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—— Abstract

Puzznic is a tile-matching video game published by Taito in 1989 and ported to many platforms.

The player manipulates blocks in a given grid until they match when two or more blocks of the
same pattern are adjacent and are removed from play. The goal is to match all patterned blocks in
the grid. Puzznic is rich in structure: levels have internal platforms and the blocks are affected by
gravity, leading to complex state changes and the possibility of a cascaded series of matches following
each move by the player. The puzzle is therefore a significant challenge to model, motivating our
study. We study Puzznic from both constraint modelling and AI Planning perspectives, identifying
their complementary strengths and weaknesses for this problem. We further exploit our constraint
model to automate instance generation, parameterised on the grid, the combination of patterned
blocks, and the steps required for a solution.
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1 Introduction

Puzznic (Taito, 1989) is a puzzle-based video game, ported to many platforms. The player
manipulates blocks in a given grid until they match when two or more blocks of the same
pattern are adjacent horizontally or vertically, and are removed from play. The goal is to
remove all patterned blocks in the grid. An illustrative level from the game is presented in
Figure 1. Unlike many other puzzle games [6, 19], instances of Puzznic, crafted to challenge
human players, are not trivial to solve for automated approaches. Puzznic is rich in structure:
levels may have internal platforms and the blocks are affected by gravity, leading to complex
state changes and the possibility of a cascaded series of matches following each move by the
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Figure 1 Detail from Puzznic (Taito, 1989). The red cursor that can be seen on the red circle
block at the upper right of the image is controlled by the player and used to select and move
individual blocks.

player. The puzzle is therefore a significant challenge to model, which motivates our study.
Puzznic is naturally characterised as an AI Planning problem [11]. Given a model of the
environment (here the grid, blocks, and their behaviour), a planning problem requires finding
a sequence of actions (block moves) to progress from an initial state of the environment to a
goal state (all blocks matched) while respecting a set of constraints.

Constraint Programming has been used to solve planning problems [1, 2] and has recently
proven successful in solving Plotting [8], a puzzle game which, in common with Puzznic, has
complex changes of state.

We build upon [7] to present models of Puzznic in the constraints paradigm and in PDDL,
the standard modelling language of the Al Planning community. Our primary contributions
are as follows: (i) A challenging new benchmark, which we establish for the first time to
be in NP, (ii) Models for both AI Planning and constraint modelling paradigms, (iii) An
instance generator based on our constraint model, (iv) An empirical comparison between
our two models, establishing their complementary strengths and weaknesses across several
sub-families of Puzznic instances.

2  Puzznic

Puzznic is a puzzle solitaire game, in which the player has full information about the game
state and the effects of each action performed are deterministic. This is representative of
tile-matching games such as Plotting [8], as well as board games like peg solitaire [14] and
some variants of patience like Black Hole [10]. Each instance of the game consists of a grid
of cells similar to that presented in Figure 1. Each cell may be empty, filled with a wall or
contain a patterned block. The player controls a red cursor, visible at the top-right of the
figure, with which they can select a single patterned block. A selected block can be moved
horizontally left or right if the cell in the direction chosen is empty. Patterned blocks are
affected by gravity, and fall until coming to rest above another non-empty block or a wall. If
the player moves a block over an empty cell, they immediately lose control of the block as it
falls. When two or more blocks with the same pattern are adjacent horizontally or vertically,
they match and are removed from play. The only exception to this is when a patterned block
is falling: it cannot match another block until it comes to rest. Via gravity, one match may
result in further matches, etc. The goal is to remove all patterned blocks from the grid.
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We highlight some challenging aspects of Puzznic.

Measure for Progress Solving other tile-matching puzzles such as Plotting [8] has been
shown to benefit from having a notion of monotonic progress. In Puzznic some moves
might be required to strategically position blocks for a later move, so it is not immediately
clear what constitutes progress towards the goal.

Gravity Due to the effect of gravity, the state update after a player move is sometimes highly
localised, but it can also precipitate a ripple effect across large regions of the board,
triggering a cascade of falls and matches. Such large-scale changes to the board state
creates difficulties for many solution approaches.

2.1 Membership in NP

Some levels of the game also have moving wall blocks, which can carry patterned blocks. In
the current work we do not consider this aspect of Puzznic. The version of the game studied
here, without moving wall blocks, is also known as Cubic and the solvability of this static
variant has been claimed to be NP-hard by a reduction from deciding satisfiability of Boolean
circuits [9]. The complexity of the solvability of the related but more complicated Hanano
puzzle has also been studied [16], and this problem was shown to be PSPACE-complete [5].
It is notable that Static Puzznic Solvability is in the complexity class NP, because Puzznic
is naturally represented as a planning problem, and solvability of planning problems is
generally PSPACE-hard [4]. We could therefore expect solving Puzznic to be amenable to
constraint programming approaches usually tailored to efficiently solve problems in NP.
Theorem. The decision problem for the Static Variant of Puzznic is in NP.
Proof. We sketch a proof here, giving the detailed proof in Appendix A. Verifying that a
proposed sequence of moves leads to an empty board takes time that is polynomial in the
length of the sequence and the size of the instance. Membership in NP would follow if we
could show that any solvable instance has a short enough nice solution, of length that is
polynomial in the size of the instance. This isn’t immediately obvious, because sequences of
moves back and forth are sometimes necessary to set up bridges across which blocks must
travel to a matching block. Some solvable instances might therefore have no short solutions.
However, this is not actually so: if a sequence of moves constitutes a solution (even if it is
too long), then there is an equivalent nice sequence of moves, leading to the same matches
and block falls, and which has length that is polynomial in the instance size. With each
board position we associate an integer, the fall metric, by adding up the rows of all blocks
in the position, row number 1 being the bottom row. (The fall metric for the position in
Figure 1is 0% 14+4%2+4%34+3%4+2x5+1%6 = 48.) The key step is to observe that in
Static Puzznic Solvability, no block can be required to move in opposite directions without a
change in the fall-metric intervening. We prove this by showing that in any hypothetical
counterexample, we could always construct a new solution with one less occurrence of such a
switchback, meaning we can always reduce the number of switchbacks to zero. To achieve this,
we consider the last move in one direction by any block which also moves in the opposite
direction before the metric changes. The new solution is simply the previous solution with
this pair of switchback moves deleted. This doesn’t change the position that will result at
the end of the subsequence of moves, as long as it doesn’t invalidate any move between
the two edited-out moves or cause any falls or matches. A case analysis of all ways that
such invalidity might occur shows that the new sequence is in fact always valid. Finally,
in the Static variant of the puzzle the fall metric never increases and can only decrease a
limited number of times, bounded by at most the number of blocks times the height of the
grid. Between fall-metric changes the number of blocks moved in a nice solution is at most
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the number of blocks times the width of the grid. The total number of moves is therefore
polynomially bounded by the grid size. These facts yield a polynomial bound for the overall
length of a nice solution and membership in NP follows.

