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Abstract13

Constraint modelling languages such as Essence offer a means to describe combinatorial problems14

at a high-level, i.e., without committing to detailed modelling decisions for a particular solver or15

solving paradigm. Given a problem description written in Essence, there are multiple ways to16

translate it to a low-level constraint model. Choosing the right combination of a low-level constraint17

model and a target constraint solver can have significant impact on the effectiveness of the solving18

process. Furthermore, the choice of the best combination of constraint model and solver can be19

instance-dependent, i.e., there may not exist a single combination that works best for all instances20

of the same problem. In this paper, we consider the task of building machine learning models to21

automatically select the best combination for a problem instance. A critical part of the learning22

process is to define instance features, which serve as input to the selection model. Our contribution23

is automatic learning of instance features directly from the high-level representation of a problem24

instance using a language model. We evaluate the performance of our approach using the Essence25

modelling language with a case study involving the car sequencing problem.26
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1 Introduction30

In many domains, it has long been observed that there is no single algorithm that performs31

best on all problems or even on all instances of the same problem [39, 29, 27]. To solve32

difficult computational problems effectively, it is often beneficial to utilise a portfolio of33

algorithms with complementary strengths. This gives rise to the field of Automated Algorithm34

Selection (AAS), where the aim is to automatically select the best algorithm(s) from an35

algorithm portfolio for a given problem instance. Over the last few decades, AAS has been36

shown to be very successful in various applications across a wide range of domains, including37

Boolean Satisfiability (SAT)[47], Constraint Programming (CP) [37, 33], AI planning [45],38

and combinatorial optimisation [30].39

In the CP domain, an algorithm can be seen as a constraint solver (or a specific parameter40

configuration of a solver). Several studies have demonstrated complementary strengths of41

constraint solvers [17, 16] and the advantage of using them in combination in a portfolio42

setting [37, 8, 9]. However, the concept of a CP algorithm can be extended beyond the43

scope of a constraint solver, which often works on a low-level representation of a problem.44
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Those representations are usually less user-friendly and require specific modelling choices45

to be made about various parts of the problem description. To aid the modelling phase of46

combinatorial problems, mid-level and high-level constraint modelling languages such as47

MiniZinc [35] and Essence [21] have been proposed. Accompanying these languages are48

modelling toolchains that support the automated translation of a mid-level or high-level49

representation of a problem to the low-level input supported by constraint solvers, such as50

the MiniZinc Toolchain [35], Conjure [2], and Savile Row [36]. The translation process51

involves several modelling and reformulation choices. Making the right combination of52

modelling and reformulation choices may have a significant impact on the performance of the53

target constraint solver [2]. In this context, we can consider an algorithm as a combination54

of modelling and reformulation configuration and a specific constraint solver.55

Compared with the traditional viewpoint of seeing an algorithm as just a constraint56

solver, the extended viewpoint as a combination of modelling and solver choices can result in57

substantial improvement in the performance of AAS approaches. However, challenges arise58

when adopting AAS techniques for this extended context. More concretely, AAS techniques59

often rely on training Machine Learning (ML) models to predict the best algorithm(s) for a60

given problem instance based on the instance features. As in any ML application, having61

a good set of input features is of critical importance. The extracted features must be62

informative and relevant to not only the given problem instance but also to the performance63

landscape of the combination of modelling and solver choices on that instance.64

One of the well-known instance features for constraint models are the fzn2feat features [6].65

This is a set of 95 features that can be extracted from a representation of a constraint model66

written in the FlatZinc modelling language [35]. However, FlatZinc models are low-level67

representations and can only be obtained after specific decisions on the modelling and68

reformulation choices have been made. The features extracted are therefore tied to a specific69

low-level model, which may not be suitable for the task that we aim for, i.e., learning to70

select among different combinations of low-level models and solvers.71

In this work, we propose to extract features from the high-level representation of a72

constraint problem. Instead of having to translate a given problem instance into a low-level73

representation (i.e., FlatZinc representation) before extracting (fzn2feat) instance features,74

our approach leverages language models to automatically learn instance features directly75

from the high-level representation of the problem instance. Compared with the existing76

fzn2feat feature extraction approach, our approach offers three advantages. First, in contrast77

to fzn2feat where the features were hand-crafted, our approach learns instance features78

automatically from the textual description of a problem instance. Second, fzn2feat relies79

on a specific low-level representation of a problem in FlatZinc, while our approach works80

directly at a high-level representation, which can potentially offer more information for the81

task of choosing the best combination of models and solvers. Third, as shown empirically, the82

proposed features, once learnt, are computationally cheaper to extract compared to fzn2feat83

features. We demonstrate our approach using the Essence constraint modelling language84

via a case study with the car sequencing problem [22].185

In the rest of the paper, after giving the necessary background and discussing the related86

work in Section 2, we introduce in Section 3 our approach to AAS and in Section 4 our case87

study. Then we present in Section 5 the experimental evaluation of our approach and finally88

conclude in Section 6.89

1 https://www.csplib.org/Problems/prob001/

https://www.csplib.org/Problems/prob001/
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2 Background and Related Work90

Constraint Modelling Tools To facilitate the modelling phase of combinatorial problems in91

CP, several domain-specific languages have been developed. Notable among these are MiniZinc92

[35] and Essence [21]. Essence is a high-level language designed to abstract problem93

modelling using a blend of natural language and discrete mathematics. This abstraction94

addresses the challenging nature of problem modelling, which demands expertise and domain-95

specific knowledge. Conjure [2], a tool designed for Essence, incrementally refines an initial96

Essence model into Essence Prime, a lower level solver-independent constraint modelling97

language [36], through a series of transformations. Non-trivial transformations may yield98

multiple effective refinements, resulting in a portfolio of models with varying performances99

depending on the specific instance and solver used. This creates a complex landscape for100

selecting the optimal algorithm (Essence Prime model and solver combination).101

ML for Algorithm Configuration and Selection Algorithm configuration is a field102

focused on optimizing the hyperparameters of an algorithm to enhance its performance based103

on criteria such as speed, memory usage, or accuracy. This process is essentially a search104

problem within the hyperparameter space, evaluated against a set of training instances105

