
Constrained Molecule Generation1

Modelled using the Grammar Constraint2

David Saikali #3

Department of Computer and Software Engineering, Polytechnique Montréal, Montreal, Canada4

Gilles Pesant #5

Department of Computer and Software Engineering, Polytechnique Montréal, Montreal, Canada6

Abstract7

Drug discovery is a very time-consuming and costly endeavour due to its huge design space and to8

the lengthy and failure-fraught process of bringing a product to market. Automating the generation9

of candidate molecules exhibiting some of the desired properties can help. Among the standard10

formats to encode molecules, SMILES is a widespread string representation. We propose a constraint11

programming model showcasing the grammar constraint to express the design space of organic12

molecules using the SMILES notation. We show that some low-level target properties such as13

molecular weight and structural features (cycles, branches) can be expressed as constraints in the14

model. We also contribute a weighted counting algorithm for the grammar constraint, allowing us15

to use a belief propagation heuristic to guide the generation. Our experiments indicate that such a16

heuristic is key to driving the search towards valid molecules.17

2012 ACM Subject Classification Mathematics of computing → Solvers; Computing methodologies18

→ Discrete space search; Applied computing → Computational biology19

Keywords and phrases grammar constraint, drug discovery, SMILES, weighted counting, belief20

propagation21

1 Introduction22

Drug discovery is a very time-consuming and costly endeavour due to its huge design space23

— estimated to contain between 1023 and 1060 different molecules [9] — and to the lengthy24

and failure-fraught process of bringing a product to market. Automated molecule design is25

nowadays a vital part of drug discovery and material science, with computational approaches26

coming from deep generative models and combinatorial search methods [8]. It aims to extract27

from this huge design space the most likely candidates according to some desired properties.28

And even among these only a few may lead to a usable product after extensive testing.29

SMILES, a one-dimensional encoding of molecules, is one of the standards commonly30

used by this research community. It lends itself well to techniques used for natural language31

processing, such as sequential generative neural models, but also to constraint programming.32

Using a context-free grammar and a few additional constraints, we show how to describe valid33

SMILES strings in a cp model. This allows us to explore the huge design space of possible34

molecules while adding constraints in order to restrict that space to suitable candidates.35

Even though the grammar (Cfg) constraint was introduced almost 20 years ago [23, 22], it36

has generated little interest from the cp community so far: it does not appear in the dominant37

modeling standards MiniZinc and XCSP nor is it supported by mainstream constraint solvers.38

There may be two reasons for this: typical applications of cp seldom require it to model the39

problem (even though there are obvious applications such as natural language processing)40

and its filtering algorithm is relatively expensive to run (cubic in the number of variables in41

its scope). With this paper we contribute: i) a natural application of the Cfg constraint; ii)42

a weighted counting algorithm for Cfg to achieve effective search guidance; iii) empirical43

evidence that some important real-life problems may be solved much more efficiently with it.44

mailto:david.saikali@polymtl.ca
mailto:gilles.pesant@polymtl.ca

2 Constrained Molecule Generation Modelled using the Grammar Constraint

Figure 1 Deriving a SMILES representation for a molecule (reproduced in part from [7]). The
structural formula of the molecule (A), its skeletal formula stripped of all hydrogen atoms and with
broken cycles (B), the selected main path (shown in green) and branches (C), and the corresponding
SMILES notation (D).

The remainder of the paper is organized as follows. Section 2 provides the necessary45

background. Section 3 reviews the related work. Section 4 presents our cp model for46

constrained molecule generation. Section 5 describes the weighted counting algorithm for47

context-free grammar constraints. Section 6 evaluates our approach empirically. Finally48

Section 7 recalls our contributions and identifies some directions for future research.49

2 Background50

This section provides background on organic chemistry, on formal grammars, and on cp-based51

belief propagation. Atoms are the building blocks of molecules and the bonds they can make52

are what allows the formation of complex structures. The number of bonds an atom can53

make is limited by the electrons in its valence shell, also called valence electrons. This valence54

shell refers to the outermost layer of electrons. By making ionic or covalent bonds, an atom55

can reach a more stable state. If we take Hydrogen and Carbon as examples, two of the more56

common atoms in organic chemistry, they need one and four more electrons respectively57

to complete their valence shell. They can do this by making the corresponding number of58

covalent bonds (commonly represented as line segments between atoms; see e.g. Figure 1A).59

2.1 SMILES Representation format60

SMILES (Simplified Molecular-Input Line-Entry System) [26] is a standard to represent61

molecules as short ASCII strings. Characters include the usual symbols for atoms. For62

example the water molecule (H2O) is made up of two hydrogen atoms, both of which form a63

single bond with a central oxygen atom. In SMILES notation this can be abbreviated to a64

simple O. Such simplification relies on the fact that oxygen requires two bonds to reach a65

stable state (where they have a full valence shell). Any bond an atom seems to be missing to66

reach this stable state is implicitly made with a hydrogen atom.67

Of course not all compounds are that simple and in particular may contain cycles (see68

e.g. Figure 1). The first step in building a SMILES string is to break the cycles present69

in the molecule. To retain the broken bond’s information, we add an identical numeric70

token following each of the previously connected atoms. For example cyclohexane (C6H12)71

is made up of six carbon atoms arranged in a cycle through single bonds and with two72

hydrogen atoms bound to each. Its representation is C1CCCCC1, indicating that the first73

and last carbon atoms in the chain are linked. Once cycles are broken, the structure forms a74

tree: we choose one path as the main path and the other ones become branches. In organic75

chemistry, the main path is typically the longest. A branch is written in parentheses before76