3 PDDL Model

Considering Puzznic as a classical planning problem requires finding a sequence of actions
(a plan) where their application will successively transform a given initial state until a goal
state is reached. A set of finite-domain variables determines the state at each step. An action
is applicable at a certain state if the state satisfies the preconditions of the action. The state
is then modified according to the effects of the action. The Planning Domain Definition
Language (PDDL) [12] is the de facto planning definition standard. PDDL separates a
planning problem into two files: the domain, defining general characteristics of the problem
such as the representation of the state and how the actions operate, and the problem, which
defines the objects, the initial state and the goal of a particular instance. In this section we
describe our PDDL Puzznic formulation.

Although a possible way of representing the game could be to consider a matrix of cells,
PDDL does not support complex types such as matrices. Therefore, we represent the state
of the game by means of a graph. We consider objects of the following types: location to
represent a grid cell location; the up, down, left and right directions used both to relate
locations and to specify movements; and pattern to represent patterns of blocks in the scenario.
Note that we do not define a block object in the domain: blocks are instead represented by
patterns assigned to locations. The state is defined with the following predicates:

(patterned 71 - location ?p - pattern)

(next ?from 7to - location ?dir - direction)
(free ?1 - location)

(falling_flag)

(matching_flag)

The patterned predicate states the pattern assigned to a given location. With the next
predicate we state what location we find following a certain direction from a location. In
other words, we treat the next predicate as a declarative specification of the game grid
adjacency graph. Further, because we can never move wall blocks, we exclude walls from
the grid. This choice to only model the non-wall locations in the game grid also leads to a
smaller state space. With the free predicate we state whether a certain location is free or
not. We also use two “flag” predicates to capture the gravity and block matching semantics
of the game. The free, falling flag and matching_flag predicates are derived predicates,
which are automatically updated after the application of each action:

; a block is free if it is not patterned

(:derived (free ?71) ( forall (?p - pattern) (not (patterned ?1 7p)) ))

; is there something that needs to fall?

(:derived (falling_flag) (exists (711 712 - location)

(and (next 711 ?12 down) (mot (free 711)) (free ?712)) ))

; is there something that needs to match?

(:derived (matching flag) (exists (7?11 ?12 - location ?p - pattern ?d - direction)

(and (next 711 712 7d) (patterned ?11 ?p) (patterned 712 ?7p)) ))

Actions are defined by their parameters as well as by their preconditions and effects which
usually constrain the parameters. Preconditions define the requirements a state must satisfy
in order for the action to be applicable. Effects define how actions change the state once
an action has been applied. Three actions are defined: move_block, fall_block and
match_blocks. The solving process of the planner needs to follow the semantics of the
game, which can be concisely summarized with this solving algorithm: If there are blocks



J. Espasa, I. Gent, I. Miguel, P. Nightingale, A.Z. Salamon, M. Villaret

remaining then we have to consider the flags to decide which kind of action can be done.
That is, if the falling_flag is active we only allow the fall_block action, otherwise if the
matching_flag is active we only allow the match_blocks action. Finally, if no flag is active
we then only allow the move_block action. To enforce that the planner adheres to the game
semantics, we check the status of the flags in the actions’ preconditions.

Now we present the match_blocks action. Modelling the matching of an arbitrary set of
blocks as an atomic operation simplifies the representation of the game mechanics: A more
granular model using pairs of blocks instead would require intermediate state tracking to
take into account matches of more than 2 blocks.

(:action match_blocks
:parameters ()
:precondition (and (not (falling flag)) (matching flag)) ; first things fall, then they match
:effect (and (forall (711 - location ?p - pattern)
(when ; if a patterned locations has some neighbor with the same pattern
(exists (712 - location 7d - direction)
(and (next 711 712 ?d) (patterned 711 ?p) (patterned 712 ?p)))
(not (patterned ?11 ?p))))))) ; remove its pattern

Finally, as the goal is to remove all patterned blocks from the grid, we want to reach a
state where no location has a pattern, additionally asking for the minimum number of moves.

(:goal ( forall (?1 - location) (mot (exists (7?p - pattern) (patterned 71 7p))) ))
(:metric minimize (total-cost))

In contrast with matching, gravity is handled by moving one block at a time. That is,
the fall_block action moves a single block one position down if it has nothing under it.
(:action fall_block

:parameters (7?11 7?12 - location ?p - pattern)
:precondition (and

(falling_flag) ; something needs to fall

(next 711 712 down) ; 11 is on top of 12

(patterned 711 ?p) ; 11 has some pattern and needs to fall
(free 712)) ; 12 is free as we’re falling on it

:effect (and ; the patterns get properly assigned: 11 loses the pattern and 12 gains the pattern 11 had
(not (patterned 711 ?p)) (patterned 712 7p)))

Compressing Fall Moves

The PDDL model above produces plans interleaved with long lists of trivial fall_block

actions. We explored compressing long lists of actions such as these, starting with fall_block.
More concretely, all the needed falling of a single block would be dealt with in one action.

The first step is to define a derived predicate (below ?x 7y - location), which is true
when y is somewhere below x in the same column.

(:derived (below ?x 7y - location) ; 7y is strictly below x (that is, <)
(or (next ?x ?y down)
(exists (7z - location) (and (next ?x ?z down) (below ?z ?y))))) ; x > z and z > y

Then, a new fall move can be defined where a patterned block at a location s falls to
another location t that is below s. It is required that all locations between s and t are free,
and the location directly under t is not free, as follows.