[38]. Complementary to this is the field of algorithm selection, which involves choosing the106

best-performing algorithm from a portfolio of pre-tuned options to solve a specific problem107

instance [32]. Both algorithm configuration and selection often leverage ML techniques to108

inform their decision-making processes.109

ML algorithms like random forests [12] and support vector machines [43] are particularly110

effective at identifying patterns in input features to predict optimal output, making them111

well-suited for these tasks. An ML algorithm takes as input a set of data points represented by112

a set of input features and their corresponding desired output (dataset). The initial dataset113

is analyzed by the algorithm that produces an ML model designed to address the desired task114

with a certain degree of correctness in the output. Essentially, an ML model is a function115

approximation from the feature input space to the desired output space. The efficiency of116

ML models in algorithm selection has been demonstrated in numerous applications [32, 47].117

Neural Networks and Language Models Neural Networks (NNs) represent a powerful118

paradigm within ML, renowned for their ability to learn complex patterns from large datasets.119

They are particularly adept at generating features from textual input data [20], which120

simplifies the creation of ML models. Since the introduction of AlexNet in 2012 [31], NNs121

have been successfully applied to a wide array of tasks, such as image classification [41], text122

classification [46], robotics [14], and environmental science [34].123

Related Work. Many AAS tools have been proposed to tackle CSPs. Most notably,124

SUNNY [33] and CPHydra [13] use a k-NN approach to compute a schedule of solvers which125

maximizes the chances of solving an instance within a given timeout, while Proteus [23]126

is a hierarchical portfolio-based approach to CSP solving that does not rely purely on CP127

solvers: it may choose a SAT solver along with an accommodating CSP-to-SAT translation128

to solve an instance. Moreover, AAS tools designed for SAT problems can be easily adapted129

to tackle CSPs (and vice-versa). An empirical evaluation of different AAS approaches for130

solving CSPs (including SAT portfolios) can be found in [5] and [7], which show empirical131

comparisons between SUNNY and AAS approaches originally proposed for SAT scenarios,132

such as 3S [26] and SATzilla [47].133

Language models have previously been applied in CP to generate models from natural134

language problem descriptions [44, 4]. NNs have been used to learn features from the raw135

trajectories of search algorithms for selecting heuristic algorithms in bin packing problems [3].136
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Figure 1 Two possible algorithm selection approaches: entirely NN-based (top) versus hybrid of
an NN and an ML-based algorithm selector (bottom).

Most relevantly, they have been employed to learn instance features for specific problems,137

such as the Traveling Salesman Problem (TSP), using transformer architectures [40]. In138

contrast, our contribution is designed to extract instance features from any Essence problem139

specification.140

3 Methodology141

Recall that given a problem class instance written in Essence and a set of constraint142

solvers, we can generate a portfolio of algorithms for the instance, where each algorithm is a143

combination of an Essence Prime model and a solver. The aim of our AAS task is to build144

a prediction model to select from the portfolio the best algorithm (with shortest runtime)145

for the instance. This task involves two key steps: (i) learning features representing a given146

Essence instance from its raw text content ; and (ii) using the learnt features to predict the147

best algorithm.148

To address the first step, we propose to employ a Neural Network (NN) that encapsulates149

a language model to deal with text input. This approach has many advantages. First,150

language models like Bert have been proven effective in capturing high-level language features151

[20], eliminating the need to run a solver to extract the necessary features. Second, NN152

models can automatically generate the necessary features by starting from the raw input.153

This eliminates the need for handcrafting an effective feature set.154

For the second step, we consider different options. A possibility is to combine the two155

steps and address the entire AAS task using a single NN. In this case, the probability156

associated to an algorithm by the NN indicates its likelihood of being the best and thus the157

one with the highest probability is deemed as the best. Another possibility is to detach the158

second step from the first and adopt an ML-based algorithm selector. This gives flexibility159

in the algorithm selection method, allowing us to leverage state-of-the-art tools as well as to160

experiment with others. In this case, the probability associated with an algorithm indicates161

its likelihood to be competitive (that exhibits good performance on the given instance). The162

algorithms along with the produced features are then given as candidates to the algorithm163

selector which then decides the best one. Both approaches are depicted in Figure 1, the164

details of which are explained in the following subsections.165
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3.1 Feature Learning Using a Language Model166

We adopt a language model, a particular NN architecture, to learn a set of features that167

will be later used to select an algorithm in both options mentioned previously. The input of168

such a model is the raw text of the Essence instance in tokenized form (where each input169

word and symbol are transformed into a number), and the output is a feature vector that170

describes the semantic meaning of the input. In particular, we use an 8-bit-quantized [48]171

version of Longformer[10].2 This is a Bert-like [20] architecture whose main advantage is172

the larger input size (2048 tokens instead of 512) and it has been proven competitive for a173

fine-tuning task [28]. In addition to the language model, the NN encapsulates a linear layer174

to process the features and produce an output. The linear layer comprises a neuron for each175

of the possible algorithms to choose from. Each neuron receives as input the feature vector176

produced by the language model. Then it computes the dot product with the learnt weights177

and adds a bias. The final result is a floating point value for each neuron.178

The main difference between the network of the first method (entirely NN-based) and the179

second one (hybrid of NN and ML-based algorithm selector) lies in the activation function180

that can transform the output of the linear layer from floating-point values into probabilities181

to better interpret the NN output. In the entirely NN-based approach, we want to learn182

a probabilistic distribution which has, as the most probable value, the best algorithm to183

choose. To achieve this output, we use the softMax activation function that transforms184

the input sequence into a probability distribution. In the hybrid case instead, we train the185