D. Saikali and G. Pesant 3

the main path continues. Note that this way of handling branches allows for two different77

SMILES strings to describe the same molecule. Like hydrogen, single bonds are implicit in78

the notation. Double and triple bonds are indicated using = and # respectively. For example79

ethylene (C2H4), written as C=C, has a carbon-carbon double bond. Figure 1 illustrates the80

conversion process for a more complex molecule. Note that we only covered the basics of81

SMILES notation. In reality, it is an incredibly in-depth system that can account for ions,82

isotopes, and so forth.83

One challenge of molecule generation when using the SMILES notation is that not all of its84

strings are valid. In particular, branches are represented using parentheses and the language85

of balanced parentheses is well known for not being regular. A context-free grammar has86

the necessary expressive power and the flexibility to cover most rules in the SMILES syntax.87

So using a context-free grammar does help in guaranteeing that the string is syntactically88

valid, but it may still be chemically invalid. To resolve this issue, Kraev [13] creates a89

grammar to ensure that atom valences are respected and balanced. He also introduces90

the concept of masking: each mask works as a secondary restriction on the generation,91

which prevents more invalid combinations than the previous configuration. For example, one92

mask ensures that cycles in the molecule are closed at the end of the generation. We use a93

slightly-adapted version of his grammar in our cp model (see Section 4). Some more recent94

string representations guarantee syntactic and chemical validity (e.g. SELFIES [14]) but95

their use is not nearly as widespread.96

2.2 Lipinski’s Rule of 597

Lipinski’s rule of 5 [18] describes four physicochemical properties that molecules fit to be98

orally active drugs in humans tend to respect. The first rule is a limit on the molecular99

weight: a viable drug should be limited to 500 Da (or g/mol). The next two rules concern100

hydrogen bond donors: fewer than 5 hydrogen-bond donors and fewer than 10 hydrogen-bond101

acceptors. These are bonds between hydrogen atoms and an electronegative atom such102

as nitrogen, oxygen, or fluorine. Finally, the last rule has to do with how hydrophilic or103

lipophilic (i.e. hydrophobic) a molecule is. The higher the logP score, the more lipophilic it104

is. Lipinski’s rule of five says that the logP score of a viable molecule should not exceed 5.105

These rules are heuristic since several exceptions can be found.106

2.3 Context-Free Grammar107

A grammar is a set of rewrite rules to generate a set of strings. Formally, grammar108

G = (N , Σ,R, S) is defined respectively by a set of nonterminal symbols, a set of terminal109

symbols (its alphabet), a set of production rules, and a start symbol. We denote L(G) the110

language recognized by G i.e. the set of strings that grammar can generate. According to111

Chomsky’s classification, there are many types of grammars, ranging from least to most112

restrictive: Recursively Enumerable (Type-0), Context-Sensitive (Type-1), Context-Free113

(Type-2) and Regular (Type-3). For a grammar to qualify as context-free, its production114

rules must respect two restrictions: the left-hand side of the production must be a single115

nonterminal, and the right-hand side must be a string of terminals and nonterminals.116

▶ Example 1. Context-free grammar G = ({S, A, B, C}, {⟨, ⟩}, {S → SS, S → AC, S →117

BC, B → AS, A→ ⟨, C →⟩}, S) recognizes correctly bracketed words such as “⟨⟨⟩⟩”, obtained118

by the successive application of rules: S → BC → ASC → AS⟩ → AAC⟩ → A⟨C⟩ → A⟨⟩⟩ →119

⟨⟨⟩⟩. Some of these rules could have been applied in a different order, but all such orderings120

correspond here to the same parse tree (the red one in Figure 3).121

4 Constrained Molecule Generation Modelled using the Grammar Constraint

In cp, given a context-free grammar G and a sequence of finite-domain variables122

⟨X1, X2, . . . , Xn⟩ with Xi ∈ D(Xi) ⊆ Σ, constraint Cfg(G, ⟨X1, X2, . . . , Xn⟩) holds if the123

sequence of values taken by X1, X2, . . . , Xn corresponds to a word of L(G). Quimper and124

Walsh [22] describe a domain-consistency algorithm for the Cfg constraint based on the125

CYK parser. It requires that the grammar be in Chomsky Normal Form: all production rules126

are either of the form A→ BC or A→ a where A, B, C are nonterminals and a a terminal.127

This is not restrictive because any context-free grammar can be put into that form.128

2.4 cp-based Belief Propagation129

The MiniCPBP solver1 generalizes standard constraint propagation in cp through a message-130

passing phase akin to belief propagation that outputs from each constraint probability mass131

functions (pmfs) over the domain of the individual variables in its scope, representing how132

frequently a domain value appears in a solution to that constraint [21]. Such information133

is computed through weighted model counting on individual constraints. In Section 5 we134

contribute a weighted counting algorithm for the Cfg constraint. This propagation of pmfs135

can approximate the marginals of individual variables for the whole cp model. Such marginals136

have been used to design branching heuristics to solve combinatorial problems [2, 4] and to137

train neural networks [17, 27].138

3 Related Work139

Drug discovery, and molecule design in general, is a vast topic. A recent survey by Du et140

al. [8] presents various representation formalisms, some of the main problems tackled, and141

an array of computational methods used to solve them, mostly generative machine learning142

but also combinatorial solvers. Among the current challenges for deep generative models,143

they mention the difficulty of exploring little known/seen areas of the molecular design space144