(:action fall_block
:parameters (?s ?t - location ?p - pattern)
:precondition (and

(falling_flag)
(below ?s 7t)

something needs to fall
target is below source
(free ?t) we’re falling somewhere that is free
(patterned ?s ?7p) source has really the pattern we have
; all the blocks in the falling path (between source and target) are empty
(forall (?1 - location)
(imply (and (below ?s ?71) ; 1 is below the source of the fall
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(below 71 7t)) ; target is below the location
(free 71)))
; there must be a block or wall under target
; forall locations, if its immediately under our target, must not be empty
(forall (71 - location)
(imply (next 7t ?1 down) (mot (free 71)))))

:effect (and ; s loses the pattern and t gains the pattern of s

(not (patterned ?s ?p)) (patterned ?t 7p)))

Surprisingly, preliminary experiments have shown that compressing fall moves substan-
tially degrades the performance of the planners we considered, in particular in instances
that are tall (e.g. Giraffes and Eagles, see Section 6). We hypothesise that this is caused by
the increase in the number of generated ground actions, as the number of fall actions grows
quadratically with height (one step falls, two step falls ... ), and the planner preprocessor
cannot discard any of those. Instead, fall actions for each individual step greatly reduce the
branching factor for the planner. Consequently, we have not included the compressed falls
model in the experiments reported below.

4 A Constraint Model of Puzznic

Our constraint model is formulated in ESSENCE PRIME [17], exploiting this richer language
to feature a number of abstractions that reduce the number of plan steps, and so decision
variables required. This includes how gravity is captured, a key feature of our model, which
allows it to be applied instantaneously after either a move or a match. Our model also
supports partial parallelism via compact row moves, where multiple blocks in the same row
may move several grid cells simultaneously in one time step. We begin by describing the
model parameters:

letting WALL be O

letting EMPTY be 1

given initGrid : matrix [int(1..gridHeight), int(1..gridWidth)] of int(WALL, EMPTY)
letting GRIDCOLS be domain int(1..gridWidth)

letting INTERIORCOLS be domain int(2..gridWidth-1)

letting GRIDROWS be domain int(1..gridHeight)

letting INTERIORROWS be domain int(2..gridHeight-1)

$ Initial positions of the patterned blocks, in ascending pattern order. Format: row, col
given initPatternedBlocks : matrix [int(1..noPatternedBlocks), int(1..2)] of int(1..)
letting PATTERNEDBLOCKS be domain int(1..noPatternedBlocks)

given patternBands : matrix indexed by [int(1..noPatterns), int(1..2)] of PATTERNEDBLOCKS

given noSteps : int(1..)

letting STEPSFROM1 be domain int(1..noSteps)
letting STEPSFROMO be domain int(0..noSteps)
letting STEPSEXCEPTLAST be domain int(0..noSteps-1)
letting INTERIORSTEPS be domain int(1..noSteps-1)

Parameter initGrid gives the locations of walls in the grid. It is assumed that initGrid
has a perimeter of wall blocks. The coordinates of each patterned block are given in
initPatternedBlocks, and patternBands provides the patterned block types as inter-
vals. For example, if patternBands is [[1,3],[4,6]] then we have 6 patterned blocks
in total, with 3 blocks each of two patterns. The parameters gridWidth, gridHeight,
noPatternedBlocks, and noPatterns are inferred automatically from the dimensions of the
given matrices. In common with many constraint models of planning problems (e.g. Plotting
[8]) we solve a sequence of decision problems of increasing noSteps. The first such instance
for which a solution is found provides the optimal length plan.
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Stepo (Initial) Stepq
Pattern matching
Band 1
o
Pattern T move; moveDir row|col
Band 2 — blockindex [
compactRow; --

Figure 2 Constraint model structure: interleaved state, mode variables for flow of control, and
action variables, annotated with their domains. Auxiliary variables not depicted for clarity.

4.1 Viewpoint, Initial and Goal States

Following a common pattern in constraint models of Al planning problems [15], we employ a
time-indexed set of variables, interleaving the state of the puzzle with the action taken to
transform the previous state into that following (Figure 2). The simplest state representation
is a time-indexed representation of the full grid state. We found this to be too cumbersome
to reason about long plans over larger grids. Instead, since much of the grid state (walls,
empty cells) is fixed we maintain only the coordinates of each patterned block:

letting REMOVED be O

find patternedBlocksRow : matrix indexed by[STEPSFROMO, PATTERNEDBLOCKS]
of INTERIORROWS union int(REMOVED)

find patternedBlocksCol : matrix indexed by[STEPSFROMO, PATTERNEDBLOCKS]
of INTERIORCOLS union int(REMOVED)

The initial and goal states are stated simply on this viewpoint:

$ Initial state:
forAll b : PATTERNEDBLOCKS . patternedBlocksRow[0, b] = initPatternedBlocks[b,1],
forAll b : PATTERNEDBLOCKS . patternedBlocksCol[0, b] = initPatternedBlocks[b,2],

$ Goal state:
forAll b : PATTERNEDBLOCKS . patternedBlocksRow[noSteps, bl = REMOVED,
forAll b : PATTERNEDBLOCKS . patternedBlocksCol[noSteps, b] = REMOVED,

4.2 Matching Mode

The model operates in three disjoint modes:

letting MATCHING_MODE be O

letting PROGRESSING_MODE be 1

letting ROWCOMPACT_MODE be 2

letting MODES be domain int(MATCHING_MODE, ROWCOMPACT_MODE, PROGRESSING_MODE)
find mode : matrix indexed by[STEPSFROM1] of MODES

The first of these is matching mode, and is triggered by any pair of patterned blocks being
adjacent horizontally or vertically at the previous time step. We introduce auxiliary Booleans
matchingGrid to detect this state:

find matchingGrid : matrix indexed by[STEPSEXCEPTLAST, PATTERNEDBLOCKS] of bool

forAll step : STEPSEXCEPTLAST .
forAll p : PATTERNS .
forAll i : int(patternBands[p,1]..patternBands[p,2])
(exists j : int(patternBands[p,1]..patternBands[p,2])
(G '= 1) /\
(((patternedBlocksRow[step,i] = patternedBlocksRow[step,jl) /\
(patternedBlocksCol[step,i] - patternedBlocksCol[step,j]l = 1)) \/
((patternedBlocksCol[step,i] = patternedBlocksCol[step,jl) /\
(patternedBlocksRow[step,i] - patternedBlocksRow[step,jl = 1)))))
<>
(matchingGrid[step,il),

ModRef 2024
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Matching mode at time step t is then forced according to the state of the matchingGrid at
time step t-1:

forAll step : STEPSFROM1 .
(mode [step] = MATCHING_MODE) <-> (sum(flatten(matchingGrid[step-1,..]1)) > 0),

The matching blocks are then removed:

forAll step : STEPSFROM1 .
(mode [step] = MATCHING_MODE) ->
(forAll b : PATTERNEDBLOCKS .
(matchingGrid[step-1,b]) ->
(patternedBlocksRow[step,b] = REMOVED) /\ (patternedBlocksCol[step,b] = REMOVED)),