NN on a multi-label classification task, where the output comprises probabilities for each186

algorithm, indicating their competitiveness fraction. A higher probability suggests that the187

algorithm is less likely to be competitive. We consider an algorithm to be competitive if188

it solves an instance in less than ten seconds or in less than double the time taken by the189

best-performing algorithm for that instance. For example, if the best algorithm takes 15190

seconds, any algorithm that completes the task in under 30 seconds is deemed competitive.191

To obtain such output, we use the sigmoid activation function which transforms each input192

value to a proper fraction, depending on its magnitude.193

3.2 Algorithm Selection Using the Learnt Features194

Once the NN is trained, the best algorithm for a given Essence instance is chosen based195

on the probabilistic NN output. In the entirely NN-based approach, it is the one with the196

highest probability. In the hybrid approach, the probabilistic NN output is fed as input to197

an ML-based algorithm selector.198

As an algorithm selector, we can rely on well-known methods such as Autofolio [32] and199

K-means clustering [1]. The first is a state-of-the-art tool that tunes the underlying model200

and its hyperparameters to optimize the performance. It can be used both for classification201

and regression tasks. The second is a clustering algorithm that assigns a cluster to a new202

instance. As features, these methods can exploit both the language model output and the203

probabilistic NN output. The features derived from the language model would be useful204

because they are trained on a similar task, capturing the general semantic structure of the205

instance. Whereas, the linear layer output indicates which algorithms are most likely to206

perform competitively. By combining the two, the features can encapsulate both a broad207

semantic representation of the instance and a specific prediction of the algorithms most likely208

2 https://huggingface.co/tororoin/longformer-8bitadam-2048-main
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to be competitive. To combine the features, the two outputs are concatenated, resulting in a209

vector of floating-point values for the given instance.210

To obtain an algorithm selector from K-means clustering, each cluster is associated with211

the algorithm that resulted the best for the subset of the instances composing the cluster.212

At prediction time, a new instance is assigned to a cluster and the respective algorithm is213

selected.214

As an alternative ML-based algorithm selector, we can use the probabilistic NN output215

as an initial filtering mechanism to eliminate the algorithms that are less competitive for216

a given instance, for instance those with probability less than 0.5. After the filtering, we217

can rank the remaining candidates based on a certain criterion (measured on the training218

set) and select the first ranked as the best algorithm. Possible criteria could be the overall219

performance or the number of instances where the algorithm wins.220

4 A Case Study with the Car Sequencing Problem221

We evaluate the performance of our approach to AAS using the Essence modelling language222

with a case study involving the car sequencing problem. In this section, we describe the case223

study. We start with the problem description in Essence and the instance set employed in224

the evaluation. We then present the combinations of (low-level) Essence Prime models225

produced by Conjure and constraint solvers, giving rise to a portfolio of algorithms to226

choose from. Finally, we describe how we obtain a dataset starting from the instance set and227

the algorithms, and discuss its suitability for an AAS task.228

4.1 Problem Description and Instance Set229

A series of cars are scheduled for production, each varying due to the availability of different230

optional features. The assembly line consists of various stations that install these options,231

such as air conditioning and sunroofs. Each station is designed to handle only a specific232

percentage of the cars passing through. To ensure that the workload at each station remains233

manageable, cars requiring the same option must be distributed evenly along the assembly234

line; clustering of these cars must be avoided to prevent overwhelming any single station.235

Therefore, cars must be sequenced so that the capacity of each station is not exceeded. For236

example, if a particular station can only manage a maximum of 50% of the cars passing237

through, the sequence must ensure that at most one car in every two requires that option.238

This sequencing problem is known to be NP-complete [22]. An Essence model for this239

problem is shown in Figure 2.240

The Essence model defines three integer parameters n_cars, n_classes, and n_options241

representing the number of cars, classes of cars, and options available, respectively. Using242

these, three integer domains are defined: Slots, Class, and Option. These domains are used243

when defining further parameters and decision variables in the model as well as in constraint244

expressions. Three parameters with function domains are defined to represent the quantity245

of each class of car required, a maximum number of cars (maxcars) that can appear in any246

block of cars, and block size (blksize) for each option. The usage parameter is a relation that247

indicates which classes use which options.248

The only decision variable (car) in the model is a mapping from car production slots to249

classes. The problem constraints are captured in two top-level constraints (denoted by the250

keywords such that). The first set of constraints ensures that the number of cars in each class251

matches the required quantity. The second set of constraints ensures that for each option, in252
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given n_cars, n_classes, n_options : int(1..)
letting Slots be domain int(1..n_cars),

Class be domain int(1..n_classes),
Option be domain int(1..n_options)

given quantity : function (total) Class --> int(1..),
maxcars : function (total) Option --> int(1..),
blksize : function (total) Option --> int(1..),
usage : relation of ( Class * Option )

find car : function (total) Slots --> Class
such that forAll c : Class . |preImage(car,c)| = quantity(c)
such that forAll opt : Option .

forAll s : int(1..n_cars+1-blksize(opt)) .
(sum i : int(s..s+blksize(opt)-1) .

toInt(usage(car(i),opt))) <= maxcars(opt)

Figure 2 Essence model of the car sequencing problem.

any block of blksize(opt) consecutive cars, the number of cars requiring that option does not253

exceed maxcars(opt).254

For all experiments in this work, we make use of a large instance set from a previous255

work [42]. It is composed of 10,214 instances, generated using an automated instance256

generation tool AutoIG [18] for constraint problems, and is publicly available in the Essence257

Catalogue [19].258

4.2 Combinations of Models and Solvers259

Our algorithm portfolio contains three alternative Essence Prime models and four state-260

of-the-art solvers. The solvers are Kissat, Chuffed, CPLEX, and OR-Tools CP-SAT, each261

chosen for their potential complementary characteristics in combinatorial optimization.262

Kissat [11] is a modern clause-learning Satisfiability (SAT) solver. Chuffed [15] is a Constraint263

Programming (CP) solver enhanced with clause learning. CPLEX [25] is a commercial Mixed-264