(the common out-of-distribution generation issue) and the need for lots of training data145

(generation in low-data regime issue i.e. high sample complexity). They also mention as146

opportunity the generation of specialized molecules with more complex structure.147

Among combinatorial solvers, the use of constraint programming in this area was pioneered148

25 years ago by Krippahl and Barahona for protein structure determination [15]. They149

showed that cp can help determine the position of atoms in a molecule. By approximating150

the distance between non-hydrogen atoms they infer the shape of the protein. Later work151

on protein docking [16] uses cp to prune the search space, allowing a trained Naive Bayes152

classifier to find solutions much faster.153

Barbe, Schiex et al. use Cost Function Networks to solve computational protein design154

problems seeking sequences that fold to specific three-dimensional structures [25, 6]. These155

Cost Function Networks use energy contributions to find the three-dimensional shape of the156

molecule.157

Several works consider a particular family of molecules, benzenoids, and exploit their158

special geometry when defining their representation in a cp model and expressing various159

properties as constraints. Carissan et al. [5, 24] add constraints to benzenoid generation160

in order to model certain properties such as the number of carbon atoms or the shape of161

the molecule. They also formulate the problem of determining local aromaticity as a csp.162

Peng and Solnon [20] improve the enumeration of benzenoid graphs by representing them163

1 https://github.com/PesantGilles/MiniCPBP

https://github.com/PesantGilles/MiniCPBP

D. Saikali and G. Pesant 5

start 1 cycle 2 cycles · · · i cycles · · · 19 cycles

Σ \ {1, . . . , 19}

1

Σ \ {2, . . . , 19}

2

Σ \ {3, . . . , 19}

3 i

Σ \ {i + 1, . . . , 19}

i+1 19

Σ

Figure 2 Automaton A which imposes ordinal order on cycle numbering.

using short canonical codes that are invariant to symmetries and rotations, expressed in a164

cp model. They ensure the presence of a given pattern by completing a suitably prefixed165

code. The sequential nature of these codes, obtained through graph traversal, makes them166

similar in spirit to the SMILES notation, though much less general.167

In the context of their work on constrained graph generation using cp, Omrani and168

Naanaa [19] consider the generation of molecular graphs corresponding to a given molecular169

formula.170

So despite some prior work involving cp, none address the problem we consider and171

especially the use of the grammar constraint. On a related note we end by mentioning the172

work of Guo et al. [11] who recently proposed a sample-efficient neural method for molecule173

generation that is based on learning a graph grammar.174

4 Model175

This section describes the cp modeling of our problem. A molecule is described by a sequence176

of n variables whose domain is the alphabet of the SMILES notation.177

4.1 SMILES representation178

As mentioned earlier, we use a variation of Kraev’s grammar [13] to ensure that atom valences179

are respected in the generated molecules. One of the modifications we made to the grammar180

was to integrate the cycle length limit directly into the grammar, something Kraev [13] did181

using a mask. We limit the cycle length to 8: MOSES [10], a data set of about two million182

molecules, never exceeds length-6 cycles while another, Zinc_250k [1], features some length-8183

cycles. The resulting context-free grammar features 159 productions, 49 nonterminal symbols184

and 45 terminal symbols (the SMILES alphabet). Its conversion into Chomsky normal form185

features the same number of terminals while the number of productions and nonterminals186

increase to 555 and 172 respectively.187

Let GSMILES = (N , Σ,R, S) denote the final grammar and ⟨X1, X2, . . . , Xn⟩, Xi ∈ Σ, the
sequence of variables in our model. Constraint

Cfg(⟨X1, X2, . . . , Xn⟩,GSMILES)

ensures that the sequence of values taken by the variables corresponds to a word belonging
to the grammar’s language. Just as Kraev added masks so that the generated sequences
followed some conventions, we add corresponding constraints. We first add a constraint
to ensure that cycles in the SMILES string are numbered consecutively in ascending order

6 Constrained Molecule Generation Modelled using the Grammar Constraint

starting at 1. To do this, we define an automaton A (see Fig. 2) which does not allow starting
a cycle of a higher number until the one preceding it has been started and add constraint

Regular(⟨X1, X2, . . . , Xn⟩,A).

Next, while the SMILES notation does allow for the same cycle number to be reused once
the cycle has been closed, it can make the molecule harder to read. We avoid reusing cycle
numbers by adding Among constraints which constrain the number of occurrences of a cycle
number to be either 0 or 2:

Among(⟨X1, X2, . . . , Xn⟩, {j}, {0, 2}) 1 ≤ j ≤ 8.

