.

5 Binning Learnt Clauses to Filter Candidate Streamliners

A key innovation in our approach is the utilisation of learnt clauses from the SAT solver
CaDiCaL to filter and refine the set of candidate streamliners. This process allows us to
focus on the most promising areas of the search space, significantly reducing the number
of streamliners that need to be evaluated whilst maintaining or even improving overall
performance.

5.1 Binning Process
During the initial solving phase, we run each training instance without any streamliners to
establish a baseline performance. Concurrently, we collect the learnt clauses generated by
CaDiCaL throughout the solving process. These clauses represent combinations of variable
assignments that have been proven to lead to conflicts, effectively capturing the solver’s
“knowledge” about the problem structure and difficult areas of the search space. Once the
learnt clauses are collected, we parse and categorise them based on which parts of the decision
variables they affect. For matrix-based problems like the Covering Array, this involves

O. Y. Yazıcılar, Ö. Akgün, I. Miguel 9

mapping each clause to specific rows and columns of the matrix. We divide each dimension
of the decision variable into ten bins. For instance, in a 100x100 matrix, each bin would
represent a 10x10 submatrix. The learnt clauses are then assigned to these bins based on
the variables they contain. This process creates a heatmap, as shown in Figure 3, indicating
where the solver encountered the most difficulties during the search. This approach offers
several key benefits:

1. Enhanced Portfolio Construction: By significantly decreasing the number of can-
didate streamliners, we can explore streamliner combinations more thoroughly within
the same computational budget. This allows the portfolio construction phase to uncover
more complex and potentially synergistic combinations of streamliners, leading to more
robust and effective streamlining strategies.

2. Focused Streamlining: The retained streamliners are more likely to address the most
challenging aspects of the problem, as identified by the concentration of learnt clauses
affecting the area. This targeted approach potentially leads to greater search reductions
and more efficient problem solving.

3. Problem-Specific Adaptation: The binning process adapts to the specific characterist-
ics of each problem class, as reflected in the distribution of learnt clauses. This flexibility
allows our method to be effective across a wide range of problem types and instances.

These benefits collectively contribute to a more efficient and effective streamlining process,
leveraging the power of modern SAT solvers to guide the streamlining process and improve
overall constraint model performance.

5.2 Finer-grained Streamlining
In our current implementation, bins are associated with some number of rows or columns,
as the candidate streamliners we generate affect entire rows or columns. This approach
allows us to focus on the most problematic areas of the matrix while keeping the number
of streamliners manageable. This method could be made finer-grained, leading to more
precise streamlining, although at the cost of significantly increasing the number of candidate
streamliners and therefore presenting a greater computational challenge. The increased
number of streamliners and their combinations would require substantially more processing
time and resources to evaluate effectively. Furthermore, overly specific streamliners might
risk overfitting to the training instances, potentially reducing their effectiveness on unseen
problems.

6 Creating the Streamliner Portfolio

The creation of an effective streamliner portfolio is a crucial component of the approach.
The process involves exploring the space of possible streamliner combinations to identify
those that provide the best balance between applicability and search reduction. The method
has evolved significantly, building upon the original approach by Spracklen et al. [29] while
introducing several key enhancements.

In the original implementation by Spracklen et al., a single-threaded Multi-Objective
Monte Carlo Tree Search (MO-MCTS) was employed to traverse the lattice of streamliner
combinations. This search aimed to build a portfolio of non-dominated streamliners, where
domination was defined across two objectives: applicability (the proportion of training
instances for which the streamlined model admits a solution) and search reduction (the mean
search reduction achieved on satisfiable instances).

10 Automated Nogood-Filtered Fine-Grained Streamlining

The original process involved four main phases:

1. Selection: Starting from the root node, the Upper Confidence Bound (UCT) policy was
applied to traverse the explored part of the lattice until reaching an unexpanded node.

2. Expansion: A random admissible child was selected and expanded.
3. Simulation: The collection of streamliners associated with the expanded node was

evaluated, calculating the applicability and reduction across the set of training instances.
4. Back Propagation: The new combination was tested for Pareto dominance against the

current portfolio. If non-dominated, it was added to the portfolio, potentially replacing
dominated combinations. The result updated reward values throughout the lattice,
guiding future search.