Integer Programming (MIP) solver that excels in solving problems that heavily use arithmetic265

constraints. OR-Tools CP-SAT 3 is a hybrid solver developed by Google that integrates266

clause learning, CP-style constraint propagation, and MIP solving methods.267

We use Savile Row [36] to target these solvers. Savile Row is a modelling tool that268

converts problem models written in Essence Prime into the input format required by these269

solvers and optimises the models based on the characteristics of the specific instance being270

solved. The Essence Prime models are obtained using Conjure [2] in its portfolio mode,271

with variations arising from different representations for the car decision variable and the272

usage parameter, as well as the way problem constraints are formulated.273

The car decision variable has two possible representations. The first is a one-dimensional274

array indexed by cars, containing decision variables with integer domains, where each entry275

represents the class selected for that car. The other is a two-dimensional Boolean array,276

indexed by both cars and classes, where a true value indicates the assignment of a car to a277

class. The usage parameter also has two possible representations: a two-dimensional Boolean278

3 https://developers.google.com/optimization/cp/cp_solver

https://developers.google.com/optimization/cp/cp_solver
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Figure 3 PAR10 value of each algorithm and the VBS on the instance set (lower is better), where
the algorithms are grouped by their models (left) or solvers (right).

array or a set of tuples. The second problem constraint in the Essence model that refers to279

the usage parameter is refined with an element constraint when the Boolean array is chosen,280

instead with a table constraint when the set of tuples is chosen.281

Using a combination of these model fragments, Conjure constructs three distinct282

Essence Prime models. The first model M1 has a one-dimensional array of integer variables283

for car and a set of tuples with a table constraint for the usage parameter. The second model284

M2 couples the same one-dimensional array for car with a Boolean array for usage and the285

element constraint. The third model M3 uses a two-dimensional Boolean array for car, and286

a set of tuples and the table constraint for usage.287

4.3 Dataset and Algorithm Complementarity288

The combination of three Essence Prime models and four constraint solvers results in289

a total of 12 algorithms. To perform the AAS task, we create a dataset by running the290

algorithms on the 10,214 car sequencing instances and record their runtime. The runtimes291

are measured on a computer with an AMD EPYC 7763 CPU, where each algorithm is given292

one CPU core and one hour of cut-off time per instance. We define the overall performance293

of an algorithm on a given instance set as the average runtime required to solve all the294

instances. To account for cases where an algorithm does not produce an answer within the295

given cut-off time, we adopt the Penalised Average Runtime (PAR10) metric from the AAS296

literature [32], where unsolved instances are penalised as 10 times the cut-off time. AAS297

techniques aim at minimising the PAR10 score.298

To establish the potential of AAS in this case study, we analyze the performance of each299

algorithm on the instance set. Figure 3 shows the PAR10 score of the algorithms as well300

as the Virtual Best Algorithm (VBS), defined as the (hypothetical) algorithm selector that301

always correctly chooses the best algorithm for each instance. We see that, there is no model302

(resp. solver) that alone is always the best or worst independently of the coupled solver (resp.303

model). While M2 is fastest with Chuffed, for M1 it is OR-Tools, and these combinations are304

the two best algorithms. Even though M3 has a much worse score with all the solvers, it does305

not take part of the worst algorithm, which is M2-CPLEX. Except for the four algorithms306

involving M3, they all exhibit different performances. Another observation is the big gap307

between the VBS and the best overall algorithm (M2-Chuffed). We can therefore conclude308
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Figure 4 Average participation to VBS (left) and average competitiveness (right).

that the algorithms have complementary strengths and leveraging them via AAS has high309

potential in this case study.310

The complementarity of the algorithms in the portfolio can be further observed in Figure311

4, where we plot on the left the average participation to VBS (as the percentage of the312

instances where the algorithm is the best) and on the right the average competitiveness (as313

the percentage of the instances where the algorithm is competitive). We can see that even314

though M2-Chuffed appears as the best overall algorithm in Figure 3, it is the winner on a315

fairly small number of instances according to the left plot of Figure 4. Instead, M1-CPLEX,316

M1-Chuffed and M1-OR-Tools have significantly higher numbers of instances where they317

win. These three algorithms cover a significant part of the instance space.318

While many algorithms do not appear to participate at all to VBS, they are all competitive319

on some instances (with varying percentages), as shown in the right plot of Figure 4. An320

exception is M2-CPLEX which in fact resulted as the worst overall algorithm in Figure 3. It321

is typically very difficult for an AAS method to always select the best algorithm for a given322

instance. At the same, this may not always be necessary, as competitive algorithms could323

also do well on the instance. We, therefore, expect that being able to choose a competitive324

algorithm for an instance increases the potential of AAS in our case study. Indeed, we will325

provide experimental evidence in Section 5 that AAS based on predicting the likelihood of326

an algorithm to be the best performs worse than predicting the likelihood to be competitive.327

5 Experimental Evaluation328

Having established the potential gain of AAS in the car sequencing case study, in this section,329

we experimentally evaluate the effectiveness of our approach.330

The research questions (RQs) that we aim to answer in the evaluation are:331

RQ1: Can we learn an effective AAS model when combining feature learning and algorithm332

selection in a single NN model, or do we need to split the learning into two phases (as333

depicted in Figure 1)?334

RQ2: How do the learnt features perform on the AAS task compared to the existing335

fzn2feat features?336

RQ3: What is the feature extraction cost of the learnt features compared to the existing337

fzn2feat features?338

We first describe in Section 5.1 how we trained the NN models and then present our study339

on each RQ in the subsequent sections.340
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The experiments are conducted using Python 3.11 in conjunction with PyTorch4 and341

scikit-Learn5 for the NN and the K-means clustering, while Python 3.6 was used with342

