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Abstract
Cumulative functions were introduced in [3] as a mean to express and construct consumption profiles
over conditional task intervals [2]. The only two solvers that fully support their use are IBM
CP-Optimizer [4] and Optal-CP [6]. Although their usage, construction, and semantics have been
thoroughly described in [3], we have not found any explanations on how to practically implement
these in a CP Solver. We explain how a capacity range constraint on a cumulative function expression
can be translated into a generalized cumulative constraint that accommodates optional activities
and negative consumption. We propose a simple traversal of the Abstract Syntax Trees (AST)
representing the expression to create a flattened set of activities. This approach can be implemented
in any constraint programming solver without the need for developing a specific global constraint
that would be aware of the cumulative function expression. We demonstrate how to use this
implementation on a simple scheduling example.
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1 Introduction

A conditional interval variable [2] is a decision variable used to model optional tasks in
constraint-based scheduling problems. An interval variable x is characterized by a start s,
an end e, a duration d and a status indicating if the interval is absent (denoted x = ⊥) or
present. Its domain can be expressed as a subset of {⊥} ∪ {[s, e) | s ≤ e, s, e ∈ Z}. The
duration d links to the other attributes s and e by the relation d = e − s. An interval variable
x is fixed if x = ⊥ or x = [s, e) (the interval starts at s and ends at e).

A cumulative function [3] is a step-wise integer function of time used to model the
cumulative contribution of a set of conditional interval variables. The contribution of a single
interval variable is represented by an elementary cumulative function receiving an interval x

and a non-negative height value h or a non-negative height range [hmin, hmax]. The existing
elementary functions introduced in [3] are represented on Figure 1.

Cumulative functions (elementary or not) can then be combined with the plus/minus
operators to form a new cumulative function representing the addition or subtraction of two
functions. A cumulative function is thus an Abstract Syntax Tree (AST) with elementary
function at the leaf-nodes. The height of a cumulative function can then be constrained to
be within a range interval every time where at least one task executes. This is done with the
alwaysIn(f, minCapa, maxCapa) construct.
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23:2 Modeling with cumulative Functions

Figure 1 Elementary cumulative functions. A similar function exist for stepAtEnd.

2 Implementation

In our implementation based on MiniCP [5], each node of the AST contains a non-negative
height variable denoted by h. These heights are created when elementary functions are
created but do not exists in internal nodes of the AST.

Whenever an alwaysIn(f, minCapa, maxCapa) constraint is posted, the tree is traversed
to collect all the task intervals from the elementary functions at the leaf nodes. Each of these
intervals is transformed into a cumulative activity. The cumulative activity’s height is the
height of the task interval at the leaf-node, possibly multiplied by +1 or −1, depending on
whether it is involved in an even or an odd number of times as the right member of a minus
expression down its path from the root of the AST.

There is a subtlety concerning step elementary functions. These activities are not the
ones of the original task interval but rather defined on new a task interval that finishes at
+∞ with its start synchronized with the original task interval.

The resulting cumulative function can then be subjected to constraints such as resource
capacity constraints. To the best of our knowledge only one constraint of the literature
supports optional activities, with possibly negative consumption’s and min/max capacities.
This is the Generalized Cumulative constraint of [1] that we use.

▶ Example 1. Let us consider three task intervals: A, B and C that contribute to a
cumulative function f = minus(stepAtStart(A, 2), plus(pulse(B, 1), stepAtEnd(C, 1))) The
resulting AST and cumulative function are represented in Figure 2. On the right, the
solid parts represent the time windows of the tasks while the hatched parts represent their
contribution to the profile. Note that while B is added with a pulse function and thus
contributes only during its time window, both A and C are added with step functions.
Therefore, the actual activities created are A′ and C ′ that execute until the time horizon
(vertical dashed line). The final cumulative function f is represented by a dotted line.
Assuming a alwaysIn(f, minCapa, maxCapa) constraint is posted, the cumulative activities
passed to the Generalized Cumulative constraint of [1] are A′, B, C ′ having respectively a
height of 2, −1, −1.
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Figure 2 Example 1: AST (left) and cumulative function (right)
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