To improve upon this foundation, several enhancements have been introduced. Firstly, a
multi-threaded approach to portfolio construction has been implemented. This allows for the
simultaneous evaluation of multiple streamliner combinations, significantly reducing the time
required to build a comprehensive portfolio. The number of threads is configurable, enabling
optimal utilisation of available computational resources. Secondly, a new method for pruning
the search space of streamliner combinations has been introduced. In addition to the existing
pruning strategies, a technique that skips combinations if they don’t have any common
satisfiable instances is now used. This is achieved by maintaining a set of satisfiable instances
for each streamliner and only evaluating combinations where the intersection of these sets
is non-empty. This approach drastically reduces the number of unnecessary evaluations,
particularly for more aggressive streamliners that tend to render many instances unsatisfiable.

To understand how the pruning technique for the streamliner combinations works in prac-
tice, let’s consider a simplified example. Consider a scenario with 5 instances {A, B, C, D, E}
and 2 streamliners {S1, S2}. Initially, the original model (empty set of streamliners) is
satisfiable on all instances. Streamliner S1 is satisfiable on instances {A, C, E}, while S2 is
satisfiable on {B, D, E}. When evaluating the combination S1 + S2, we first check the inter-
section of their satisfiable instances: {A, C, E} ∩ {B, D, E} = {E}. Since this intersection is
non-empty, we proceed to evaluate S1 + S2, but only on instance E. If S1 + S2 is satisfiable
on E, its set of satisfiable instances becomes {E}; if unsatisfiable, S1 + S2 would be pruned.
This approach significantly reduces evaluations: instead of testing S1 + S2 on five instances,
we only evaluated it on 1. Moreover, if S1 and S2 has no common satisfiable instances,
we would have skipped evaluating their combination entirely. This pruning technique is
especially effective for aggresive streamliners that ofter render many instances unsatisfiable,
as it quickly identifies and avoids overly restrictive combinations.

7 Experimental Results

To evaluate our fine-grained streamliner generation approach, we conducted experiments on
the Covering Array Problem. This section details the results, comparing our method against
the coarse-grained approach and examining the impact of filtering streamliners using learnt
clause information.

7.1 Experimental Setup

We utilised the Covering Array Problem as our benchmark due to its inherent complexity and
the potential benefit from streamlining techniques. The experiments followed the pipeline

O. Y. Yazıcılar, Ö. Akgün, I. Miguel 11

developed by Spracklen et al. [29], with significant modifications to integrate our fine-
grained streamliner generation and filtering approach. The instances were executed using
the CaDiCaL SAT Solver.

All experiments were performed on compute nodes equipped with two 2.1 GHz, 18-core
Intel Xeon E5-2695 processors, ensuring a robust and consistent hardware environment. The
streamliner portfolio construction phase utilised 30 cores and was allocated a maximum
walltime of 2 days, allowing for extensive exploration and generation of streamliners.

Three groups of streamliners were evaluated: Coarse, Fine, and Fine Filtered. The
Coarse group utilised the original coarse-grained streamliners developed by Spracklen et al.
The Fine group consisted of our novel fine-grained streamliners, generated by dividing each
dimension of a decision variable into 10 bins, thus providing a more detailed approach. The
Fine Filtered group included fine-grained streamliners that were further refined by filtering
using learnt clause information from the CaDiCaL SAT Solver.

For each group, three selection strategies were applied: Reduction First, Applicability
First, and Oracle. The Reduction First strategy involved selecting the streamliner with the
greatest average reduction in solving time for the training instances, prioritising performance
gains. The Applicability First strategy focused on choosing the streamliner with the highest
applicability across training instances, ensuring broad usability. The Oracle strategy, an
idealised approach, always selected the best-performing streamliner for each instance, repres-
enting the theoretical upper bound of performance and serving as a benchmark for the other
strategies.

To ensure a meaningful evaluation, we carefully selected problem instances with base
runtimes between 300 and 3,600 seconds. This range was chosen to focus on moderately
difficult to challenging problems, excluding trivial instances that might not benefit significantly
from streamlining techniques and extremely hard instances that could skew our results. The
selected instances were divided into five folds for robust cross-validation. Each fold was used
as a test set once, with the remaining folds serving as training data. This division allowed
for a comprehensive evaluation of our streamliner generation and selection strategies across
a variety of instance subsets.

