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Abstract
Constraint modeling languages enjoy a wide applicability thanks to the ease of formulating complex
relations between decision variables. One example is reified constraints, which enable reasoning over
the activation of constraints, as done in Explainable Constraint Programming (XCP) algorithms,
or the solving of arbitrarily nested expressions written by a user. However, in the case of global
constraints, few solvers support them reified or even half-reified. To post the reification of a global
constraint, we have to fall back to decomposing the constraint, thereby losing one of the key benefits
of global constraints: the use of efficient propagators. In this work, we investigate how to reformulate
any half-reified global constraint by means of auxiliary variables, while still using the stand-alone
constraint and hence its efficient propagator. Our experiments show that this reformulation is
competitive with solver-level support for half-reification, and is much more efficient compared to
doing half-reification over a decomposition of the constraint.
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1 Introduction

One of the features of Constraint Programming (CP) that sets it apart from other combinat-
orial solving paradigms is the notion of global constraints [42]. Global constraints allow a
user to model high-level (n-ary) relations between variables which can capture the needed
semantics for a variety of application domains. Moreover, the use of global constraints in
a CP model provides the solver with high-level structural information about the problem.
This allows for the use of efficient propagation routines tailored for these structures.

Arguably, the best-known global constraint is the AllDifferent constraint [41]. This
constraint occurs in many types of problems: from Sudoku puzzles to real-world applications,
like task allocation [20]. Many other global constraints have a more specific use. For example,
the Cumulative constraint [1] enforces a set of tasks to be scheduled in such a way that the
capacity of a machine is not exceeded; the Circuit constraint enforces an ordering of nodes
in a graph such that they represent a Hamiltonian cycle [24]. CP-solvers exploit high-level
structure present in global constraints using propagators: highly efficient algorithms that
filter domains of variables while ensuring the constraints remain feasible during search.
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When using constraint solvers through modeling languages, a typical workflow is as
follows. The user writes a declarative constraint model in a high-level constraint modeling
language. To find a solution to the constraints, the user selects a constraint solver and a
reformulation system which compiles the high-level declarative model into a set of constraints
posted to the solver, e.g., linear constraints for MIP solvers or unnested (global) constraints
for CP solvers. Modeling languages and reformulation systems are often tightly integrated
into a software package, for example MiniZinc [33], Conjure [2], PyCSP3 [26] or CPMpy [19].

Modeling languages allow users to write complex expressions, including reifications of
global constraints. Reified constraints enable a user to link the truth value of a constraint to
a Boolean variable that can then be used in another expression. However, solvers typically do
not support the reification of global constraints, e.g., b → AllDifferent(x, y, z) is rarely
supported by a solver 1. Hence, such unsupported expressions should be rewritten to a set of
constraints supported by the solver. For this, modeling systems typically decompose global
constraints in order to post them to the constraint solver. E.g., the previous half-reification
of the AllDifferent constraint is rewritten to b → (x ̸= y ∧ x ≠ z ∧ y ̸= z), which is in
turn rewritten to b → (x ̸= y) ∧ b → (x ̸= z) ∧ b → (y ≠ z), as solvers typically do support
reified (in)equalities. Decompositions of global constraints reformulate the relation into
simpler expressions and are well-studied [7, 8, 13, 16], but a constraint solver will not use its
dedicated propagation functions for the global constraint. Therefore, posting a decomposition
is generally less efficient compared to posting a global constraint directly [9].

Besides a modeler explicitly writing (half-)reified global constraints, they can also occur
as the result of flattening expressions [15]. Flattening is one of the core reformulations
implemented in constraint modeling systems and converts any complex expression tree into
a set of unnested constraints, as supported by the constraint solver.

▶ Example 1 (Flattening [15]). Take the constraint (i ≤ 4) ∨ AllDifferent(i, x − i, x).
This constraint is unsupported by almost any constraint solver, and hence should be flattened
into simpler constraints. The output of such a flattening algorithm can be the equivalent set
of constraints: {b1 ∨ b2, b1 → i ≤ 4, b2 → AllDifferent(i, t1, x), t1 = x − i}.