These conventions may be seen as applying static symmetry breaking.188

In principle we could combine all the constraints of this section into a single Cfg constraint189

but at the expense of a significant increase in size of an already large grammar.190

4.2 Targeting Regions of the Design Space191

There are of course many ways in which one may wish to target the generation of molecules.192

We present here the few that we use in our experiments.193

To limit the molecular weight, which is one of Lipinski’s four rules, we first define a table
T linking each symbol in Σ to its corresponding weight. Note that this is not as simple as
using the weight of each atom and zero for the other symbols since hydrogen atoms are not
written in a SMILES string. We avoid most of this issue by adjusting the weights of the
atoms in T to compensate for the missing hydrogen atoms. We also associate a negative
weight to the tokens representing double bonds, triple bonds and cycle numbers. This is used
to counteract the increased weight of atoms since we include the implicit hydrogen atoms.
The error on the molecular weight does not exceed 5% when tested on the large datasets.
We then index that table with variables Xi,

Element(T , Xi, Wi) 1 ≤ i ≤ n

linking each with an individual weight variable Wi, and sum them to obtain the weight W of
the whole molecule:

Sum(⟨W1, W2, . . . , Wn⟩, W).

We can add structural constraints restricting the number of branches and cycles. For
branches we simply define a variable Nb to represent the number of occurrences of the branch
opening symbol:

Among(⟨X1, X2, . . . , Xn⟩, {“(”}, Nb).

For cycles we also use Among constraints on cycle-number symbols. If we want at least
nc cycles, given that we label cycles consecutively from 1 and do not reuse cycle labels
(Section 4.1), we add constraint

Among(⟨X1, X2, . . . , Xn⟩, {nc}, 2).

If we want at most nc, we add

Among(⟨X1, X2, . . . , Xn⟩, {nc + 1}, 0).

To require an exact number we use both.194

D. Saikali and G. Pesant 7

S

B

S S S

A A AC C C

⟨ ⟨ ⟨⟩ ⟩ ⟩

.4 + .1

.4

.5 .4 .2

1 .5 .2.5 .8 1

1 .5 .2.5 .8 1

Figure 3 Two parse trees (left) for the two words of length 4 recognized by the grammar of
Example 1 and the computed weights wijN at parse subtrees (right) given some bid values at
the bottom. The path in bold from the root to “⟨” in position 3 illustrates the computation of
θX3 (“⟨”) = f31A = w12S × w41C = .5 as the product of the weights of the two branches off that path
(shown dashed) in the blue dotted parse tree.

5 Weighted Counting Algorithm for the Cfg Constraint195

In this section, we design a dedicated algorithm for the grammar constraint which computes196

marginals for variable-value pairs in order to inform branching heuristics for the MiniCPBP197

solver. The filtering algorithm for the Cfg constraint marks triplets (i, j, A) such that there198

exists at least one string in L(G)∩ (D(X1)× · · · ×D(Xn)) in which nonterminal A generates199

its substring of size j starting at position i. We take that information as input to our200

weighted counting algorithm (see Algorithm 1) and denote it as Nij , the set of nonterminal201

symbols being the root of some parse tree for length-j substrings starting at position i. The202

other input is a belief (pmf) over the domain of each variable in the scope of the constraint,203

emanating from the combined beliefs of the other constraints in the cp model. The output204

of the algorithm are the weighted frequency of variable-value assignments in solutions to205

the constraint, which we simply call marginals here. We use wijN to hold the probabilistic206

weight of the parse trees rooted at nonterminal symbol N for length-j (sub-)words starting207

at position i, which we compute at Lines 1-15 in a dynamic programming fashion starting208

from the terminals. We then use fijN to accumulate the product of weights of branches on209

either side of a path from the root to the parse tree at N for length-j (sub-)words starting210

at position i, which we compute at Lines 16-28 again in a dynamic programming fashion but211

starting from the root. These represent the probabilistic weight of all possible prefix and212

suffix combinations for that sub-word. Finally Lines 29-34 set the marginals using the fi1N213

values, corresponding to the weight of supports in solutions. Figure 3 provides an example.214

The structure of Algorithm 1 is very similar to that of the original filtering algorithm:215

it runs in Θ(|R|n3) time using Θ(|N |n2) space. The algorithm is exact for unambiguous216

grammars, i.e. those for which there is a one-to-one correspondence between parse trees and217

words belonging to the language, but determining whether an arbitrary context-free grammar218

is ambiguous is undecidable. Because the counting algorithm proceeds from parse trees, for219

an ambiguous grammar some words will be counted multiple times and thus overestimate the220

marginals of the corresponding variable-value (i.e. position-symbol) pairs. The alternative,221

counting all words directly, is generally intractable.222

8 Constrained Molecule Generation Modelled using the Grammar Constraint

Algorithm 1 weightedCount({bid}, {Nij})

Input: beliefs from variables: bid for variable Xi and value d (0 whenever
d /∈ D(Xi)); nonterminals appearing in parse trees: Nij for position i and
length j

Output: unnormalized marginals θX for each variable X

// Clear weights
1 for i← 1 to n do
2 for j ← 1 to n− i do
3 foreach N ∈ N do
4 wijN ← 0

// Initialize weights for length-one substrings
5 foreach A→ a ∈ G do
6 for i← 1 to n do
7 if A ∈ Ni1 then
8 wi1A ← wi1A + bia

// Consider substrings of increasing length, accumulating weights
9 for j ← 2 to n do

10 for i← 1 to n− j + 1 do
11 for k ← 1 to j − 1 do
12 foreach B ∈ Nik do
13 foreach A→ BC ∈ G do
14 if C ∈ Ni+k,j−k then
15 wijA ← wijA + wikB × wi+k,j−k,C

// Clear forks
16 for i← 1 to n do
17 for j ← 1 to n− i do
18 foreach N ∈ N do
19 fijN ← 0