7.2 Performance Comparison
The results demonstrate the effectiveness of our fine-grained streamliner generation, particu-
larly when combined with learnt clause information filtering. Figure 5 shows speedup evolution
across five folds, and Table 1 summarises the average speedups for different strategies. A
speedup of less than 2 times is considered a loss, as running the streamlined model alongside
the unstreamlined model effectively doubles computational resources used. Thus, a speedup
of at least 2 times is necessary to justify the additional resource consumption.

Problem Class Streamliner Group Reduction First Applicability First Oracle
Covering Array Coarse 5.45 5.41 5.69

Fine 6.81 6.38 7.56
Fine Filtered 10.03 8.96 10.21

Table 1 Average Speedups for Different Strategies (Maximum Common Iteration Between All
Folds)

A critical factor in the performance of each approach is the number of streamliners
generated: 144 for the Coarse approach, 280 for the Fine approach (unfiltered), and 48
for the Fine Filtered approach. The large number of streamliners in the Coarse and Fine

12 Automated Nogood-Filtered Fine-Grained Streamlining

0 50 100
0

5

10

15

Iteration

Sp
ee

du
p

Fold 0

0 50 100 150
0

5

10

Iteration

Sp
ee

du
p

Fold 1

0 50 100
0

5

10

15

Iteration

Sp
ee

du
p

Fold 2

0 50 100
0

5

10

Iteration
Sp

ee
du

p

Fold 3

0 50 100
0

5

10

15

Iteration

Sp
ee

du
p

Fold 4 Coarse - RedFirst
Coarse - AppFirst

Coarse - Oracle
Fine - RedFirst
Fine - AppFirst

Fine - Oracle
FineFiltered - RedFirst
FineFiltered - AppFirst

FineFiltered - Oracle

Figure 5 Speedup Evolution for each Fold (Samples Were Taken Every 20 Iterations)

approaches made it computationally infeasible to explore many combinations within the
time budget, limiting these approaches to using individual streamliners only. In contrast, the
Fine Filtered approach, with a more manageable set of 48 streamliners, could evaluate and
combine streamliners, discovering synergistic effects and significantly better performance.

The Fine Filtered - Reduction First strategy achieves the highest average speedup of
10.03x, a significant improvement over the best Coarse approach performance of 5.45x. The
Fine Filtered approach completes more iterations within the same time budget compared
to the Coarse and Fine approaches. This efficiency stems from targeting areas where the
solver encountered the most deadends, as identified by learnt clause information. The smaller
streamliner set allows for quicker evaluation and combination, further reducing the search
space and enabling faster solutions. This targeted and efficient approach maintains superior
performance across all folds, suggesting its robustness and potential for generalisation to
unseen instances. To illustrate the effectiveness of our Fine Filtered - Reduction First strategy,
consider a Covering Array instance that typically requires one hour (3600 seconds) to solve
using the original, unstreamlined model. The Coarse approach, with its average speedup of
5.45x, would reduce this solving time to about 11 minutes (660 seconds). However, our Fine
Filtered - Reduction First strategy, achieving an average speedup of 10.03x, further cuts the
solving time to just 6 minutes (359 seconds).

Table 2 compares the final streamliner portfolios for each group on Fold 0 of the Covering

O. Y. Yazıcılar, Ö. Akgün, I. Miguel 13

Streamliner Group Streamliner Avg Applicability Overall Reduction
Coarse 295 88.2% 70.0%

423 88.9% 54.8%
299 91.0% 45.9%

Fine 47 92.4% 77.4%
43 96.5% 51.9%
20 93.1% 68.8%
19 95.1% 61.5%

Fine Filtered 240 97.2% 80.0%
24 96.5% 82.8%

13-239 95.8% 84.6%
13-230 93.1% 84.1%
23-229 93.8% 84.0%

Table 2 Comparison of the final streamliner portfolios for each group on Fold 0. The table
presents the streamliner identifiers which are used by Conjure to know which streamliner to apply,
average applicability (percentage of instances where the streamliner maintains at least one solution),
and overall reduction in search time for satisfiable instances. Each row represents a streamliner in
the final portfolio. The Fine Filtered group shows a larger and more diverse portfolio with generally
higher applicability and reduction rates compared to the Coarse and Fine groups.