Reified constraints are also commonly used in the field of eXplainable Constraint Pro-
gramming (XCP) [11], where researchers investigate methods to help explain solutions or
non-solutions of a constraint program to a user. For example, when no solution exists,
explanation techniques can show a minimal conflicting set of constraints [10, 21, 23, 27, 28],
or show the user a set of constraints which should be modified or relaxed [29, 30, 44]. Many
algorithms used for generating such explanations rely on reasoning over subsets of constraints
in the model [11, 32, 40].

Lastly, half-reification can be used as a way to solve Max-CSP problems. Similar to
Max-SAT, the goal of Max-CSP solving is to find a solution satisfying a set of hard constraints
while simultaneously maximizing the number of satisfied soft constraints. Related to this use-
case is the notion of soft global constraints [43, 37]. Soft global constraints allow assignments
which violate a the global constraint. E.g., the soft version of an AllDifferent constraint,
may have some variables take the same value. In the case of Max-CSP solving, the goal
is to minimize the magnitude of the violation (e.g., the number of variables taking the
same value for AllDifferent). Half-reified constraints can be modeled using soft global
constraints as well, by reifying the assignment of the violation to 0. However, soft-global
constraints are uncommon in mainstream CP-solvers and have limited supported by most

1 Two exceptions are the Choco solver [36] and the MINION solver [22]
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modeling languages. Therefore, we restrict ourselves to the traditional “hard” sense of global
constraints and reify those.

Motivated by the above use cases of reified constraints, the CP community has investigated
several methods for reifying global constraints. These efforts include finding patterns for
modeling full-reification of global constraints through decompositions [4], alternative ways
to model the negation of global constraints for use in full-reification [14] and automatically
deriving propagation routines for half-reified global constraints to use in solvers [15].

In this work, we build upon the findings of the above papers and contribute the following:

1. We prove the correctness of rewriting fully-reified total function constraints, as proposed
but not proven in [4];

2. Inspired by the limited assumptions needed in the proof, we propose a generic and sound
reformulation rule for modeling any half -reified global constraint using auxiliary variables;

3. We experimentally investigate the use of half-reified global constraints in two settings
for generating explanations of unsatisfiable constraint programs, and we evaluate the
efficiency of the (re)formulations across different solvers.

2 Background

A Constraint Satisfaction Problem (CSP) is a triplet (V, D, C) with V a set of decision
variables, D a set of integer domains associated with each variable and C a set of constraints.
We write the domain of a variable as an enumerated set or an interval: D[x] = {1, 2, 3} = [1..3].
If the domain of any of the decision variables is empty, it is called a false domain

A constraint C ∈ C is a mapping of variable assignments to true or false. Variables
occurring in a constraint are said to be in its scope. Constraints are written as a predicate
with a list of arguments. E.g., the constraint AllDifferent(x, y, z) uses the predicate
AllDifferent with the list of arguments [x, y, z].

In addition to the set of decision variables V, constraint models may contain auxiliary
variables A. These variables do not correspond to a user-introduced entity in the constraint
problem and users generally do not care about their values [12, 38]. Auxiliary variables may
be required to implement constraints more efficiently, e.g., to break symmetries [38], or to
reformulate constraints in a way that the solver accepts them.

An assignment of variables satisfies a constraint if the constraint maps the assignment
of the variables in its scope to true. A solution of a CSP is an assignment of each of the
variables in V to a value in their domain, satisfying all constraints in C. The set of all
satisfying assignments to the decision variables V is written as solsV(C). If a CSP does not
allow a satisfying assignment (i.e., if solsV(C) = ∅), it is unsatisfiable.

CP solvers use propagation functions, propagators in short, to filter values from the
domains of variables based on the semantics of a constraint. A propagator fC(D), for
constraint C, is a monotonically decreasing function taking as input a set of domains D and
returning a set of domains D′: D′[x] ⊆ D[x] for each variable x ∈ scope(C). A propagation
function fC(D) is domain consistent if and only if for each variable pair x, y ∈ scope(C), it
holds that for any value in D′[x], there exists a value in D′[y] which satisfies the constraint [6].
E.g., given the Equals constraint a = b with D[a] = {1, 2, 3} and D[b] = {1, 3, 4}, a domain
consistent propagator will return domains D′[a] = D′[b] = {1, 3}. For simplicity, we assume
the input of a propagation function is never a false domain.