Autofolio. 6 The code is publicly available via the project repository. 7
343

5.1 Neural Network Training344

All NN models are trained on a GPU with Nvidia A5000 accelerator. 8 We trained each NN345

using a 10-fold cross-validation technique. At each fold, 10% of the dataset was used as a346

test set while the remaining 90% was split into training (90%) and validation (10%). For the347

approaches where the feature learning and algorithm selection are conducted separately, the348

same data split is used for the ML-based algorithm selector, therefore, if an instance was in349

the test set of the NN, it was also in the test set of the ML model that used the extracted350

features. Each network is trained for 10 epochs. For each fold, it took 57,328 seconds, which351

is around 15.9 hours, to complete the training of each network.352

For the entirely NN-based approach where feature learning and algorithm selection are353

in a single NN model, the training is done using the typical cross entropy loss function for354

multi-class classification tasks. For the hybrid approach where the NN output is based on355

algorithm competitiveness, for the first 3 epochs, we used a learning rate of 1e−4 and, as a356

loss function, a weighted version of the Binary Cross-Entropy (BCE) loss that prioritised357

recall over precision. The formula of the weighted BCE loss function on each sample is shown358

in Equation (1), where n is the number of algorithms and yi and ŷi are the true and the359

predicted binary labels, indicating whether algorithm i is competitive or not. The first term360

in this formula represents the recall metric and is weighted twice over the second term.361

LBCE(y, ŷ) = − 1
n

n∑
i=1

[2yi log(ŷi) + (1 − yi) log(1 − ŷi)] (1)362

For the next 6 epochs, we dropped the custom weights to use the normal BCE loss. The363

only notable change between epochs 3 to 6 and 6 to 10 was the change of learning rate that364

was 1e−4 for epochs 3 to 6 and 1e−5 for the final 4 epochs. For the whole training process,365

we used stochastic gradient descent as an optimizer for the model.366

We leave as future work a more systematic study of which training schedules and hyper-367

parameter configurations are best suited to our task. The current decision is based on a368

small manual tuning study. The intuition behind splitting the training into different phases369

is as follows. At the first stage of the training process (the first 6 epochs), we prioritise recall370

over precision. If an algorithm is not competitive but is predicted as so, it may be incorrectly371

chosen by the algorithm selector and could potentially result in a larger performance loss (in372

PAR10 score), therefore, the first term in Equation (1) is weighted higher to emphasise it.373

5.2 Feature Learning and Algorithm Selection: Combining vs Splitting374

In this section, we investigate RQ1: Can we learn an effective AAS model when combining375

both feature learning and algorithm selection in a single NN model, or do we need to split376

the learning into two phases (as depicted in Figure 1)?377

4 https://pytorch.org/
5 https://scikit-learn.org/stable/index.html
6 https://github.com/automl/AutoFolio/tree/master
7 https://github.com/SeppiaBrilla/EFE_project
8 https://www.nvidia.com/en-us/design-visualization/rtx-a5000/
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Figure 5 Training progress of the combined learning approach in one fold, shown by the cross
entropy loss (top left), accuracy and F1 score (top right), and PAR10 score (bottom). The PAR10
score is normalised into the range [0, 1] using M2-Chuffed (the best overall algorithm) and the VBS.

Figure 5 presents an example of the training progress of the combined learning approach378

in one fold. Although the cross entropy loss value seems to indicate favourable results, the379

performance of the learnt network at each epoch in terms of accuracy and F1 score, as well380

as (normalised) PAR10 score, do not improve after the third epoch. The associated values381

in both training and the validation sets reach stagnation after that point. We observed the382

same pattern after having repeated the experiment across multiple folds. This observation383

highlights the challenges of training a combined learning approach for the AAS task.384

One possible explanation for the difficulty of training is the fact that when treating the385

AAS task as a multi-class classification task, the training data is potentially highly imbalanced.386

For instance, some algorithms may win only on a small number of instances, making it387

difficult to predict them correctly, even though they may have a significant contribution to388

the overall PAR10 score of the algorithm selector. We mitigate this issue in our split learning389

approach by replacing the multi-class classification task with a multi-label classification task.390

Instead of predicting the best algorithm, the output layer of our feature learning network391

will predict the competitiveness of each algorithm. In fact, this change allows us to train the392

network more effectively. As illustrated in Figure 6, the accuracy and F1 score now improve393

steadily during the training process. This study indicates that splitting the learning into two394

separate parts (feature learning and algorithm selection) is more effective. Therefore, we will395

adopt this approach in the remaining evaluation.396
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Figure 6 Training progress of the split learning approach in one fold, shown by the cross entropy
loss (left), and accuracy and F1 score (right).

5.3 Learnt Features vs fzn2feat397

In this section, we investigate RQ2: How do the learnt features perform on the AAS task398

compared to the existing fzn2feat features?399

Our learnt features are the concatenation of the language model output and the prob-400

abilistic output of the NN, as illustrated in the bottom part of Figure 1. As an ML-based401

algorithm selector, we adopt AutoFolio [32] and K-means clustering [1], as mentioned in402

Section 3.2. With these selectors, we can use either our NN-based or the fzn2feat features.403

We refer to the four possible combinations as NN-Autofolio, fzn2feat-Autofolio, NN-Kmeans,404

and fzn2feat-Kmeans.405

In addition to the algorithm selectors named above, our feature learning method offers406

other possibilities for algorithm selection. As a by-product of the feature learning process, we407

have a prediction model that tells us which algorithms are less competitive (with probability408

less than 0.5) for a given instance. As described in Section 3.2, this information can be used409

to filter out the less-promising algorithms for that particular instance. Among the remaining410

ones, we can select the best algorithm based on a specific criterion (measured on the training411

set), such as the PAR10 score or the number of instances where the algorithm wins. We412

refer to these simple selection approaches as NN-based Single Best Selection (NN-SBS) and413