Array Problem, highlighting the effectiveness of our fine-grained, nogood-filtered streamlining
approach. The Coarse group shows moderate performance with applicability ranging from
88.2% to 91.0% and reduction rates of 45.9% to 70.0%. The Fine group demonstrates
improvement, with higher applicability (92.4% to 96.5%) and better reduction rates, peaking
at 77.4%. The Fine Filtered group, however, exhibits the most promising results, with high
applicability rates above 93% and reduction rates from 80.0% to 84.6%. This group’s portfolio
includes combinations of streamliners, indicating synergistic effects. The superior performance
of the Fine Filtered group can be attributed to the precision of fine-grained streamlining and
the targeted focus provided by nogood-based filtering, which effectively narrows streamliner
generation to problematic areas of the search space. Although the Fine approach would
theoretically discover the same effective candidates as the Fine Filtered approach given
sufficient time and resources, the filtering process significantly accelerates discovery, making
it feasible within practical time constraints and with more modest computational requirements.
The remaining tables corresponding to the other folds can be found in Appendix A.

The final streamliner portfolios for Fold 0 of the Covering Array Problem, as shown
in Table 2, comprise from various streamliners for the Coarse, Fine, and Fine Filtered
approaches. To better understand the performance differences observed in the table, let’s
examine the specific constraints imposed by each of these streamliners in Fold 0:

The Coarse approach streamliners (295, 423, and 299) represent different strategies for
imposing broad constraints on the covering array CA. Streamliner 295 enforces a near-
balanced distribution in each row of CA, requiring that the number of cells with values less
than or equal to the midpoint falls within a narrow range: between (b/2) − 1 and (b/2) + 1,
allowing for only minor deviations from an exact 50-50 split in each row. Streamliner 423
focuses on the rows of CA, requiring that at most half of all rows (k/2) have at most half of
their cells containing values not exceeding the midpoint, ensuring that a significant portion
of the rows have a majority of higher values. Streamliner 299 sets a minimum threshold for
lower values in every row of CA, stating that in each row, at least half of the cells must
contain values less than or equal to the midpoint.

The Fine approach streamliners (47, 43, 20, and 19) focus on specific sections of the

14 Automated Nogood-Filtered Fine-Grained Streamlining

covering array CA, applying constraints to targeted ranges of rows. Streamliner 47 ensures
that in the second 10% of rows, at most half of the cells in each row have values less than or
equal to the midpoint. Streamliner 43, applied to the same range of rows, requires that at
least half of the cells in each row have values less than or equal to the midpoint. Streamliner
20 targets the first 10% of rows, specifying that at least half of the cells in each row have
values greater than the midpoint. Streamliner 19, also focusing on the first 10% of rows,
requires that at least half of the cells in each row have values less than or equal to the
midpoint.

The Fine Filtered approach streamliners (240, 24, 13, 239, 230, 229, and 23) apply
targeted constraints to specific portions of the covering array CA, focusing on either the
first 10% or last 10% of rows. Streamliners 24 and 240 ensure that at most half of the
cells in each row have values greater than the midpoint in the first and last 10% of rows,
respectively. Streamliner 23 requires that at most half of the cells in each row have values
less than or equal to the midpoint in the first 10% of rows, while Streamliner 239 applies the
same constraint to the last 10% of rows. Streamliners 13 and 229 balance the number of
odd-valued cells around the midpoint in the first and last 10% of rows, respectively, ensuring
this count falls between (b/2) − 1 and (b/2) + 1. Streamliner 230 applies a similar balancing
constraint for even-valued cells in the last 10% of rows.

8 Comparison to Sampling-Based Methods

While our approach focuses on streamlining to find a single solution efficiently, it shares
conceptual similarities with recent sampling-based methods in constraint programming. Two
notable works in this area are particularly relevant: Vavrille et al.[31] proposed adding
randomly generated table constraints to reduce the solution space, aiming to improve
sampling randomness while maintaining efficiency. Their method divides the search space
by adding random hashing constraints until only a small, tractable number of solutions
remain. Similarly, Pesant et al.[26] introduced linear modular equality constraints to partition
the solution space into roughly equal-sized cells, aiming for near-uniform sampling with
probabilistic guarantees.

Despite these similarities, our approach differs in several key aspects. Firstly, our primary
objective is to find a single solution efficiently, rather than sampling uniformly from the
solution space. Secondly, we generate streamliners based on the problem structure specified
in Essence, allowing for more tailored search space reduction, whereas the sampling methods
use more generic constraints. Thirdly, our approach leverages nogood information to guide
the application of streamliners, potentially focusing on more promising areas of the search
space, while the sampling methods aim for a more uniform exploration. Lastly, the sampling
methods provide probabilistic guarantees about the uniformity of their samples, which our
method does not aim to do.