A Boolean subexpression T in a constraint C is said to be in positive context if each
solution of the constraint C is also a solution of the expression with T replaced by true [15].
The expression T is said to be in negative context if each solution of C is also a solution of
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C with T replaced by false. Any expression not in positive nor negative context is said to be
in mixed context.

▶ Example 2 (Boolean contexts). Below are several examples of constraints and types of
contexts given with A and T any Boolean expressions and ⊕ the exclusive-or (XOR) operator:

Expression C A ∧T A ∨T ¬T A→ T A← T A↔ T A⊕T
Context of T Positive Positive Negative Positive Negative Mixed Mixed

Global constraints

In CP, it is common to model complex relations between variables using global constraints [42].
Global constraints allow a user to model their problem in more natural ways compared to
writing low-level constraints. Moreover, the use of global constraints provides additional
information about the problem structure to the solver. This allows solver developers to
write specialized propagators which work well with these specific structures [1, 25, 41].
The use of such propagators often leads to significant improvements in the runtime of
the solver compared to decomposing the constraint. Decomposing a global constraint is
the operation of rewriting the complex relation represented by the global constraint into
semantically equivalent constraints, but “simpler” constraints. Modeling systems rely on
the decomposition of global constraints whenever a (CP-) solver does not support a global
constraint or whenever the global constraint occurs in an unsupported nesting.

▶ Definition 3 (Functional constraint). A (global) constraint G(V) is a functional constraint
if there exists a partitioning of the arguments V into two non-empty and non-overlapping
subsets X and Y, i.e., G(V) = G(X ∪ Y), such that given any assignment to variables x ∈ X ,
there exists at most one assignment to y ∈ Y such that the constraint is satisfied.

A special case of functional constraints are total functions:

▶ Definition 4 (Total function constraints). A Total Function constraint (TF) is a functional
constraint for which there exists exactly one assignment for y ∈ Y for any assignment x ∈ X .

The global constraint catalog [5] names a functional constraint as a “pure functional
dependency constraint” and contains 109 of such constraints2. An example of a total function
constraint is Min(v, X), commonly written as Min(X) = v, as for any values assigned to
the variables in X, one can always compute the minimum and assign that unique value to v.

Reification

The reification of a constraint C relates the truth value of C to a Boolean variable b. Two
common settings of reification are full-reification (b ↔ C) and half-reification (b → C).

Full reification of a constraint is satisfied if the Boolean variable is asserted to true if and
only if the constraint is satisfied. Hence, full-reification of a constraint requires modeling the
negation of the constraint as well. For global constraints, modeling the negation can be non-
trivial or inefficient, e.g., for the Circuit constraint [4]. The authors of [4] identify common
patterns to decompose fully-reified global constraints while [14] show the negation of some
global constraints maps to other global constraints. Therefore, they argue the full reification
of a global constraint should be split up into two half-reifications: b → C ∧ ¬b → ¬C.

2 https://sofdem.github.io/gccat/gccat/Kpure_functional_dependency.html

https://sofdem.github.io/gccat/gccat/Kpure_functional_dependency.html
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The half-reification of a constraint b → C is satisfied when b = true and C is satisfied. If
b = false, the value of C does not matter [45], i.e., b → C ≡ ¬b∨C. As this matches the notion
of material implication from logic, we use implication and half-reification interchangeably in
this paper. To refer to the Boolean variable b in a half-reification, we use the term implication
variable or indicator variable. Half-reification does not require enforcing the negation of
the constraint. Therefore, in order to construct a propagation function fb→G(V) for the
half-reification of G(V) we can re-use the propagation function fG(V) for G [15]:

∀v ∈ V : fb→G(V)(D)[v] =
{

fG(V)(D)[v] if D[b] = {true}
D[v] otherwise

(1a)

fb→G(V)(D)[b] =
{

D[b] \ {true} if fG(V)(D) is a false domain
D[b] otherwise

(1b)

Informally, if the implication variable is asserted to be true, the reified constraint should
hold and its propagator is invoked (1a). If constraint C does not admit any solution given
the domains, the implication variable should be asserted to false (1b). Note that the latter
case can also be implemented using a checker instead of invoking the propagation function of
the constraint. This is precisely what is proposed in [15], but rarely implemented in practice.