Winner Selection (NN-WS), respectively.414

Figure 7 presents the PAR10 scores of all the approaches described above on the training,415

validation and test sets across 10 folds. All four approaches using algorithm selectors surpass416

the performance of M2-Chuffed (the best overall algorithm) and the two other simple selection417

methods (NN-SBS and NN-WS), confirming the effectiveness of learning AAS models using418

either feature set. Interestingly, AutoFolio offers significantly better performance than K-419

means on the training and the validation sets, but its generalisation is reduced as K-means420

is able to close the gap on the test set.421

Compared to fznfeat, our learnt feature set provides competitive performance, which422

indicates the effectiveness of the NN-based feature learning process. When combined with423

K-means, our feature set provides better overall performance on all the training, validation424

and test sets, although the difference between the two becomes less visible on the test425

set. When combined with AutoFolio, the fzn2feat methods offer slightly better average426

performance on the test set, although the learnt features do produce better on some folds.427

AutoFolio is an algorithm selector that incorporates multiple state-of-the-art candidate428
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Figure 7 PAR10 scores of different AAS approaches across 10 folds. M2-Chuffed is the best
overall algorithm in the portfolio and its mean PAR10 score is shown with the red line. Reported
prediction time includes the feature computation time.

ML models. It comes with a default selection model and that is what we have adopted in429

all the experiments so far. This is not necessarily the best choice, as the best model can430

depend on the specific scenario. AutoFolio includes an option to search in the vast space of431

several ML models and for their hyper-parameter configuration using the hyper-parameter432

optimisation tool SMAC [24]. To investigate the effectiveness of the two feature sets further,433

we conducted a new set of experiments where we allowed AutoFolio to be tuned. The tuning434

is done using SMAC in a 10-fold cross validation fashion. We let SMAC run for a maximum435

amount of 5 CPU hours on a machine with an AMD EPYC 7763 CPU.436

Figure 8 shows the PAR10 scores of AutoFolio coupled with either feature set, with437

and without tuning. The tuning is very effective when the fzn2feat features are used as438

input. Surprisingly, when the NN-based features are used, there is a large variance in the439

performance of the tuned version on all three datasets. One potential explanation for this440

observation is that the number of features obtained from NN is very high (783 features)441

compared to fzn2feat (only 95 features). AutoFolio makes use of classical ML models such as442

random forests, and those might not be best suited to work on a very high dimensional input443

space. There are two potential ways to mitigate this issue. First, instead of using AutoFolio,444

we can try developing an NN-based algorithm selector, which may be better suited to be445

used with our learnt features. Second, we can try reducing the amount of features produced446

by the language model by imposing additional linear layers between the language model447

and the output layer, which may help to compress the learnt feature space. We leave the448

investigation of these options for future work.449

5.4 Feature Extraction Cost450

In this section, we investigate RQ3: What is the feature extraction cost of the learnt features451

compared to the existing fzn2feat features?452

As indicated in Table 1, a significant advantage of the NN-based approach is the time453



14 Automatic Feature Learning for Essence: a Case Study on Car Sequencing

106 107

Time

NN-Autofolio

fzn2feat-Autofolio

fzn2feat-Autofolio-Smac

M2-Chuffed

NN-Autofolio-Smac

Training set

105 106

Time

NN-Autofolio

fzn2feat-Autofolio

fzn2feat-Autofolio-Smac

NN-Autofolio-Smac

M2-Chuffed

Validation set

105 106

Time

fzn2feat-Autofolio-Smac

fzn2feat-Autofolio

NN-Autofolio

NN-Autofolio-Smac

M2-Chuffed

Test set

Figure 8 PAR10 scores of Autofolio (tuned with SMAC or not) across 10 folds. M2-Chuffed is
the best overall algorithm in the portfolio and its mean PAR10 score is shown with the red line.
Reported prediction time includes the feature computation time.

Median Mean Max Min
fzn2feat 6.71 5.38 33.68 0.80
NN 0.02 0.02 0.38 0.02

Table 1 Statistics to compute a feature vector in seconds across all the instances.

required to extract features from an instance. It consistently took less than 0.38 seconds454

to produce a result, whereas fzn2feat took up to 33 seconds. However, it is important to455

note that this speed advantage is contingent on the availability of a discrete graphics card,456

as NNs perform faster on GPUs.457

6 Conclusions458

In this paper, we explored the use of automatic feature learning for algorithm selection in459

the context of the car sequencing problem, leveraging the high-level constraint modelling460

language Essence. Our approach employed a language model to learn instance features461

directly from the problem descriptions, which were then used to predict the best algorithm462

for solving each instance.463

Our experiments demonstrated that the learnt features could effectively be utilized464

within two different algorithm selection strategies (AutoFolio and K-means clustering). Both465

strategies showed promise, but each had its own strengths and weaknesses. The tuning466

experiments with AutoFolio highlighted the importance of careful feature set selection and467

tuning, especially given the high dimensionality of the learned features.468

Despite these challenges, our results indicate that NN-based feature extraction offers a469

viable and efficient alternative to traditional methods, with significantly lower computational470

costs for feature extraction. However, the instability observed in the performance of tuned471

AutoFolio with NN-based features suggests further refinements are necessary. Future work472

could involve developing an NN-based algorithm selection approach tailored to handle high-473
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dimensional feature spaces more effectively or incorporating feature compression techniques474

to enhance stability.475

Overall, this study highlights the potential of ML and automatic feature learning in476

enhancing algorithm selection processes for combinatorial problems, paving the way for more477

adaptive and efficient solving techniques in various application domains.478

Acknowledgements479

This work was supported by the European Union’s Justice programme, under GA No480

101087342, POLINE (Principles Of Law In National and European VAT) and by a scholarship481

from the Department of Computer Science and Engineering of the University of Bologna.482

References483

1 Mohiuddin Ahmed, Raihan Seraj, and Syed Mohammed Shamsul Islam. The k-means algorithm:484

A comprehensive survey and performance evaluation. Electronics, 9(8):1295, 2020.485

2 Özgür Akgün, Alan M Frisch, Ian P Gent, Christopher Jefferson, Ian Miguel, and Peter486

Nightingale. Conjure: Automatic generation of constraint models from problem specifications.487