// Initialize root of all parse trees (start symbol)
20 f1nS ← 1

// Consider substrings of decreasing length, accumulating the product
of weights that branch off on either side

21 for j ← n down to 2 do
22 for i← 1 to n− j + 1 do
23 foreach A ∈ Nij do
24 foreach A→ BC ∈ G do
25 for k ← 1 to j − 1 do
26 if B ∈ Ni,k ∧ C ∈ Ni+k,j−k then
27 fikB ← fikB + fijA × wi+k,j−k,C

28 fi+k,j−k,C ← fi+k,j−k,C + fijA × wikB

29 for i← 1 to n do
// Clear marginals

30 foreach d ∈ D(Xi) do
31 θXi

(d)← 0
// Add accumulated forks to marginals

32 foreach A ∈ Ni1 do
33 foreach A→ a ∈ G do
34 θXi

(a)← θXi
(a) + fi1A

35 return θ

D. Saikali and G. Pesant 9

marginalStr marginalStrLDS domWDeg/minVal domWdeg/random dom/random
instance time(s) fails time(s) fails time(s) fails time(s) fails time(s) fails

c1b2 6.2 0 6.8 0 123.0 1862 6.1 6 6.0 44
c1b3 4.2 0 5.2 0 – – 5.9 13 – –
c1b4 5.9 1 6.3 1 – – 5.9 17 – –
c2b2 4.9 0 4.9 0 – – 23.8 826 231.1 24161
c2b3 4.8 0 5.4 0 – – 7.7 171 49.7 6065
c2b4 5.9 0 6.0 0 – – 10.8 569 – –
c3b2 7.3 0 7.3 0 – – – – – –
c3b3 – – 79.6 93 – – – – – –
c3b4 – – 12.7 17 – – – – – –
Table 1 Comparing branching heuristics on some constrained molecule generation instances.

6 Results223

The double purpose of our experiment will be to show how useful the weighted counting224

algorithm we contributed for the grammar constraint is to guide search compared to likely225

alternative branching heuristics, and to show that generating potentially useful molecules226

from a constrained design space modeled in cp using a grammar constraint appears to227

be tractable. Therefore our experiment is restricted to a cp approach using the model228

we described in Section 4 and we compare runtime and number of search-tree failures. A229

comparison with other computational approaches on the same basis would only yield a very230

partial picture anyway. Ultimately a comparative study would involve testing many more231

properties, some only possible by attempting to synthesize the molecule in a lab, in order to232

determine how good of a candidate it is. For example, a faster approach may generate mostly233

useless molecules and hence be slower in confirming a good one. The ability to enforce or at234

least encourage many properties at the time of in silico generation, such as with cp, offers235

the promise of increasing the success rate of a lengthy and costly downstream process.236

According to the classification of Du et al. [8], the problem we consider corresponds237

to de novo 1D molecule optimization: we generate molecules from scratch using a string238

representation and targeting some desired properties. We will seek molecules very close to239

the recommended limit according to Lipinski’s Rule of 5 for molecular weight: between 475240

and 500 Da (i.e. we add constraint 475 ≤W ≤ 500 to our model). At the same time, we will241

ask for specific structural features, considering every combination of number of cycles and242

branches in the respective ranges 1..3 and 2..4, instance cibj corresponding to i cycles and j243

branches (in which case we add Nb == j to our model and set nc to i in the corresponding244

pair of Among constraints). We set n = 40.245

Table 1 presents the computation time (on an AMD Rome 7532 processor (2.4GHz, 256M246

cache L3), 1 GB of RAM, and allowing a maximum of one hour) and number of fails to find247

a first solution to each of our instances using different branching heuristics. The tests were248

run using the MiniCPBP solver.249

Being a learning-based heuristic, domWDeg [3] is run with restarts (initially after 100 fails250

and increased by a 1.5 factor), which is common practice for it. Early experiments on our251

instances confirmed that it generally performs better with restarts than without. We report252

on its combination with two value-selection heuristics: minVal, which selects the smallest253

value in the domain, and random, which selects a domain value uniformly at random. In the254

latter case we report the median of 11 runs.255

10 Constrained Molecule Generation Modelled using the Grammar Constraint

I
O

O O
S

NH

S

O

SN
H

S
S

Figure 4 Molecule “IOC(OC(OC=CSC=CCC)CNCCC1SCOC1)SCNC2CSCS2” generated by
maxMarginalStrength for instance c2b2. Regarding Lipinski’s Rule of 5, it features 2 hydrogen-bond
donors, 11 hydrogen-bond acceptors, and a logP score of about 5.2.

dom/random selects a variable with the smallest domain and a domain value uniformly at256

random. Here as well we report the median of 11 runs.257

maxMarginalStrength [21] (identified as marginalStr in the table) is a branching heur-258

istic based on the marginals computed by MiniCPBP using the weighted counting algorithm259

of each constraint in the model, including the one we newly designed for Cfg. Because it is260

not learning-based and is deterministic, using restarts would not help. We report on its use261

with standard depth-first search (DFS) and also with limited-discrepancy search (LDS, with262

a maximum number of discrepancies starting at 1 and doubled at each iteration, ultimately263

making the search complete), which is a sensible option for a trusted branching heuristic [12].264