The effectiveness of these sampling approaches in partitioning the search space suggests
potential avenues for future work in our streamlining framework. For instance, incorporating
linear modular equality constraints as streamliners might offer an interesting alternative to
our current approach, potentially providing stronger theoretical properties. Additionally,
adapting our use of nogood information to guide search space partitioning for sampling
purposes could lead to a hybrid approach that combines the strengths of both streamlining
and sampling methods. While our current focus remains on finding a single solution quickly,
these ideas from sampling methods could potentially enhance the versatility and effectiveness
of our streamlining approach in future iterations.

O. Y. Yazıcılar, Ö. Akgün, I. Miguel 15

9 Conclusion

In conclusion, our proposed method of utilizing nogood information from learning solvers
to generate fine-grained streamliners has demonstrated significant improvements in solver
efficiency for constraint satisfaction problems. By splitting variable domains into multiple bins
and filtering streamliners based on learnt clause information, we have achieved a substantial
reduction in search space and solving time.

Our experimental results on the Covering Array Problem show that the fine-grained,
filtered approach outperforms the coarse-grained method, achieving higher average speedups
and more efficient solver performance. However, there are several areas for future improvement.
Firstly, our current implementation has been primarily tested on the Covering Array Problem.
To ensure the robustness and generalisability of our approach, it is essential to test it on
a wider range of problem classes. This will help identify any limitations and further refine
the methodology to enhance its applicability across various CSPs. Secondly, our approach
currently supports only matrices as decision variables. For broader applicability, it is crucial
to extend support to all Essence datatypes. This will enable the generation of streamliners
for a more diverse set of problems, enhancing the versatility and utility of our approach in
real-world scenarios. By addressing these issues, we can further improve the effectiveness
and applicability of our fine-grained streamliner generation method, paving the way for more
efficient and scalable solutions to complex constraint satisfaction problems.

References

1 Özgür Akgün. Extensible automated constraint modelling via refinement of abstract problem
specifications. PhD thesis, University of St Andrews, 2014.

2 Özgür Akgün, Alan M Frisch, Ian P Gent, Christopher Jefferson, Ian Miguel, and Peter
Nightingale. Conjure: Automatic generation of constraint models from problem specifications.
Artificial Intelligence, 310:103751, 2022.

3 Ozgur Akgun, Ian P Gent, Christopher Jefferson, Ian Miguel, and Peter Nightingale. Breaking
conditional symmetry in automated constraint modelling with conjure. In ECAI, pages 3–8,
2014.

4 Armin Biere. Lingeling essentials, a tutorial on design and implementation aspects of the the
sat solver lingeling. POS@ SAT, 27:88, 2014.

5 Armin Biere, Katalin Fazekas, Mathias Fleury, and Maximillian Heisinger. CaDiCaL, Kissat,
Paracooba, Plingeling and Treengeling entering the SAT Competition 2020. In Tomas Balyo,
Nils Froleyks, Marijn Heule, Markus Iser, Matti Järvisalo, and Martin Suda, editors, Proc. of
SAT Competition 2020 – Solver and Benchmark Descriptions, volume B-2020-1 of Department
of Computer Science Report Series B, pages 51–53. University of Helsinki, 2020.

6 Armin Biere and Mathias Fleury. Gimsatul, IsaSAT and Kissat entering the SAT Competition
2022. In Tomas Balyo, Marijn Heule, Markus Iser, Matti Järvisalo, and Martin Suda, editors,
Proc. of SAT Competition 2022 – Solver and Benchmark Descriptions, volume B-2022-1 of
Department of Computer Science Series of Publications B, pages 10–11. University of Helsinki,
2022.

7 John Charnley, Simon Colton, and Ian Miguel. Automatic generation of implied constraints.
In ECAI, volume 141, pages 73–77, 2006.

8 Geoffrey Chu and Peter J Stuckey. Dominance breaking constraints. Constraints, 20:155–182,
2015.

9 Geoffrey Chu, Peter J. Stuckey, Andreas Schutt, Thorsten Ehlers, Graeme Gange, and Kathryn
Francis. Chuffed, a lazy clause generation solver, 2018. URL: https://github.com/chuffed/
chuffed/.

https://github.com/chuffed/chuffed/
https://github.com/chuffed/chuffed/

16 Automated Nogood-Filtered Fine-Grained Streamlining

10 Simon Colton and Ian Miguel. Constraint generation via automated theory formation. In
Principles and Practice of Constraint Programming—CP 2001: 7th International Conference,
CP 2001 Paphos, Cyprus, November 26–December 1, 2001 Proceedings 7, pages 575–579.
Springer, 2001.