Artificial Intelligence, 310:103751, 2022.488

3 Mohamad Alissa, Kevin Sim, and Emma Hart. Automated algorithm selection: from feature-489

based to feature-free approaches. Journal of Heuristics, 29(1):1–38, 2023.490

4 Boris Almonacid. Towards an automatic optimisation model generator assisted with generative491

pre-trained transformer. arXiv preprint arXiv:2305.05811, 2023.492

5 Roberto Amadini, Maurizio Gabbrielli, and Jacopo Mauro. An empirical evaluation of portfolios493

approaches for solving csps. In Integration of AI and OR Techniques in Constraint Programming494

for Combinatorial Optimization Problems: 10th International Conference, CPAIOR 2013,495

Yorktown Heights, NY, USA, May 18-22, 2013. Proceedings 10, pages 316–324. Springer, 2013.496

6 Roberto Amadini, Maurizio Gabbrielli, and Jacopo Mauro. An enhanced features extractor497

for a portfolio of constraint solvers. In Proceedings of the 29th annual ACM symposium on498

applied computing, pages 1357–1359, 2014.499

7 Roberto Amadini, Maurizio Gabbrielli, and Jacopo Mauro. Sunny: a lazy portfolio approach500

for constraint solving. Theory and Practice of Logic Programming, 14(4-5):509–524, 2014.501

8 Roberto Amadini, Maurizio Gabbrielli, and Jacopo Mauro. Sunny-cp: a sequential cp portfolio502

solver. In Proceedings of the 30th Annual ACM Symposium on Applied Computing, pages503

1861–1867, 2015.504

9 Roberto Amadini, Maurizio Gabbrielli, and Jacopo Mauro. Portfolio approaches for constraint505

optimization problems. Annals of Mathematics and Artificial Intelligence, 76:229–246, 2016.506

10 Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.507

arXiv preprint arXiv:2004.05150, 2020.508

11 Armin Biere and Mathias Fleury. Gimsatul, IsaSAT and Kissat entering the SAT Competition509

2022. In Tomas Balyo, Marijn Heule, Markus Iser, Matti Järvisalo, and Martin Suda, editors,510

Proc. of SAT Competition 2022 – Solver and Benchmark Descriptions, volume B-2022-1 of511

Department of Computer Science Series of Publications B, pages 10–11. University of Helsinki,512

2022.513

12 Leo Breiman. Random forests. Machine learning, 45:5–32, 2001.514

13 Derek Bridge, Eoin O’Mahony, and Barry O’Sullivan. Case-based reasoning for autonomous515

constraint solving. In Autonomous search, pages 73–95. Springer, 2012.516

14 Matthew Browne and Saeed Shiry Ghidary. Convolutional neural networks for image processing:517

an application in robot vision. In Australasian Joint Conference on Artificial Intelligence,518

pages 641–652. Springer, 2003.519

15 Chuffed Developers. Chuffed, a lazy clause generation solver. https://github.com/chuffed/520

chuffed. Accessed: 2024-07-05.521

https://github.com/chuffed/chuffed
https://github.com/chuffed/chuffed
https://github.com/chuffed/chuffed


16 Automatic Feature Learning for Essence: a Case Study on Car Sequencing

16 Nguyen Dang. A portfolio-based analysis method for competition results. arXiv preprint522

arXiv:2205.15414, 2022.523

17 Nguyen Dang, Özgür Akgün, Joan Espasa, Ian Miguel, and Peter Nightingale. A Frame-524

work for Generating Informative Benchmark Instances. In Christine Solnon, editor, 28th525

International Conference on Principles and Practice of Constraint Programming (CP526

2022), volume 235 of Leibniz International Proceedings in Informatics (LIPIcs), pages527

18:1–18:18, Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für Inform-528

atik. URL: https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2022.18,529

doi:10.4230/LIPIcs.CP.2022.18.530

18 Nguyen Dang, Özgür Akgün, Joan Espasa, Ian Miguel, and Peter Nightingale. A framework531

for generating informative benchmark instances. arXiv preprint arXiv:2205.14753, 2022.532

19 Conjure developers. Essencecatalog: A collection of problem specifications in essence, 2024.533

Accessed: 2024-06-30. URL: https://github.com/conjure-cp/EssenceCatalog.534

20 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of535

deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805,536

2018.537

21 Alan M. Frisch, Warwick Harvey, Chris Jefferson, Bernadette Martínez-Hernández, and Ian538

Miguel. Essence: A constraint language for specifying combinatorial problems. Constraints,539

13(3):268–306, 2008. doi:10.1007/s10601-008-9047-y.540

22 Ian P Gent. Two results on car-sequencing problems. Report University of Strathclyde,541

APES-02-98, 7, 1998.542

23 Barry Hurley, Lars Kotthoff, Yuri Malitsky, and Barry O’Sullivan. Proteus: A hierarchical543

portfolio of solvers and transformations. In Integration of AI and OR Techniques in Constraint544

Programming: 11th International Conference, CPAIOR 2014, Cork, Ireland, May 19-23, 2014.545

Proceedings 11, pages 301–317. Springer, 2014.546

24 Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Sequential model-based optimization547

for general algorithm configuration. In Learning and Intelligent Optimization: 5th International548

Conference, LION 5, Rome, Italy, January 17-21, 2011. Selected Papers 5, pages 507–523.549

Springer, 2011.550

25 IBM. Ibm ilog cplex optimization studio: Cplex optimizer. https://www.ibm.com/products/551

ilog-cplex-optimization-studio/cplex-optimizer. Accessed: 2024-07-05.552

26 Serdar Kadioglu, Yuri Malitsky, Ashish Sabharwal, Horst Samulowitz, and Meinolf Sellmann.553

Algorithm selection and scheduling. In Principles and Practice of Constraint Programming–554

CP 2011: 17th International Conference, CP 2011, Perugia, Italy, September 12-16, 2011.555