As a consequence of these matches and removals, we must capture the effects of gravity, as
well as ensure that unaffected blocks are unchanged. Rather than attempting to calculate
the precise positions of the blocks, we model gravity elegantly via a declarative description
of the blocks’ behaviour:

$ Unmatched, unremoved blocks must stay on the grid, and in the same column
forAll step : STEPSFROM1 .
(mode [step] = MATCHING_MODE) ->
(forAll b : PATTERNEDBLOCKS .
(! (matchingGrid[step-1,b]) /\ (patternedBlocksRow[step-1,b] != REMOVED)) ->
((patternedBlocksRow[step,b] != REMOVED) /\
(patternedBlocksCol[step,b] = patternedBlocksCol[step-1,b]))),

$ Unmatched block must stay above: All unmatched blocks in same col, which it was above before.
forAll step : STEPSFROM1 .
(mode[step] = MATCHING_MODE) ->
(forAll b : PATTERNEDBLOCKS .
(! (matchingGrid[step-1,b])) ->
(forAll b2 : PATTERNEDBLOCKS .
((b2 !'=b) /\
(! (matchingGrid[step-1,b2])) /\
(patternedBlocksCol [step-1,b2] = patternedBlocksCol[step-1,b]) /\
(patternedBlocksRow[step-1,b2] > patternedBlocksRow[step-1,b]))
->
(patternedBlocksRow[step,b2] > patternedBlocksRow[step,bl))),

$ Unmatched block must stay above/below wall blocks it was above/below before
forAll step : STEPSFROM1 .
(mode [step] = MATCHING_MODE) ->
(forAll b : PATTERNEDBLOCKS .
(! (matchingGrid[step-1,b])) ->
(forAll row : INTERIORROWS .
(initGrid[row, patternedBlocksCol[step-1,b]] = WALL) ->
((row < patternedBlocksRow[step-1,b]) -> (row < patternedBlocksRow[step,bl)) /\
((row > patternedBlocksRow[step-1,b]) -> (row > patternedBlocksRow[step,b])))),

$ Common to all modes: No floating blocks - either wall there or there exists another block.
forAll step : STEPSFROM1 .
forAll b : PATTERNEDBLOCKS .
(patternedBlocksRow[step,b] != REMOVED) ->
((initGrid[patternedBlocksRow[step,b]-1, patternedBlocksCol[step,b]] = WALL) \/
(exists b2 : PATTERNEDBLOCKS .
(b !'= b2) /\
(patternedBlocksRow[step,b2] = patternedBlocksRow[step,b] - 1) /\
(patternedBlocksCol[step,b2] = patternedBlocksCol[step,bl))),

The above sets of constraints simply require unmatched blocks in a column to maintain their
relative ordering, both with each other and the wall cells in the grid, and disallows any block
from floating above an empty cell. Constraint propagation then ensures that a column where
blocks have been removed ‘settles’ according to the effects of gravity.

4.3 Progressing Mode

In progressing mode a committal player action is taken: a block is selected and moved so
as to cause it to fall or to cause a match at the next time step. We introduce variables to
capture this choice:
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find move : matrix [STEPSFROM1] of PATTERNEDBLOCKS union int(0)
find moveDir : matrix [STEPSFROM1] of int(-1,1)

The domain of move is the indices of the patterned blocks. A dummy value 0 is added
for when in another mode. moveDir indicates a left or a right move. The following set of
constraints specify a valid progressing move, transforming the state at time step t-1 to time
step t:

$ Select only valid blocks
forAll step : STEPSFROM1 .
(mode [step] = PROGRESSING_MODE) -> (patternedBlocksRow[step-1,move[step]] != REMOVED),

$ destination column defined via moveDir
forAll step : STEPSFROM1 .
(mode [step] = PROGRESSING_MODE) ->
(patternedBlocksCol[step,move[step]l] = patternedBlocksCol[step-1,move[step]l]+moveDir[stepl),

$ destination row must be at or below moveRow
forAll step : STEPSFROM1 .
(mode [step] = PROGRESSING_MODE) ->
(patternedBlocksRow[step,move[step]] <= patternedBlocksRow[step-1,move[stepl]l),

$ in destination column, everything from source row to destination row must be empty.
forAll step : STEPSFROM1 .
(mode [step] = PROGRESSING_MODE) ->
(forAll row : INTERIORROWS .
((row <= patternedBlocksRow[step-1,move[stepl]) /\ (row >= patternedBlocksRow[step,move[stepl])) ->
((initGrid[row, patternedBlocksCol[step,move[step]]] = EMPTY) /\
(forAll b : PATTERNEDBLOCKS .
((patternedBlocksRow[step-1, b] != row) \/
(patternedBlocksCol[step-1, b] != patternedBlocksCol[step,move[stepl]))))),

Frame axioms fix unaffected blocks in place:

$ Frame axiom: blocks not in source col stay in the same place.
forAll step : STEPSFROM1 .
(mode [step] = PROGRESSING_MODE) ->
(forAll b : PATTERNEDBLOCKS .
(patternedBlocksCol[step-1, b] != patternedBlocksCol[step-1, move[step]]) ->
((patternedBlocksCol[step-1, b] = patternedBlocksCol[step, bl) /\
(patternedBlocksRow[step-1, bl = patternedBlocksRow[step, bl))),

$ Frame axiom: blocks in source col underneath that selected stay in the same place.
$ Simplified to all blocks whose row is less than that selected.
forAll step : STEPSFROM1 .
(mode [step] = PROGRESSING_MODE) ->
(forAll b : PATTERNEDBLOCKS .
(patternedBlocksRow[step-1, b] < patternedBlocksRow[step-1, move[step]l]) —->
((patternedBlocksCol[step-1, b] = patternedBlocksCol[step, bl) /\
(patternedBlocksRow[step-1, bl = patternedBlocksRow[step, bl))),

Gravity is handled similarly to matching mode:

$ Gravity: if above selected block and no wall in the way, fall one cell.
forAll step : STEPSFROM1 .

(mode [step] = PROGRESSING_MODE) ->

(forAll b : PATTERNEDBLOCKS .

((patternedBlocksRow[step-1, b] > patternedBlocksRow[step-1, move[stepll) /\
(patternedBlocksCol[step-1, b] = patternedBlocksCol[step-1, movel[stepl]) /\
(forAll row : INTERIORROWS .