11 Rina Dechter. Enhancement schemes for constraint processing: Backjumping, learning, and
cutset decomposition. Artificial Intelligence, 41(3):273–312, 1990.

12 Pierre Flener, Alan Frisch, Brahim Hnich, Zeynep Kiziltan, Ian Miguel, Justin Pearson, and
Toby Walsh. Symmetry in matrix models. In Proceedings of SymCon, volume 1. Citeseer,
2001.

13 Alan Frisch, Ian Miguel, Zeynep Kiziltan, Brahim Hnich, and Toby Walsh. Multiset ordering
constraints. In IJCAI, volume 3, pages 221–226. Citeseer, 2003.

14 Alan M Frisch, Warwick Harvey, Chris Jefferson, Bernadette Martínez-Hernández, and Ian
Miguel. Essence: A constraint language for specifying combinatorial problems. Constraints,
13:268–306, 2008.

15 Alan M Frisch, Brahim Hnich, Zeynep Kiziltan, Ian Miguel, and Toby Walsh. Propagation
algorithms for lexicographic ordering constraints. Artificial Intelligence, 170(10):803–834, 2006.

16 Alan M Frisch, Chris Jefferson, Bernadette Martinez-Hernandez, and Ian Miguel. Symmetry in
the generation of constraint models. In Proceedings of the international symmetry conference,
2007.

17 Alan M Frisch, Christopher Jefferson, Bernadette Martínez Hernández, and Ian Miguel. The
rules of constraint modelling. In IJCAI, pages 109–116, 2005.

18 Alan M Frisch, Christopher Jefferson, and Ian Miguel. Symmetry breaking as a prelude to
implied constraints: A constraint modelling pattern. In ECAI, volume 16, page 171, 2004.

19 Ian P Gent, Tom Kelsey, Steve A Linton, Iain McDonald, Ian Miguel, and Barbara M Smith.
Conditional symmetry breaking. In International Conference on Principles and Practice of
Constraint Programming, pages 256–270. Springer, 2005.

20 Carla Gomes and Meinolf Sellmann. Streamlined constraint reasoning. In International
Conference on Principles and Practice of Constraint Programming, pages 274–289. Springer,
2004.

21 Alan Hartman and Leonid Raskin. Problems and algorithms for covering arrays. Discrete
Mathematics, 284(1):149–156, 2004. Special Issue in Honour of Curt Lindner on His 65th Birth-
day. URL: https://www.sciencedirect.com/science/article/pii/S0012365X0400130X,
doi:10.1016/j.disc.2003.11.029.

22 Michal Kouril and John Franco. Resolution tunnels for improved sat solver performance. In
International Conference on Theory and Applications of Satisfiability Testing, pages 143–157.
Springer, 2005.

23 M. Lindauer, H. Hoos, F. Hutter, and T. Schaub. Autofolio: An automatically configured
algorithm selector. Journal of Artificial Intelligence Research, 53:745–778, 2015.

24 Joao Marques-Silva, Inês Lynce, and Sharad Malik. Conflict-driven clause learning sat solvers.
In Handbook of satisfiability, pages 133–182. ios Press, 2021.

25 Olga Ohrimenko, Peter J Stuckey, and Michael Codish. Propagation via lazy clause generation.
Constraints, 14:357–391, 2009.

26 Gilles Pesant, Claude-Guy Quimper, and Hélène Verhaeghe. Practically uniform solution
sampling in constraint programming. In Pierre Schaus, editor, Integration of Constraint
Programming, Artificial Intelligence, and Operations Research, pages 335–344, Cham, 2022.
Springer International Publishing.

27 Steven Prestwich and J Christopher Beck. Exploiting dominance in three symmetric problems.
In Fourth international workshop on symmetry and constraint satisfaction problems, pages
63–70. Citeseer, 2004.