Proceedings 17, pages 454–469. Springer, 2011.556

27 Pascal Kerschke, Holger H Hoos, Frank Neumann, and Heike Trautmann. Automated algorithm557

selection: Survey and perspectives. Evolutionary computation, 27(1):3–45, 2019.558

28 Anant Khandelwal. Fine-tune longformer for jointly predicting rumor stance and veracity.559

In Proceedings of the 3rd ACM India Joint International Conference on Data Science &560

Management of Data (8th ACM IKDD CODS & 26th COMAD), pages 10–19, 2021.561

29 Lars Kotthoff. Algorithm selection for combinatorial search problems: A survey. Data mining562

and constraint programming: Foundations of a cross-disciplinary approach, pages 149–190,563

2016.564

30 Lars Kotthoff, Pascal Kerschke, Holger Hoos, and Heike Trautmann. Improving the state565

of the art in inexact tsp solving using per-instance algorithm selection. In Learning and566

Intelligent Optimization: 9th International Conference, LION 9, Lille, France, January 12-15,567

2015. Revised Selected Papers 9, pages 202–217. Springer, 2015.568

31 Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep569

convolutional neural networks. Advances in neural information processing systems, 25, 2012.570

32 Marius Lindauer, Holger H Hoos, Frank Hutter, and Torsten Schaub. Autofolio: An automat-571

ically configured algorithm selector. Journal of Artificial Intelligence Research, 53:745–778,572

2015.573

https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2022.18
https://doi.org/10.4230/LIPIcs.CP.2022.18
https://github.com/conjure-cp/EssenceCatalog
https://doi.org/10.1007/s10601-008-9047-y
https://www.ibm.com/products/ilog-cplex-optimization-studio/cplex-optimizer
https://www.ibm.com/products/ilog-cplex-optimization-studio/cplex-optimizer
https://www.ibm.com/products/ilog-cplex-optimization-studio/cplex-optimizer


A Pellegrino, Ö Akgün, N Dang, Z Kiziltan, I Miguel 17

33 Tong Liu, Roberto Amadini, Maurizio Gabbrielli, and Jacopo Mauro. sunny-as2: Enhancing574

sunny for algorithm selection. Journal of Artificial Intelligence Research, 72:329–376, 2021.575

34 Holger R Maier and Grame C Dandy. Neural network based modelling of environmental576

variables: a systematic approach. Mathematical and Computer Modelling, 33(6-7):669–682,577

2001.578

35 Nicholas Nethercote, Peter J Stuckey, Ralph Becket, Sebastian Brand, Gregory J Duck, and579

Guido Tack. Minizinc: Towards a standard cp modelling language. In International Conference580

on Principles and Practice of Constraint Programming, pages 529–543. Springer, 2007.581

36 Peter Nightingale, Özgür Akgün, Ian P Gent, Christopher Jefferson, Ian Miguel, and Patrick582

Spracklen. Automatically improving constraint models in savile row. Artificial Intelligence,583

251:35–61, 2017.584

37 Eoin O’Mahony, Emmanuel Hebrard, Alan Holland, Conor Nugent, and Barry O’Sullivan.585

Using case-based reasoning in an algorithm portfolio for constraint solving. In Irish conference586

on artificial intelligence and cognitive science, pages 210–216, 2008.587

38 Rong Qu. A general model for automated algorithm design. Automated Design of Machine588

Learning and Search Algorithms, pages 29–43, 2021.589

39 John R Rice. The algorithm selection problem. In Advances in computers, volume 15, pages590

65–118. Elsevier, 1976.591

40 Moritz Vinzent Seiler, Jeroen Rook, Jonathan Heins, Oliver Ludger Preuß, Jakob Bossek,592

and Heike Trautmann. Using reinforcement learning for per-instance algorithm configuration593

on the tsp. In 2023 IEEE Symposium Series on Computational Intelligence (SSCI), pages594

361–368. IEEE, 2023.595

41 Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale596

image recognition. arXiv preprint arXiv:1409.1556, 2014.597

42 Patrick Spracklen, Nguyen Dang, Özgür Akgün, and Ian Miguel. Automated streamliner598

portfolios for constraint satisfaction problems. Artificial Intelligence, 319:103915, 2023.599

43 Shan Suthaharan and Shan Suthaharan. Support vector machine. Machine learning models600

and algorithms for big data classification: thinking with examples for effective learning, pages601

207–235, 2016.602

44 Dimos Tsouros, Hélène Verhaeghe, Serdar Kadıoğlu, and Tias Guns. Holy grail 2.0: From603

natural language to constraint models. arXiv preprint arXiv:2308.01589, 2023.604

45 Mauro Vallati, Lukáš Chrpa, and Diane Kitchin. Asap: an automatic algorithm selection605

approach for planning. International Journal on Artificial Intelligence Tools, 23(06):1460032,606

2014.607

46 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,608

Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information609

processing systems, 30, 2017.610

47 Lin Xu, Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Satzilla: portfolio-based611

algorithm selection for sat. Journal of artificial intelligence research, 32:565–606, 2008.612

48 Jiwei Yang, Xu Shen, Jun Xing, Xinmei Tian, Houqiang Li, Bing Deng, Jianqiang Huang,613

and Xian-sheng Hua. Quantization networks. In Proceedings of the IEEE/CVF conference on614

computer vision and pattern recognition, pages 7308–7316, 2019.615


	1 Introduction
	2 Background and Related Work
	3 Methodology
	3.1 Feature Learning Using a Language Model
	3.2 Algorithm Selection Using the Learnt Features

	4 A Case Study with the Car Sequencing Problem
	4.1 Problem Description and Instance Set
	4.2 Combinations of Models and Solvers
	4.3 Dataset and Algorithm Complementarity

	5 Experimental Evaluation
	5.1 Neural Network Training
	5.2 Feature Learning and Algorithm Selection: Combining vs Splitting
	5.3 Learnt Features vs fzn2feat
	5.4 Feature Extraction Cost

	6 Conclusions