3 Full reification of global constraints

Modeling languages allow a user to construct any complex combination of constraints. This
includes fully-reified global constraints with predicate G and arguments V : b ↔ G(V). Apart
from the Choco solver [36], and the MINION solver [18], no CP solver we are aware of
systematically supports the reification of every global constraint it implements. Therefore,
modeling reformulation systems rely on the decomposition of global constraints to model
reified global constraints for all other solvers. In general, the decomposition of a global
constraint may require auxiliary variables A to define the exact relation. The definition of
how the auxiliary variables relate to the decision variables should always be satisfied, and
hence cannot be a part of the reification. For any global constraint, a set of defining (F) and
conditioning (K) constraints can be identified, with F a total function, uniquely defining
the value for A, given any value for V [3, 4]. As proposed by [4], this allows to write the
full-reification of the global constraint to:

b ↔ G(V) ≡ F(V ∪ A) ∧ (b ↔ K(V ∪ A)) (2)

The solver is assumed to have support for the reification of K which can therefore only
contain “core reifiable constraints” such as simple comparisons or clauses [4]. In practice, K
is often the decomposition of a global constraint, as illustrated in the following example:

▶ Example 5 (Full reification of Circuit). Given the global constraint Circuit(X) with
X a list of three nodes: X = [x1, x2, x3], its full reification b ↔ Circuit(x1, x2, x3) can be
written by introducing auxiliary “ordering” variables oi, which indicate for each node when
it is visited. We write: (o1 = x1 ∧ o2 = X[o1] ∧ o3 = X[o2]) ∧ b ↔ AllDifferent(o1, o2, o3).
In this formulation, F = (o1 = x1 ∧ o2 = X[o1] ∧ o3 = X[o2]) which defines the value of the
ordering variables. These are then used in K = AllDifferent(o1, o2, o3) to constrain the
auxiliary variables. Note that here, the conditioning constraint is again a global constraint
and will in practice also need to be decomposed. The constraint posted to the solver is:
o1 = x1 ∧ o2 = X[o1] ∧ o3 = X[o2] ∧ b ↔ (o1 ̸= o2 ∧ o1 ̸= o3 ∧ o2 ≠ o3). Decomposing the
AllDifferent constraint does not require introducing any auxiliary variables.
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However, relying on the decomposition of a global constraint is not efficient from a solving
perspective [9], and should be avoided, especially when many variables are involved. The
authors of [3] notice that for total function constraints, i.e., G(X ∪ Y) as introduced in
Definition 4, no decomposition is required to post the reification. Instead, the reification can
be written by re-using the predicate G as the defining constraint and introducing auxiliary
variables for the functionally defined variables Y. The conditioning constraints K is then a
set of channeling constraints linking the auxiliary variables A to the functionally dependent
variables Y. This is summarized by the following reformulation AuxFullReifGlobal-TF:

Reformulation of b ↔ G when G is a total function (AuxFullReifGlobal-TF)

b ↔ G(V) ≡ b ↔ G(X ∪ Y) ≡ G(X ∪ A) ∧ (b ↔ Y = A) (3)

While not explicitly stated, it is clear the domains of a ∈ A should be chosen such that all
solutions of the original constraint are kept, in order to satisfy the reified constraint when b
is asserted to true. Additionally, the domains of A should also be chosen such that G(X ∪ A)
admits at least one solution as this constraint is posted to the solver and hence always needs
to be satisfied. We illustrate this approach in Example 6 considering the reification of the
Min constraint.

▶ Example 6 (Full reification of the Min constraint). Consider the total function constraint
Min(v, X) which defines the value of variable v as the minimum of the variables in X. Then
X = X and Y = {v}. Following the rewrite rule above, we can rewrite b ↔ Min(v, X) to
Min(v′, X) ∧ (b ↔ v = v′) with v′ an auxiliary variable with domain D[v′] =

⋃
x∈X D[x].