Our baseline branching heuristic dom/random is only able to solve three out of nine265

instances within the one-hour time limit. Even with restarts, domWDeg struggles with the266

usual value selection minVal but does better with random (solving 6 out of 9), hinting that267

value selection is quite important for this problem with large domains and that the smallest268

value may not be a particularly good choice.269

Branching heuristics based on marginals make an integrated choice of variable and value.270

The very low number of fails for maxMarginalStrength (6 out of 9 instances are solved271

backtrack-free) is remarkable and shows the usefulness of the weighted counting algorithm we272

designed for the Cfg constraint. It does not manage to solve the last two instances within273

the time limit, likely because of a bad decision near the top of the tree. Using LDS instead274

of DFS confirms this as all instances then become solved.275

Although very convenient and overall effective, modelling using a Cfg constraint with a276

large grammar comes at a computational cost: posting it (including the initial call to its277

propagator) takes about a second. Running several iterations of belief propagation (including278

the weighted counting algorithm for Cfg) before branching takes three to four times longer279

than a branching heuristic such as domWDeg. However these are offset by the superior search280

guidance, and thus much smaller search tree, it brings.281

Out of curiosity, Figure 4 shows one of the molecules we generated, which is not too far282

from the recommended values according to Lipinski’s Rule of 5. Of course, this in no way283

guarantees that the molecule would satisfy all the other requirements, or that it would hold284

any medicinal virtue.285

7 Conclusion286

We presented a promising application of the grammar constraint — constrained molecule287

generation — and a novel weighted counting algorithm for this constraint which allowed us288

to solve the problem more efficiently. Because so few candidate molecules are ultimately289

D. Saikali and G. Pesant 11

retained, an ongoing challenge is being able to model higher-level properties of molecules290

as constraints. By actively restricting the design space during generation, it would give291

us a considerable computational advantage over a generate-and-test approach. Expressing292

the whole design space in cp allows us to explore little-known regions in that space but293

we also wish to exploit our knowledge base of successful molecules. Combining cp and294

machine learning may help us reach a balance between exploration and exploitation and we295

are currently investigating such a mix.296

References297

1 Tagir Akhmetshin, Arkadii I. Lin, Daniyar Mazitov, Evgenii Ziaikin, Timur Madzhidov, and298

Alexandre Varnek. ZINC 250K data sets. 12 2021. URL: https://figshare.com/articles/299

dataset/ZINC_250K_data_sets/17122427, doi:10.6084/m9.figshare.17122427.v1.300

2 Behrouz Babaki, Bilel Omrani, and Gilles Pesant. Combinatorial search in cp-based iterated301

belief propagation. In Helmut Simonis, editor, Principles and Practice of Constraint Program-302

ming - 26th International Conference, CP 2020, Louvain-la-Neuve, Belgium, September 7-11,303

2020, Proceedings, volume 12333 of Lecture Notes in Computer Science, pages 21–36. Springer,304

2020. doi:10.1007/978-3-030-58475-7_2.305

3 Frédéric Boussemart, Fred Hemery, Christophe Lecoutre, and Lakhdar Sais. Boosting sys-306

tematic search by weighting constraints. In Ramón López de Mántaras and Lorenza Saitta,307

editors, Proceedings of the 16th Eureopean Conference on Artificial Intelligence, ECAI’2004,308

including Prestigious Applicants of Intelligent Systems, PAIS 2004, Valencia, Spain, August309

22-27, 2004, pages 146–150. IOS Press, 2004.310

4 Auguste Burlats and Gilles Pesant. Exploiting entropy in constraint programming. In André A.311

Ciré, editor, Integration of Constraint Programming, Artificial Intelligence, and Operations312

Research - 20th International Conference, CPAIOR 2023, Nice, France, May 29 - June 1, 2023,313

Proceedings, volume 13884 of Lecture Notes in Computer Science, pages 320–335. Springer,314

2023. doi:10.1007/978-3-031-33271-5_21.315

5 Yannick Carissan, Denis Hagebaum-Reignier, Nicolas Prcovic, Cyril Terrioux, and Adrien316

Varet. How constraint programming can help chemists to generate benzenoid structures and317

assess the local aromaticity of benzenoids. Constraints An Int. J., 27(3):192–248, 2022. URL:318

https://doi.org/10.1007/s10601-022-09328-x, doi:10.1007/S10601-022-09328-X.319

6 Antoine Charpentier, David Mignon, Sophie Barbe, Juan Cortés, Thomas Schiex, Thomas320

Simonson, and David Allouche. Variable neighborhood search with cost function networks to321

solve large computational protein design problems. J. Chem. Inf. Model., 59(1):127–136, 2019.322

URL: https://doi.org/10.1021/acs.jcim.8b00510, doi:10.1021/ACS.JCIM.8B00510.323

7 Wikimedia Commons. Smiles.png. Online, accessed July 12, 2023. URL: https://commons.324

wikimedia.org/wiki/File:SMILES.png.325

8 Yuanqi Du, Tianfan Fu, Jimeng Sun, and Shengchao Liu. Molgensurvey: A systematic survey326

in machine learning models for molecule design, 2022. arXiv:2203.14500.327

9 Polishchuk et al. Estimation of the size of drug-like chemical space based on gdb-17 data.328

Journal of Computer-Aided Molecular Design, 2013. doi:10.1007/s10822-013-9672-4.329

10 Polykovskiy et al. Molecular sets (moses): A benchmarking platform for molecular generation330

models. Frontiers in Pharmacology, 11, 2020. ISSN: 1663-9812. arXiv:https://doi.org/10.331