((row < patternedBlocksRow[step-1, b]) /\
(row > patternedBlocksRow[step-1, move[stepll)) ->
(initGrid[row, patternedBlocksCol[step-1, movel[step]l]] = EMPTY)))

=2

((patternedBlocksCol[step, b] = patternedBlocksCol[step-1, b]) /\
(patternedBlocksRow[step, bl = patternedBlocksRow[step-1, bl - 1))),

$ Gravity: if above selected block and wall in the way, stay in the same location.
forAll step : STEPSFROM1 .
(mode [step] = PROGRESSING_MODE) ->
(forAll b : PATTERNEDBLOCKS .
((patternedBlocksRow[step-1, b] > patternedBlocksRow([step-1, move[stepl]) /\
(patternedBlocksCol[step-1, b] = patternedBlocksCol[step-1, move[stepl]) /\
(exists row : INTERIORROWS .
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Figure 3 Illustrating why parallel falls and matches must be disallowed. The left instance has no
solution. The right instance has a solution, but compact row moves to initiate matches at each end
of the grid would give a solution that is not possible to physically realise in the game.

((row < patternedBlocksRow[step-1, b]) /\
(row > patternedBlocksRow[step-1, move[step]l]) /\
(initGrid[row, patternedBlocksCol[step-1, move[step]l]] = WALL))))
->
((patternedBlocksCol[step, bl
(patternedBlocksRow[step, bl

patternedBlocksCol[step-1, b]) /\
patternedBlocksRow[step-1, bl))),

4.4 Row Compact Mode

In row compact mode, the blocks of a selected row are moved horizontally, while remaining
in the same row and not triggering a match at the next step. We introduce variables to
capture the row selection (again, a dummy value of 0 is added for when in another mode):

find compactRow : matrix indexed by[STEPSFROM1] of INTERIORROWS union int(0)

This last mode allows significant parallelism in the plan, but note that it is necessary (rather
than a choice) to disallow it from creating either falling blocks or trigger matches. In the
former case, it would then be possible to create blocks falling in parallel in a way that is not
possible for a human player (see Figure 3, left). In the latter, it would be possible to create
parallel matches (e.g. at two ends of a row) that are again not possible in the game itself
(Figure 3, right). In both cases, the result could be the generation of invalid solutions.
Modelling row compact moves resembles our approach to gravity: a declarative description
of the rules that the blocks in a selected row must respect, leaving search and propagation to
decide the details. First we maintain the relative order among patterned and wall blocks:

$ Stay on the same side of all wall blocks on the same row.
forAll step : STEPSFROM1 .
(mode [step] = ROWCOMPACT_MODE) ->
(forAll col : INTERIORCOLS .
(initGrid[compactRow[step]l, coll = WALL) ->
(forAll block : PATTERNEDBLOCKS .
(patternedBlocksRow[step-1, block] = compactRow[step]) ->
(((patternedBlocksCol [step-1, block] < col) -> (patternedBlocksCol[step, block] < col)) /\
((patternedBlocksCol[step-1, block] > col) -> (patternedBlocksCol[step, block] > col))))),

$ Maintain order on the blocks in the chosen row.
forAll step : STEPSFROM1 .
(mode [step] = ROWCOMPACT_MODE) ->
(forAll block : PATTERNEDBLOCKS .
(patternedBlocksRow[step-1, block] = compactRow[step]) ->
(forAll block2 : int(block + 1 .. noPatternedBlocks) .
(patternedBlocksRow[step-1, block2] = compactRow[step]) ->
(((patternedBlocksCol [step-1, block] < patternedBlocksCol[step-1, block2]) ->
(patternedBlocksCol[step, block] < patternedBlocksCol[step, block2])) /\
((patternedBlocksCol[step-1, block] > patternedBlocksCol[step-1, block2]) ->
(patternedBlocksCol[step, block] > patternedBlocksCol[step, block2]))))),

We disallow movement over a block of the same pattern, which would have triggered a match.

$ We exploit the pattern bands to compare only blocks of like pattern.
forAll step : STEPSFROM1 .
(mode [step] = ROWCOMPACT_MODE) ->
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(forAll pattern : PATTERNS .
forAll block : int(patternBands[pattern,1]..patternBands[pattern,2])
(patternedBlocksRow[step-1, block] = compactRow[step]) —->
(forAll block2 : int(patternBands[pattern,1]..patternBands[pattern,2])
(patternedBlocksRow[step-1, block2] = compactRow[step]-1) ->
(((patternedBlocksCol[step-1, block] < patternedBlocksCol[step-1, block2]) ->
(patternedBlocksCol[step, block] < patternedBlocksCol[step, block2])) /\
((patternedBlocksCol[step-1, block] > patternedBlocksCol[step-1, block2]) ->
(patternedBlocksCol[step, block] > patternedBlocksCol[step, block2]))))),

We must avoid initiating falls:

$ We cannot move a block onto or over a gap that would cause it to fall.
forAll step : STEPSFROM1 .
(mode [step] = ROWCOMPACT_MODE) ->
(forAll block : PATTERNEDBLOCKS .
(patternedBlocksRow[step-1, block] = compactRow[step]) ->
(forAll col : INTERIORCOLS .
((initGrid[compactRow[step]l-1, coll = EMPTY) /\
(forAll block2 : PATTERNEDBLOCKS .
(patternedBlocksRow[step-1,block2] != compactRow[step]l-1) \/
(patternedBlocksCol [step-1,block2] != col)))
->
(((col < patternedBlocksCol[step-1, block]) -> (col < patternedBlocksCol[step, block])) /\
((col > patternedBlocksCol[step-1, block]) -> (col > patternedBlocksCol[step, blockl))))),
$ Anything covered by another block stays where it is.
$ Don’t need to guard with compactRow because it is true irrespective.
forAll step : STEPSFROM1 .
(mode [step] = ROWCOMPACT_MODE) ->
(forAll block : PATTERNEDBLOCKS .
(exists block2 : PATTERNEDBLOCKS .
((patternedBlocksCol[step-1, block] = patternedBlocksCol[step-1, block2]) /\
(patternedBlocksRow[step-1, block2] = patternedBlocksRow[step-1, block] + 1)))
->
(patternedBlocksCol[step, block] = patternedBlocksCol[step-1, blockl)),

Finally, we disallow row compact mode from initiating a match on the same row, and break
a symmetry in the model by ensuring that even single-block moves that could have been
captured by the progressing mode infrastructure are labelled as row compact if they do not
lead to a match:

$ A move that does not lead to a match should be labelled row compact
forAll step : INTERIORSTEPS . (mode[step] = ROWCOMPACT_MODE) -> (mode[step+1] !'= MATCHING_MODE),
$ A move that leads to a match should be labelled progressing
forAll step : INTERIORSTEPS .
(mode [step] = PROGRESSING_MODE) ->
((mode[step+1] = MATCHING_MODE) \/
(exists b : PATTERNEDBLOCKS. patternedBlocksRow[step,b] < patternedBlocksRow[step-1,bl)),

4.5 Symmetry and Dominance Breaking, Implied Constraints

To complete our model, we add symmetry, dominance-breaking, and implied constraints. A
simple dominance condition that we can exploit is to disallow the solver from returning to
exactly the same state as at a previous time step, since a plan with only the first occurrence
of that state must be at least as short. Given our compact representation of state in terms
of the patterned block coordinates, this can be achieved simply by requiring the coordinate
of at least one patterned block to be different between all pairs of states in the plan.

forAll step : STEPSFROMO .
forAll step2 : int(step+l..noSteps)
exists block : PATTERNEDBLOCKS .
((patternedBlocksRow[step, block] != patternedBlocksRow[step2, blockl) \/
(patternedBlocksCol[step, block] != patternedBlocksCol[step2, block]l)),

In addition to the symmetry in the modes described in the previous subsection, there is
the potential for conditional symmetry among the values of the action variables when they
are not active. We fix them to their dummy values to avoid this:
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$ Pin rowCompact and movement variables to break symmetry
forAll step : STEPSFROM1 .
(mode [step] = MATCHING_MODE) ->
((move[step] = 0) /\ (moveDir[step] = -1) /\ (compactRow[step] = 0)),

$ Pin rowCompact variable to break symmetry
forAll step : STEPSFROM1 .
(mode [step] = PROGRESSING_MODE) -> (compactRow[step] = 0),

$ Pin movement variables to break symmetry
forAll step : STEPSFROM1 .
(mode [step] = ROWCOMPACT_MODE) -> ((move[step] = 0) /\ (moveDir[step] = -1)),

There is no mechanism by which a block can move upwards, which can be added as an
implied constraint by insisting that the row coordinate of each patterned block decreases
monotonically. The final step of the plan returned must be in matching mode, leading to the
removal of the final remaining blocks. This is captured with a simple unary constraint.

forAll step : STEPSFROM1 .
forAll block : PATTERNEDBLOCKS .
(patternedBlocksRow[step, block] <= patternedBlocksRow[step-1, blockl),
$ The final step must be in matching mode, to derive the last match and a clear grid.
mode [noSteps] = MATCHING_MODE,

5 A Constraint Model of Puzznic Instance Generation

We modify our constraint model to generate Puzznic instances, to aid in level design to
challenge human players, for benchmarking or to train an algorithm selection approach in
future. Rather than giving an initial grid as a parameter, the model is modified to find
an initial state such that a plan of a specified length exists. The parameters are the grid
dimensions and the number of patterns and patterned blocks. The initial grid then becomes
a set of decision variables, along with the pattern bands. Additional variables are not needed
for the initial coordinates of the patterned blocks, since the model already has these for
time step 0. One use case is to increase noSteps iteratively to search for an instance of
the specified grid dimensions and patterned blocks with a proven minimum solution length.
Alternatively, we can search for a configuration that admits a k-step plan, with the caveat
that a solution shorter than k steps may be possible.

given gridWidth, gridHeight : int(1..)

given noPatterns : int (1..)

letting PATTERNS be domain int(1..noPatterns)

given noPatternedBlocks : int(2*noPatterns..) $ At least a pair of blocks per pattern
letting PATTERNEDBLOCKS be int (1..noPatternedBlocks)

given noSteps : int(1..)

find initGrid : matrix indexed by[int(1..gridHeight), int(1..gridWidth)] of int(WALL, EMPTY)
find patternBands : matrix indexed by [PATTERNS, int(1..2)] of PATTERNEDBLOCKS

Constraints are added over the initial state in order to find valid instances. First, we
must ensure that the initial positions of the patterned blocks are on empty cells:

$ Connect initGrid to patternedBlocks at step O
forAll block:PATTERNEDBLOCKS .
initGrid[patternedBlocksRow[0,block], patternedBlocksCol[0,block]] = EMPTY,

We insist on a perimeter wall around the grid, and that the pattern bands are valid:

$ perimeter wall$
forAll row : GRIDROWS .

(initGrid[row, 1] = WALL) /\ (initGrid[row, gridWidth] = WALL),
forAll col : GRIDCOLS .

(initGrid[1, col] = WALL) /\ (initGrid[gridHeight, col]l = WALL),



J. Espasa, I. Gent, I. Miguel, P. Nightingale, A.Z. Salamon, M. Villaret

$ Start and end of pattern bancds are fixed

patternBands[1,1] = 1,

patternBands [noPatterns,2] = noPatternedBlocks,

$ Pattern band entries are ordered

forAll p : PATTERNS . patternBands[p,1] < patternBands[p,2],

$ Pattern bands must have at least two blocks

forAll p : int(1..noPatterns-1) . patternBands[p,2] = patternBands[p+1,1] - 1,

We require that the initial state does not trigger matching mode at the first step, to avoid
trivial instances. Although not required, we disallow interior rows and columns from being
entirely wall blocks to promote the use of the whole grid as specified:

mode[1] !'= MATCHING_MODE,

forAll row : INTERIORROWS . sum(initGrid[row,..]) > O,
forAll col : INTERIORCOLS . sum(initGrid[..,col]l) > O,

We remove trivially equivalent instances by disallowing “walled in” empty spaces, and

breaking symmetry among the patterns and in the list of initial coordinates for each pattern:

$ No walled in empty spaces - removes trivially equivalent solutions.
forAll row : INTERIORROWS .
forAll col : INTERIORCOLS .
(initGrid[row,col] >= EMPTY) ->
((initGrid[row+1,col] != WALL) \/ (initGrid[row-1,col] != WALL) \/
(initGrid[row,col+1] != WALL) \/ (initGrid[row,col-1] != WALL)),
$ Symmetry Breaking: lex order within pattern bands.
forAll p : PATTERNS .
forAll bl : PATTERNEDBLOCKS .
forAll b2 : int(bl+l..noPatternedBlocks) .
((b1 >= patternBands[p,1]) /\ (b2 <= patternBands[p,2])) —>
([patternedBlocksRow[0,bl],patternedBlocksCol[0,b1]] <=lex
[patternedBlocksRow[0,b2] ,patternedBlocksCol[0,b2]]),
$ Symmetry Breaking: order first element of each pattern band
forAll pl : PATTERNS .
forAll p2 : int(pl+l..noPatterns) .
forAll bl : PATTERNEDBLOCKS .
forAll b2 : int(bl+1l..noPatternedBlocks) .
((b1 = patternBands[p1,1]) /\ (b2 = patternBands[p2,2])) ->
([patternedBlocksRow[0,b1],patternedBlocksCol[0,b1]] <=lex
[patternedBlocksRow[0,b2] ,patternedBlocksCol[0,b2]]),

Figure 4 presents illustrative instances produced by our generator model. These are found
efficiently with our model encoded into SAT via SAVILE Row. The largest of the three takes
just over 7 minutes to be found on a 2021 MacBook Pro (M1, 32GB RAM).