We now present our first contribution and fully specify and prove AuxFullReifGlobal-
TF (Eq. 3) as a sound reformulation for modeling the full reification of total function
constraints, which is a fine-tuned version of the rules presented in [4].

▶ Proposition 1 (Full reification of total function constraints). Given a total function constraint
G(X ∪ Y) where all variables in Y are functionally dependent on X , its reification b ↔
G(X ∪ Y) can be written as G(X ∪ A) ∧ (b ↔ Y = A) with A a set of auxiliary variables,
allowing at least one solution for G(X ∪ A) and allowing all solutions of G(X ∪ Y).

Proof. We distinguish two cases for the value of the Boolean variable b, and prove the
reformulation is valid for both cases:

b = true : true ↔ G(X ∪ Y) ≡ G(X ∪ A) ∧ (true ↔ Y = A) (4)
G(X ∪ Y) ≡ G(X ∪ A) ∧ (Y = A) (5)

As G(X ∪ A) allows all solutions of G(X ∪ Y), we can substitute A for Y

b = false : false ↔ G(X ∪ Y) ≡ G(X ∪ A) ∧ (false ↔ Y = A) (6)
¬G(X ∪ Y) ≡ G(X ∪ A) ∧ (Y ̸= A) (7)

We prove the equivalence in Equation (7) holds using contradiction by showing the negation
of its first argument is impossible: G(X ∪ Y) ≡ G(X ∪ A) ∧ (Y ≠ A). This implies that for
an assignment for the variables in X , there exist at least two assignments for the variables
in Y satisfying the constraint G. As this contrasts with the hypothesis that G(X ∪ Y) is a
total function, this negated equivalence cannot hold and Equation (7) must be true.

As both cases are now proven, Proposition 1 holds. ◀
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Notice that in the above proof, we did not exploit the fact that G is a total function
constraint when b is assigned to true. This observation is used in the following section to
describe a reformulation for the half-reification of any global constraint.

4 Half-reification with auxiliary variables

We introduce a generic reformulation for half-reified global constraints using auxiliary
variables. Compared to AuxFullReifGlobal-TF (3), the reformulation proposed in this
section is not restricted to total function constraints G(X ∪ Y), but applies to any global
constraint G(V). We introduce an auxiliary variable for each of the arguments of the global
constraint and post the global constraint with auxiliary variables to the top-level of the
constraint model. This results in the reformulation as given in Equation (8):

Reformulation of b → G(V) for any G (AuxHalfReifGlobal)

b → G(V) ≡ b → (G(A) ∧ V = A) ≡ G(A) ∧ (b → V = A) (8)

The logic behind this approach is the following: when the implication variable is true, the
auxiliary variables are asserted to be equal to the original variables. Hence, if the domains of
A allow all solutions of G(V), the original constraint holds. In any other case, the equivalence
V = A on the right-hand side does not need to hold, and the auxiliary variables in A are
unconstrained. Still, as G(A) is posted to the solver and is therefore always enforced, we
require the domains of A to be chosen such that G(A) satisfies at least one solution.

In practice, we can ensure both conditions are met by copying the domains of the original
variables and checking that the original global constraint has at least one solution, or by
adding values corresponding to a dummy solution to the domains of the auxiliary variables.
Of course, if we are certain the original constraint does not admit any solution, we can simply
omit the half-reification all together and post the constraint ¬b to the solver instead.

We illustrate our reformulation using the AllDifferent constraint in Example 7.

▶ Example 7 (Half-reification of AllDifferent). To post the half-reification constraint
b → AllDifferent(x, y, z) to a solver, we introduce new auxiliary variables x′, y′ and z′

and rewrite the constraint to AllDifferent(x′, y′, z′) ∧
(
b → (x = x′ ∧ y = y′ ∧ z = z′)

)
instead of half-reifying the decomposition. We ensure all original solutions are kept by
copying the domains of the original variables. To ensure the top-level constraint can always
be satisfied, we either check if it admits a solution using the original domains, or allow a
dummy solution. In this case we can ensure {x′ 7→ 1, y′ 7→ 2, z′ 7→ 3} is a dummy solution
by using the domains: D[x′] = D[x] ∪ {1}, D[y′] = D[y] ∪ {2}, D[z′] = D[z] ∪ {3}.