3389/fphar.2020.565644, doi:10.3389/fphar.2020.565644.332

11 Minghao Guo, Veronika Thost, Beichen Li, Payel Das, Jie Chen, and Wojciech Matusik.333

Data-efficient graph grammar learning for molecular generation. In International Conference334

on Learning Representations, 2022. URL: https://openreview.net/forum?id=l4IHywGq6a.335

12 William D. Harvey and Matthew L. Ginsberg. Limited discrepancy search. In Proceedings of336

the Fourteenth International Joint Conference on Artificial Intelligence, IJCAI 95, Montréal337

Québec, Canada, August 20-25 1995, 2 Volumes, pages 607–615. Morgan Kaufmann, 1995.338

URL: http://ijcai.org/Proceedings/95-1/Papers/080.pdf.339

https://figshare.com/articles/dataset/ZINC_250K_data_sets/17122427
https://figshare.com/articles/dataset/ZINC_250K_data_sets/17122427
https://figshare.com/articles/dataset/ZINC_250K_data_sets/17122427
https://doi.org/10.6084/m9.figshare.17122427.v1
https://doi.org/10.1007/978-3-030-58475-7_2
https://doi.org/10.1007/978-3-031-33271-5_21
https://doi.org/10.1007/s10601-022-09328-x
https://doi.org/10.1007/S10601-022-09328-X
https://doi.org/10.1021/acs.jcim.8b00510
https://doi.org/10.1021/ACS.JCIM.8B00510
https://commons.wikimedia.org/wiki/File:SMILES.png
https://commons.wikimedia.org/wiki/File:SMILES.png
https://commons.wikimedia.org/wiki/File:SMILES.png
https://arxiv.org/abs/2203.14500
https://doi.org/10.1007/s10822-013-9672-4
https://arxiv.org/abs/https://doi.org/10.3389/fphar.2020.565644
https://arxiv.org/abs/https://doi.org/10.3389/fphar.2020.565644
https://arxiv.org/abs/https://doi.org/10.3389/fphar.2020.565644
https://doi.org/10.3389/fphar.2020.565644
https://openreview.net/forum?id=l4IHywGq6a
http://ijcai.org/Proceedings/95-1/Papers/080.pdf

12 Constrained Molecule Generation Modelled using the Grammar Constraint

13 Egor Kraev. Grammars and reinforcement learning for molecule optimization, 2018. arXiv:340

1811.11222.341

14 Mario Krenn, Florian Häse, AkshatKumar Nigam, Pascal Friederich, and Alán Aspuru-Guzik.342

Self-referencing embedded strings (SELFIES): A 100% robust molecular string representation.343

Mach. Learn. Sci. Technol., 1(4):45024, 2020. URL: https://doi.org/10.1088/2632-2153/344

aba947, doi:10.1088/2632-2153/ABA947.345

15 Ludwig Krippahl and Pedro Barahona. Applying constraint programming to protein structure346

determination. In Joxan Jaffar, editor, Principles and Practice of Constraint Programming347

- CP’99, 5th International Conference, Alexandria, Virginia, USA, October 11-14, 1999,348

Proceedings, volume 1713 of Lecture Notes in Computer Science, pages 289–302. Springer,349

1999. doi:10.1007/978-3-540-48085-3_21.350

16 Ludwig Krippahl and Pedro Barahona. Protein docking with predicted constraints. Algorithms351

Mol. Biol., 10:9, 2015. URL: https://doi.org/10.1186/s13015-015-0036-6, doi:10.1186/352

S13015-015-0036-6.353

17 Daphné Lafleur, Sarath Chandar, and Gilles Pesant. Combining reinforcement learn-354

ing and constraint programming for sequence-generation tasks with hard constraints. In355

Christine Solnon, editor, 28th International Conference on Principles and Practice of Con-356

straint Programming, CP 2022, July 31 to August 8, 2022, Haifa, Israel, volume 235 of357

LIPIcs, pages 30:1–30:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL:358

https://doi.org/10.4230/LIPIcs.CP.2022.30, doi:10.4230/LIPICS.CP.2022.30.359

18 Christopher A. Lipinski, Franco Lombardo, Beryl W. Dominy, and Paul J. Feeney. Experimental360

and computational approaches to estimate solubility and permeability in drug discovery and361

development settings. Advanced Drug Delivery Reviews, 23(1):3–25, 1997. In Vitro Models362

for Selection of Development Candidates. URL: https://www.sciencedirect.com/science/363

article/pii/S0169409X96004231, doi:10.1016/S0169-409X(96)00423-1.364

19 Mohamed Amine Omrani and Wady Naanaa. Constraints for generating graphs with365

imposed and forbidden patterns: an application to molecular graphs. Constraints An366

Int. J., 25(1-2):1–22, 2020. URL: https://doi.org/10.1007/s10601-019-09305-x, doi:367

10.1007/S10601-019-09305-X.368

20 Xiao Peng and Christine Solnon. Using canonical codes to efficiently solve the benzenoid369

generation problem with constraint programming. In Roland H. C. Yap, editor, 29th Interna-370

tional Conference on Principles and Practice of Constraint Programming, CP 2023, August371

27-31, 2023, Toronto, Canada, volume 280 of LIPIcs, pages 28:1–28:17. Schloss Dagstuhl -372