Despite the fact that the initial grid is almost completely full, the first has a solution
of 6 steps (3 player moves, 3 matching steps). The second is a more intricate design with
three patterns that admits a simple solution: move the right red block left to initiate two
cascaded matches. For the third we added the constraint that there must be a wall block
on the interior of each row, demonstrating the flexibility of the constraint-based instance
generation method. The 20-block instance produced has an 8-step solution (4 progressing
moves, one compact row move, and three matching steps). Our instance generator could

# #H#HH A #H#HHH A A A A HH
# H#H#HAH # B G # # # R #
# R G # # B G B # # # R B # R G R #
# G R G # =G G Bl # B R G R G R G # #
# R G R # # R R G Ef # R B R G R G RI|# #
# ##H# A # H#H#HAHAH # H#H#H A A HHHH#

Figure 4 Illustrative instances produced by our instance generator model.
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straightforwardly be adapted for further flexibility, for instance to generate patterned block
positions only in a given grid.

6  Empirical Evaluation

We present an empirical evaluation of our two models.The plans produced by the two models
are not directly comparable in terms of length. As we have discussed, the Al Planning model
is fine-grained whereas the constraint model implements gravity instantaneously and also
permits some parallelism (leading to plans with fewer steps). We can, however, observe the
time taken by each approach to produce the optimal plan from its own perspective.

FExperiments were run on an Intel i5 quad-core processor with 2GHz maximum clock
speed and 32GB RAM, under MacOS 14.3.1. For PDDL, we used Fast Downward 23.06+ [13]
as our planner, modified to always approximate negative axioms and using A* search with a
blind heuristic, with a 1 hour timeout. For the ESSENCE PRIME model we used the natively
compiled version of Savile Row 1.10.0 [18] with options -run-solver -00 -deletevars
-identical-cse -sat -sat-polarity, a timeout of 600s per time step, a 1 hour overall
timeout, and Kissat 3.1.1 [3] as the backend solver. For each Puzznic instance, Savile Row is
called repeatedly with an increasing number of steps in a solution until a solution is found.

Table 1 presents the results of our evaluation across five families of Puzznic instances.
Overall, we observe that the Al planning and constraint-based approaches have complementary
strengths, with neither dominant. In particular, performance varies according to the instance
family and with instance size within a family.

General instances are from versions of the game and are intended for human players. We
observe that the planning approach performs well on these, and some of the more difficult
instances are challenging for our CP approach. On some of the most difficult such instances
both approaches time out (not shown in the table). However, consider now the Caterpillar
instances (see Figure 5¢ for reference). Each has many possible moves, but requires reasoning
about a complex chain of matches to see a one-move solution triggering a cascade of falls
and matches. Caterpillars also show that arbitrarily many blocks can match at any one time.
Segments can be added to the body of the caterpillar by duplicating the two middle rows of
the instance. Instances with more segments have more possible moves for a solver to consider.
For the caterpillar instances we observe the reverse pattern: although the planning approach
performs well on small caterpillar instances, the constraint model scales significantly better.

Our remaining experiments are on families generated by modifying existing instances in
order to gain insight into how instance features affect performance. The Fagle and Giraffe

# # A A AFF
# #HAF #HAHAH AT, A # R #
# R R # # R OY G B # # # #
# P |B|# # H#AHAAFH # # G G #
# H# HH # # #BY Y B#
# # # # H#AHAHAHH #Y G G Y#
# B P # # ROY G B # # BR R B#
# #AHAHH #H#A;AFAFHFFHEH ## ;A AFH

(a) Eagle/giraffe 5x7-psl-al3  (b) Snake 9x7-cubic-10 (c) Caterpillar colinmirrormini

Figure 5 Some sample instances from different families.
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Family Instance FD SAT | Family Instance FD SAT
general  9x5-psl-b22 0.75 4.05 | snake 9x7-cubic-2 1.01 1.52
general  10x5-psl-bll 0.87 22.00 | snake 73x7-cubic-2 23.35 3.28
general  bx7-psl-al3 0.95 3.70 | snake  9x7-cubic-4 1.00 6.43
general  10x7-bcl-014-2 1.06 6.95 | snake  73x7-cubic-4 3571.98 27.60
general  9x7-psl-bl2 1.10 141.83 | snake 9x7-cubic-6 1.87 37.85
general  8x12-psl-e22 2.03 1238.86 | snake 28x7-cubic-6 TO 113.41
caterpillar colinsmall 0.98 2.49 | snake  73x7-cubic-6 TO 281.35
caterpillar colinmirrorsm 1.15 5.93 | snake  9x7-cubic-8 3.73 457.37
caterpillar colin 236.54 14.69 | snake 11x7-cubic-8 1880.42 665.32
caterpillar colinmirror TO  57.87 | snake 12x7-cubic-8 TO 765.32
giraffe 5x24-test 1.93 6.19 | snake 43x7-cubic-8 TO 2001.48
giraffe 5x49-test 6.07 10.75 | snake  9x7-cubic-10 9.82 TO
giraffe 5x99-test 23.66 20.51 | eagle  5x50-test 5.61 5.95
giraffe 5x200-test 100.42  43.06 | eagle  5x100-test 21.57 9.22

Table 1 Empirical results across five families of instances. Times in seconds with a 1-hour timeout
(indicated by “TO”). FD refers to the Fast Downward planner, while SAT refers to Kissat via Savile
Row. Names of the instances starting with _ x _ refer to their dimensions. The number of blocks
in a snake instance is the final component of its name.

instances are formed respectively by adding empty rows above, and interpolating empty rows

in the middle of, an existing instance (here we have used Figure 5a as the base instance).