We want to remark that this idea is not entirely new, and several expert modelers have
already employed this idea when modeling specific half-reified global constraints.3 Paper
[37] implements similar ideas directly into the solving process, where global constraints are
made soft by introducing auxiliary variables and watching their domain changes.

In contrast, our reformulations allow to formulate half-reified global constraints at the
modeling level. This enables a user to use half-reified global constraints in any setting, for
any solver supporting the “hard” global constraint. Our reformulation is not implemented

3 See for example: https://github.com/google/or-tools/issues/973#issuecomment-744434446 or
Tips 5.3 and 7.2 of the Gecode manual [39]

https://github.com/google/or-tools/issues/973#issuecomment-744434446
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structurally into any existing modeling system, nor systematically evaluated. In the next
section we evaluate the efficiency of this reformulation compared to decomposing the global
constraint.

5 Experiments

We aim to answer the following experimental questions:

EQ1. How does rewriting half-reified global constraints using auxiliary variables compare to
decomposing the global constraint in terms of runtime?

EQ2. To what extent are our reformulations competitive with solver-native support for
half-reified global constraints?

We test our reformulations in two settings of eXplainable Constraint Programming where
half-reified (global) constraints are essential for developing efficient algorithms [11]. The first
is the problem of calculating Max-CSPs in order to find a minimal relaxation of the problem
(Maximum Satisfiable Subset), and the second is the problem of extracting an unsatisfiable
subset using assumption-based solving over half-reified constraints. This can then be used as
the basis for finding a Minimal Unsatisfiable Subset [28].

Reification-based Max-CSP

The Max-CSP problem consists of finding a solution that maximizes the number of satisfied
soft constraints (CS) while satisfying a set of hard constraints (CH), similarly to Max-SAT [17].
Given a CSP (V, D, CH ∪ CS), we encode the Max-CSP as a constraint optimization problem
with constraints CH ∪ {bC → C | C ∈ CS} and objective function maximize

∑
C∈CS

bC . This
is a common approach that works with any existing CP solvers, in contrast to the use of
dedicated soft-global constraint propagators [37]. In this experiment, we measure the time
spent by the solver to find an optimal Max-CSP solution for a set of unsatisfiable CSPs.

Assumption-based solving

Lazy-clause generation (LCG) solvers [34] like OR-Tools CP-SAT and Chuffed hybridize
CP’s constraint propagation with SAT solving. This allows them to support solving with
assumption variables, inherited from the underlying SAT solver. By considering the half-
reification of each constraint in the problem, we can activate a set of constraints by assuming
their indicator variables to be true. Many practical implementations of XCP techniques rely
on this technique as it allows extracting a subset of infeasible constraints directly from the
solver. Assumption-based solving can also be used for iteratively testing whether a subset of
the constraints admits a solution, without restarting the solver from scratch [40, 31, 30, 11].
In this experiment, we focus on the first setting and add all indicator variables as assumptions.
We then measure the time spent by OR-Tools to prove the unsatisfiability of the problem.

5.1 Experimental setup
We now discuss the benchmark instances used and then the methods to be compared.

Benchmarks

Our benchmarks consist of unsatisfiable CSPs with global constraints among the most widely
used, namely AllDifferent, Cumulative, GlobalCardinality and Circuit.
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Room-assignment. This benchmark considers the problem of assigning hotel rooms to
customers who book a room for a given period. We generate instances with 50,75 and 100
requests on a horizon of 30 days with a mean duration of 3 days and a standard deviation of
2 days. For each number of requests, we generate 150 instances, for a benchmark set of 450
models. The CSP to solve this problem consists of AllDifferent constraints that prevent
assigning overlapping requests to the same room and is made unsatisfiable by limiting the
number of available rooms to 90% of the number of required rooms.

RCPSP. We consider 410 instances of the j60 benchmark available on the PSPlib website
and model each instance using Cumulative constraints. The CSP is made unsatisfiable
by limiting the makespan to 90% of the best reported lower bound on the website of
PSPlib.4 Both the Cumulative constraints and precedence constraints are considered as
soft constraints, and the limitation on the makespan is considered a hard constraint.