Leibniz-Zentrum für Informatik, 2023. URL: https://doi.org/10.4230/LIPIcs.CP.2023.28,373

doi:10.4230/LIPICS.CP.2023.28.374

21 Gilles Pesant. From support propagation to belief propagation in constraint programming.375

Journal of Artificial Intelligence Research, 2019. doi:10.1613/jair.1.11487.376

22 Claude-Guy Quimper and Toby Walsh. Global grammar constraints. In Frédéric Benhamou,377

editor, Principles and Practice of Constraint Programming - CP 2006, 12th International378

Conference, CP 2006, Nantes, France, September 25-29, 2006, Proceedings, volume 4204 of379

Lecture Notes in Computer Science, pages 751–755. Springer, 2006. doi:10.1007/11889205\380

_64.381

23 Meinolf Sellmann. The theory of grammar constraints. In Frédéric Benhamou, editor, Principles382

and Practice of Constraint Programming - CP 2006, 12th International Conference, CP 2006,383

Nantes, France, September 25-29, 2006, Proceedings, volume 4204 of Lecture Notes in Computer384

Science, pages 530–544. Springer, 2006. doi:10.1007/11889205_38.385

24 Adrien Varet, Nicolas Prcovic, Cyril Terrioux, Denis Hagebaum-Reignier, and Yannick Carissan.386

Benzai: A program to design benzenoids with defined properties using constraint programming.387

J. Chem. Inf. Model., 62(11):2811–2820, 2022. URL: https://doi.org/10.1021/acs.jcim.388

2c00353, doi:10.1021/ACS.JCIM.2C00353.389

https://arxiv.org/abs/1811.11222
https://arxiv.org/abs/1811.11222
https://arxiv.org/abs/1811.11222
https://doi.org/10.1088/2632-2153/aba947
https://doi.org/10.1088/2632-2153/aba947
https://doi.org/10.1088/2632-2153/aba947
https://doi.org/10.1088/2632-2153/ABA947
https://doi.org/10.1007/978-3-540-48085-3_21
https://doi.org/10.1186/s13015-015-0036-6
https://doi.org/10.1186/S13015-015-0036-6
https://doi.org/10.1186/S13015-015-0036-6
https://doi.org/10.1186/S13015-015-0036-6
https://doi.org/10.4230/LIPIcs.CP.2022.30
https://doi.org/10.4230/LIPICS.CP.2022.30
https://www.sciencedirect.com/science/article/pii/S0169409X96004231
https://www.sciencedirect.com/science/article/pii/S0169409X96004231
https://www.sciencedirect.com/science/article/pii/S0169409X96004231
https://doi.org/10.1016/S0169-409X(96)00423-1
https://doi.org/10.1007/s10601-019-09305-x
https://doi.org/10.1007/S10601-019-09305-X
https://doi.org/10.1007/S10601-019-09305-X
https://doi.org/10.1007/S10601-019-09305-X
https://doi.org/10.4230/LIPIcs.CP.2023.28
https://doi.org/10.4230/LIPICS.CP.2023.28
https://doi.org/10.1613/jair.1.11487
https://doi.org/10.1007/11889205_64
https://doi.org/10.1007/11889205_64
https://doi.org/10.1007/11889205_64
https://doi.org/10.1007/11889205_38
https://doi.org/10.1021/acs.jcim.2c00353
https://doi.org/10.1021/acs.jcim.2c00353
https://doi.org/10.1021/acs.jcim.2c00353
https://doi.org/10.1021/ACS.JCIM.2C00353

D. Saikali and G. Pesant 13

25 Jelena Vucinic, David Simoncini, Manon Ruffini, Sophie Barbe, and Thomas Schiex. Positive390

multistate protein design. Bioinform., 36(1):122–130, 2020. URL: https://doi.org/10.1093/391

bioinformatics/btz497, doi:10.1093/BIOINFORMATICS/BTZ497.392

26 David Weininger. Smiles, a chemical language and information system. 1. introduction to393

methodology and encoding rules. Journal of Chemical Information and Computer Sciences,394

28(1):31–36, 1988. doi:10.1021/ci00057a005.395

27 Chao Yin, Quentin Cappart, and Gilles Pesant. An improved neuro-symbolic architecture to396

fine-tune generative AI systems. In Bistra Dilkina, editor, Integration of Constraint Program-397

ming, Artificial Intelligence, and Operations Research - 21st International Conference, CPAIOR398

2024, Uppsala, Sweden, May 28-31, 2024, Proceedings, Part II, volume 14743 of Lecture Notes399

in Computer Science, pages 279–288. Springer, 2024. doi:10.1007/978-3-031-60599-4_19.400

https://doi.org/10.1093/bioinformatics/btz497
https://doi.org/10.1093/bioinformatics/btz497
https://doi.org/10.1093/bioinformatics/btz497
https://doi.org/10.1093/BIOINFORMATICS/BTZ497
https://doi.org/10.1021/ci00057a005
https://doi.org/10.1007/978-3-031-60599-4_19

	1 Introduction
	2 Background
	2.1 SMILES Representation format
	2.2 Lipinski's Rule of 5
	2.3 Context-Free Grammar
	2.4 cp-based Belief Propagation

	3 Related Work
	4 Model
	4.1 SMILES representation
	4.2 Targeting Regions of the Design Space

	5 Weighted Counting Algorithm for the Cfg Constraint
	6 Results
	7 Conclusion