We see that the CP approach continues scaling roughly linearly, while the planning approach
degrades to approximately quadratic scaling. The Snake instances are versions of Figure 5b
(taken from [9]) with the horizontal ledges stretched. Instance difficulty can also be varied
by changing the number of blocks at the head and tail of the snake. The original instance
(with 10 blocks) is challenging, and although the planning approach does produce a solution
reasonably quickly, our CP approach does not complete within the timeout. Increasing width
does not change the essential nature of the solutions (although plans will require more player
moves), and also does not change the difficulty for humans. Our CP approach is able to take
advantage of compact row moves to deal with the long horizontal distances that blocks need
to traverse, and scales roughly linearly with the width. In contrast, the planning approach
scales poorly, timing out when the original width of 9 is increased to 12 or more on the
8-block version, and times out on 6-block snakes with width 28.

7 Conclusion

In this work we have provided a challenging new benchmark, Puzznic and established
its membership in NP. We have presented models for both AI planning and Constraint
Programming, together with a constraint-based instance generator. Our empirical results
demonstrate that these two approaches are complementary: primacy of one over the other
depends on the sub-family of Puzznic instance considered, and we have established several
such families. In future work, we will develop both of our approaches further. A static
reachability analysis, for example, would yield information that both the constraint and
planning models could exploit. In the context of the constraint model, we could recognise
when the grid is in a symmetric state and exploit that situation to reduce search. Similarly,
we could develop more dominance-breaking constraints to improve performance.
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A  Proof of Complexity Claim

Claim

If a Static Puzznic instance has a solution, it has a solution where no block moves in two
different directions in any sequence of moves where the fall-metric does not change.
Proof

Imagine a solution where there is a block which does a ’switchback’ while the fall-metric
does not change. It is enough to find another solution which contains one less pair of moves
in which a block moves in both directions. This can be repeated until we have a solution
with no switchbacks.

Consider a solution with any subsequence of moves not containing any falls or matches
but containing a block moving in two directions. The pair of moves we eliminate will be
the last pair of opposite moves. Specifically we look for the last move in the sequence of
any block that subsequently moves in the opposite direction in the sequence. Call the block
that moves and later returns block X. Without loss of generality, we assume that the pair of
moves we eliminate switchback involves a block moving right-then-left. (If it only involved a
block moving left then right, then simply mirror both the grid and solution.)

We will eliminate the pair of moves of X to give a new potential solution. So now consider
the sequence of moves which is exactly the same as the original solution, except that we
remove the final right hand move that X makes and the next left hand move X makes. (There
might be many left hand moves that X makes but one of them must be first.) This clearly
doesn’t change the position that will result at the end of the subsequence of moves, as long
as it doesn’t invalidate any move between the two edited-out moves or cause any falls or
matches. As a reminder, we know that none of the moves in the subsequence including the
now-deleted moves can have involved a fall or match, and that all blocks in the remainder of
the subsequence each move in only one direction.

The following is a useful lemma as it is necessary twice in the proof.

Lemma: Both locations underneath X must be occupied continuously while X does its
switchback in the original sequence - i.e. the position under X’s original position and the
location one to the right.

Proof of Lemma: The position to the right clearly needs to be occupied to support
X in the original sequence, until X returns back to the left. Less obviously, the position
underneath X’s original position must remain filled. If a block, say Z, moved from there
it would have to move left. But we know that when X returns the location must be filled
to support X, and Z is the only block that can be moved back to support Z. But this is
impossible because we have already said that no block moves in two directions after X’s
move right.

Now, we consider anything that might happen that would make some move invalid in the
new sequence of sideways moves, or cause a fall or match.

No fall or match can be invalidated since none happens in this sequence.
The removal of the two moves could conceivably stop some other block moving by the
X’s original space being occupied instead of empty. But this can’t happen because in the
original sequence, we were able to reverse the move of X to move it back to its original
position. If a block Y had moved into X’s position it would have had to move from left to
right after X moved. Following that, Y can’t have moved further right as that is blocked
by X. Also Y can’t move back left because it now only moves in one direction and has
moved right since X moved. So the situation is impossible.

The removal of X’s moves could conceivably cause some match or fall to happen which
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would otherwise not have happened when X doesn’t move, i.e. in the new sequence we
might get a match or fall that did not happen in the original sequence. Let’s consider a
fall first. There’s two ways a fall can be created.
The first way this can happen is if X originally moved to the right, then some block Z
moved on top of X. In the new sequence this would become a fall (because X is not
there) when it was not originally a fall. But this is impossible: the block Z would still
fall in the original sequence when X moved back left. If Z did not fall, then it would
have had to move out of the way, but it cannot have moved either left or right. Z
cannot move left because then it would move to X’s original location which must have
been empty as X moved back to it. It would have then fallen but we know it did not.
Z cannot have moved right. To see this note first that Z moved leftwards to go on top
of X after X had moved: the square to X’s left was the space left by X so could not
have supported Z. But to then move right, Z would have reversed direction since X
moved.
The second way a fall can be created is that X is sitting on top of another block, say
U. Originally X moved to the right and then U moved, but in the revised sequence the
move of U causes X to fall from its original position. But this is impossible by the
lemma, which states that the block U can’t have moved.
The final case to consider is the possibility that a match occurs in the new sequence
which did not in the original. First, note that the new match must involve the block X
and a duplicate block. The reason is that X is the only block in the new sequence which
is ever in a different position compared to the original sequence: thus any non-X match
in the new sequence must happen in the old one, and none did.
If the potential match was to X’s right, we are safer now, because the block didn’t move
there. If the potential match was to X’s left, then another X block must have moved
from left to right, placing it immediately to the left of X’s starting and final position.
But the second X to the left can’t have moved out of the way in the original sequence,
as it would have to move back left, thereby causing a switchback which didn’t happen.
Could any block move on top of the unmoved X causing a match? No, because if it did
so while X was originally to the right, then it would have fallen in the original sequence,
which it didn’t. Could any block move to be underneath X’s original position, which was
unoccupied in the original sequence? No, because of the lemma which states that the
position was occupied continuously.
This completes the case analysis. We have shown the revised sequence is a valid sequence of
moves which are all sideways moves, and which starts and ends with all blocks in the same
places. If any switchbacks still occur we can just repeat this process until there are none.
QED.
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‘B Selected instances

9x5-ps1-b22 10x5-ps1-b11

10x7-bcl-014-2 9x7-psl-b12

Snake 9x7-cubic-2 Snake 9x7-cubic-4

Snake 9x7-cubic-6 Snake 9x7-cubic-8
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Caterpillar colinmirrorsm

Caterpillar colin Caterpillar colinmirror Giraffe 5x20-test Eagle 5x20-test2
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