Multiple TSPs. In this last benchmark, we use an artificial problem in order to generate
CSPs containing multiple Circuit constraints. The problem consists of finding n tours in n

predefined clusters of a set of points. The goal is to minimize the sum of distances traveled in
all clusters and the problem is made unsat by limiting the objective to 90% of the optimum.
We generate the benchmark by sampling 35 points on a 100x100 grid and vary the number
of clusters between 2 and 10, which are defined by a K-means algorithm. For each n we
generate 50 instances, for a benchmark set of 450 instances.

Methods under investigation

We compare how rewriting half-reified global constraints performs to alternative strategies
such as decomposing or direct solver support for the half-reified. As the goal is not to
compare solvers directly to each other, we report the results of the following strategies solver
by solver in Section 5.2.

The decomposition(s) of the implication (Decomp). The decompositions used are those
present in CPMpy, and their mathematical formulations are provided in Appendix B. For
Cumulative, we show the results for two classical decompositions (time or task-based).
Our method (AuxHalfReifGlobal) where all arguments in the constraint are replace
with an auxiliary variable
Native support (Native) for the half-reification of the global constraint.

Only the Choco solver has native support for the half-reification of each of the global
constraints in our benchmarks. Choco implements half-reification similar to the propagation
function described in Section 2, while using a specialized checker to check whether the reified
constraint can still be satisfied using the current partial assignment.

We implemented our approaches on top of the CPMpy [19] constraint modeling library
v0.9.17 in Python 3.9. For solvers we use OR-Tools [35] version 9.8, the Choco solver [36]
version 4.10.14 and the Gecode solver [39] version 6.3.0 through MiniZinc v2.8.2. As all code
is written in Python, each solver is accessed through its Python interface (using a custom
branch of pychoco v.0.1.1 and the stable version of minizinc-python v0.9.0).

The experiments were run on Ubuntu 20.04 LTS on a single core of an Intel(R) Xeon(R)
Silver 4214@2.2Ghz with 128GB of RAM. For each experiment, we employ a time-out of 2
hours. All code and benchmarks will be made available upon acceptance of the paper.

4 https://www.om-db.wi.tum.de/psplib as accessed on 31/01/2024

https://www.om-db.wi.tum.de/psplib


10 Efficient Modeling of Half-reified Global Constraints

5.2 Results and discussion
We report the results of solving the Max-CSP problem of the unsat problems in Fig. 1-3
for all solvers. Fig. 4 shows the runtimes for solving under assumptions with OR-Tools’
CP-SAT solver. We now interpret these results and answer the experimental questions.

EQ1: Rewrite vs Decompose

We consider both the Max-CSP and the Assumption-based solving experiments to investigate
how decomposing the global constraint compares to our reformulations. We first focus on the
AuxGlobal minimal (red) and Decomp (blue) series in the figures. For all experiments,
reformulating the global constraint is several orders of magnitude faster compared to decom-
posing the global constraint. For example, in Figure 1, OR-Tools is able to solve all instances
within 0.1s while 40% of the instances reached the time-out of 2h when decomposed. Similarly,
for the the Circuit benchmark in Figure 3, Choco is able to solve ±95% of the instances
within the given time-limit, whereas using the decomposition results into solving only half of
the instances solves One exception on these results is the RCPSP benchmark when run on
the Gecode solver. This is because Gecode does not support the Cumulative constraint
where the demand of a task or capacity of the resource is a variable, which is the case in our
AuxHalfReifGlobal. Therefore, the solver internally uses the task decomposition of the
constraint. Finally, when solving with assumptions (Figure 4), the reformulation is several
orders of magnitude faster compared to the decompositions for all of the benchmarks.

EQ2: Rewrite vs Native

As only the Choco solver has support for half-reified global constraints, we focus on the
middle column of Figures 1-3.