28 Maxim Shishmarev, Christopher Mears, Guido Tack, and Maria Garcia de la Banda. Learning
from learning solvers. In Principles and Practice of Constraint Programming: 22nd Interna-

https://www.sciencedirect.com/science/article/pii/S0012365X0400130X
https://doi.org/10.1016/j.disc.2003.11.029

O. Y. Yazıcılar, Ö. Akgün, I. Miguel 17

tional Conference, CP 2016, Toulouse, France, September 5-9, 2016, Proceedings 22, pages
455–472. Springer, 2016.

29 Patrick Spracklen, Nguyen Dang, Özgür Akgün, and Ian Miguel. Automated stream-
liner portfolios for constraint satisfaction problems. Artificial Intelligence, 319:103915,
2023. URL: https://www.sciencedirect.com/science/article/pii/S0004370223000619,
doi:10.1016/j.artint.2023.103915.

30 Peter J Stuckey. Lazy clause generation: Combining the power of sat and cp (and mip?)
solving. In International Conference on Integration of Artificial Intelligence (AI) and Operations
Research (OR) Techniques in Constraint Programming, pages 5–9. Springer, 2010.

31 Mathieu Vavrille, Charlotte Truchet, and Charles Prud’homme. Solution sampling with
random table constraints. Constraints, 27(4):381–413, 2022.

32 Weijia Wang and Michele Sebag. Multi-objective monte-carlo tree search. In Asian conference
on machine learning, pages 507–522. PMLR, 2012.

33 Kiana Zeighami, Kevin Leo, Guido Tack, and Maria Garcia de la Banda. Towards semi-
automatic learning-based model transformation. In Principles and Practice of Constraint
Programming: 24th International Conference, CP 2018, Lille, France, August 27-31, 2018,
Proceedings 24, pages 403–419. Springer, 2018.

A Portfolios of Remaining Folds

Streamliner Group Streamliner Avg Applicability Overall Reduction
Coarse 287 84.0% 66.8%

400 97.9% 65.5%
299 88.2% 64.5%

Fine 271 0.7% 91.0%
48 97.9% 84.3%

Fine Filtered 240 97.9% 82.4%
24 97.2% 84.1%

13-23 94.4% 86.5%
Table 3 Comparison of the final streamliner portfolios for each group on Fold 1.

Streamliner Group Streamliner Avg Applicability Overall Reduction
Coarse 295 90.3% 67.8%

296 93.1% 68.4%
Fine 24 97.9% 86.7%
Fine Filtered 24 97.9% 86.1%

13-239 96.5% 83.2%
Table 4 Comparison of the final streamliner portfolios for each group on Fold 2.

https://www.sciencedirect.com/science/article/pii/S0004370223000619
https://doi.org/10.1016/j.artint.2023.103915

18 Automated Nogood-Filtered Fine-Grained Streamlining

Streamliner Group Streamliner Avg Applicability Overall Reduction
Coarse 295 88.2% 65.5%

400 96.5% 64.3%
296 93.8% 67.5%
287 81.4% 67.9%

Fine 72 97.2% 79.2%
24 96.5% 84.5%

Fine Filtered 240 97.2% 79.2%
24 96.5% 84.5%

230-240 92.4% 86.5%
13-24 94.4% 84.6%
7-14 95.1% 82.8%

Table 5 Comparison of the final streamliner portfolios for each group on Fold 3.

Streamliner Group Streamliner Avg Applicability Overall Reduction
Coarse 295 90.3% 65.8%

391 88.2% 66.5%
Fine 96 97.9% 79.3%

47 92.4% 76.7%
263 61.8% 78.6%

Fine Filtered 240 98.6% 78.6%
24 97.9% 82.1%

13-23 95.8% 86.2%
23-229 93.8% 85.1%

Table 6 Comparison of the final streamliner portfolios for each group on Fold 4.

	1 Introduction
	2 Covering Array Problem
	3 Architecture
	3.1 Phase 1: Generating Candidate Streamliners
	3.2 Phase 2: Creating a Portfolio of Streamliners
	3.3 Phase 3: Streamliner Selection and Application

	4 Candidate Streamliner Generation
	4.1 Streamlining Rules

	5 Binning Learnt Clauses to Filter Candidate Streamliners
	5.1 Binning Process
	5.2 Finer-grained Streamlining

	6 Creating the Streamliner Portfolio
	7 Experimental Results
	7.1 Experimental Setup
	7.2 Performance Comparison

	8 Comparison to Sampling-Based Methods
	9 Conclusion
	A Portfolios of Remaining Folds