For the Room-assignment and RCPSP benchmarks, the native implementation of the
half-reification is marginally faster for sub-second solve times. For the Circuit constraint
in the Multiple TSPs benchmark, our reformulation is comparable with Native for all
instances. It seems for these global constraints, when solving a Max-CSP problem, the
implementation of specialized propagators for half-reified global constraints only leverages
marginal gains compared to our solver agnostic, model level reformulations.
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Figure 1 Runtimes of solving Max-CSP for the Room-assignment benchmark.
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Figure 2 Runtimes of solving Max-CSP for the RCPSP benchmark.
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Figure 3 Runtimes of solving Max-CSP for the Multiple TSP’s benchmark.
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(a) Room Assignment
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Figure 4 Runtimes of solving under assumptions with OR-tools for all benchmarks

6 Conclusion

In this paper, we introduced and formalized several reformulations for half-reified global
constraints. These reformulations allow to post a half-reification of a global constraint
to any solver which supports the standard (non-reified) global constraint. Crucially, our
reformulations avoid decomposing the global constraint, but instead introduce auxiliary
variables and a reified channeling constraint. Therefore, it allows us to make use of the
efficient propagators for global constraints found in CP solvers.

Our results show that the reformulations speed up the computation by several orders of
magnitude compared to reifying a decomposition. Moreover, for several global constraints,
the runtime for finding Max-CSP solutions to unsatisfiable constraint programs is similar to
when the solver has native support for the half-reified global constraint.

In the future we want to take a closer look at which variables needs to be replaced for a
sound reformulation of the reification. For example, in the case of total function constraints,
we can follow the approach in [4] and replace only the functionally defined variables. Other
questions arising include how to incorporate safening of partial functions and how to minimize
the number of auxiliary variables introduced for non-functional constraints.

Finally, we want to compare our reformulations with more solver-native approaches such
as those implemented in Max-CSP solvers with support for soft global constraints5.

Overall, our work can contribute to a wider applicability of XCP techniques for CP
problems, as it alleviates the runtime overhead of reifying decompositions, as well as having
to restrict oneself to solvers that naively implement reified global constraints.

5 e.g., toulbar2 https://github.com/toulbar2/toulbar2

https://github.com/toulbar2/toulbar2
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A Solver support for global constraints

In the table below, we summarize which solvers have support for the global constraints
considered in this paper. A ✓ indicates the solver supports the global constraint at top-level
of the constraint model. → means the solver has support for the half-reification of the global
constraint.

Solver OR-Tools Choco Gecode
Interface CPMpy CPMpy MiniZinc

AllDifferent ✓ ✓ ✓

→

Cumulative ✓ ✓ ✓

→

Circuit ✓ ✓ ✓

→

GlobalCardinality ✓ ✓

→
Table 1 Solver support for different global constraints.

B Decompositions of global constraints

AllDifferent

The binary decomposition of the half-reification b → AllDifferent(x1, x2, . . . , xn) is:

b →
∧
i ̸=j

xi ̸= xj (9)

Cumulative

Two well-known decompositions of the Cumulative(S, D, E, H, c) constraint exist: the
time-decomposition and task-decomposition. We model the half-reification of the time
decomposition with n tasks as:

b →
∧

t

c ≥
n∑

i=0
Hi · (Si ≤ t ∧ Ei > t) (10)

The task decomposition of the same constraint is defined as:

b →
∧

j∈1..n

c ≥
n∑

i=0
Hi · (Si ≤ Sj ∧ Ei > Sj) (11)

GlobalCardinality

We use the Boolean decomposition of the GlobalCardinality constraint inspired by [7].
In particular, the decomposition of b → GlobalCardinality(X, V, C) with |X| = n and
|C| = |O| = m is defined as follows:
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(
∧

xi∈X

∑
j∈D[x]

j · aij = xi) ∧ b →
(
(

∧
xi∈X

∑
j∈D[x]

aij ≤ 1) ∧ (
∧

vk∈V

n∑
i=1

aivk
= Ok)

)
(12)

with aij as set of auxiliary Boolean variables indicating whether variable xi is assigned
value j.

Circuit

Given the half-reification constraint b → Circuit(X) with |X| = n, we write the decomposi-
tion as follows:

o1 = xn ∧
∧

i=2..n

oi = X[oi−1] ∧ b → (on = 1 ∧
∧
i̸=j

xi ̸= xj ∧ oi ̸= oj) (13)

Where oi are fresh “ordering” variables.
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