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—— Abstract
Encoding to SAT and applying a state-of-the-art SAT solver can be a highly effective way of solving

constraint problems. For many types of constraints there exist several alternative SAT encodings;
and the choice of encoding can significantly affect SAT solver performance for any given problem.
Previous work has shown that machine learning (ML) can be used to select SAT encodings for
some constraint types, making a choice for each relevant constraint type in a problem instance.
The state-of-the-art approach achieves good performance by first building a small portfolio of
configurations, then selecting a configuration for a given problem instance using an ML model. The
approach necessitates generating training data for every combination of encodings for the constraint
types, thus it scales exponentially as more constraint types are added. In this work, we select
potentially different encodings for each individual constraint in a problem instance. We are able to
match the state-of-the-art performance while avoiding any limitation on the number of constraint
types considered. To achieve this we are proposing new individual constraint features, we present a
novel method for generating training data, and we have developed a new machine learning pipeline
involving both unsupervised and supervised learning.
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1 Introduction

A popular and effective way of solving constraint satisfaction and optimisation problems
(CSPs and COPs) is by reformulating them as instances of the Boolean satisfiability problem
(SAT). This process, usually known as encoding can take into account the particular structure
of different constraint types in the constraint modelling language. For many constraint types,
a variety of SAT encodings exist, i.e. schemes for representing a constraint in a CSP as a set
of Boolean variables and a propositional formula over those variables.

The task of automatically selecting suitable encodings for constraints into SAT has been
addressed previously [3, 6, 9]. Recent work shows that machine learning (ML) models
can be trained to select a good encoding for pseudo-Boolean (PB) and linear integer (LI)
constraints [9]. The ML-based selections lead to significant performance improvements over
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the single best encoding (based on the training set) even when predicting encodings for
problem classes not present in the training set. The custom setup is also shown to greatly
outperform the sophisticated algorithm selection tool AuTOFOLIO [4]. In that work the
choice was made once for each relevant constraint type. In this work we also use specialised
features, but we make the selection for each individual PB or LI constraint.

1.1 Motivation

The ML setup discussed in [9] was shown to be valuable in learning to select good SAT
encodings for PB and LI constraints, especially when using features of the specific constraint
types. However, choosing one encoding for all constraints of a given type in a problem
instance potentially leads to two issues. Firstly, any given problem instance might contain
many constraints of the same type but with quite different features. A single encoding
selection may not be the best for all the constraints of that type. Secondly, the features of
individual constraints are combined in [9] in order to produce a feature vector per instance.
This means valuable information may be lost by aggregation.

Two questions naturally arise. Is it practical to train an ML system to predict SAT
encodings for each individual constraint of a given type? And if so, how does the performance
compare to making one choice per constraint type in a CSP instance? In this work we
address these questions, describing and evaluating an ML-based approach to learning to
predict encodings at the individual constraint level. We refer to this system as INDICON.
For ease of comparison, we refer to the approach set out in [9] as LEASE-PI (for “Learning
to Select Encodings Per Instance”).

1.2 Contributions

In summary, our contributions are as follows:
We address the problem of selecting SAT encodings for individual PB and LI constraints
in instances of CSPs from unseen problem classes.
We present and discuss how to obtain useful training data for individual constraints.
We adapt and extend the lipb features from [9] for PB and LI constraints, in order to
describe individual constraints.
We evaluate empirically a number of alternative setups for our approach.

The focus here is not primarily on performance compared to earlier work, but rather on
scientific and methodological contributions:

It is natural to ask whether setting constraint encodings individually is more effective

than setting the encoding for all constraints of one type. Essentially we are investigating

this question by building the INDICON system.

INDICON scales better than the earlier LEASE-PI approach, as discussed below.

INnDICON produces simpler ML models and that is beneficial for explainability of decisions.

Note: this work is from a PhD thesis [7], which contains many further details.

1.3 Preliminaries

A constraint satisfaction problem (CSP) is defined as a set of variables X, a function that
maps each variable to its domain, D : X — 2% where each domain is a finite set, and a
set of constraints C. A constraint ¢ € C is a relation over a subset of the variables X.
The scope of a constraint ¢, named scope(c), is the set of variables that ¢ constrains. A
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Figure 1 The steps involved in INDICON. The boxes represent data; the arrows show processes.

constraint optimisation problem (COP) also minimises or maximises the value of one variable.
A solution is an assignment to all variables that satisfies all constraints ¢ € C. Boolean
Satisfiability (SAT) is a subset of CSP with only Boolean variables and only constraints
(clauses) of the form (I; V --- Vi) where each l; is a literal z; or ~z;. A SAT encoding of
a CSP variable x is a set of SAT variables and clauses with exactly one solution for each
value in D(x). A SAT encoding of a constraint c is a set of clauses and additional Boolean
variables A, where the clauses contain only literals of A and of the encodings of variables
in scope(c). An encoding of ¢ has at least one solution corresponding to each solution of c.
Pseudo-Boolean (PB) and Linear Integer (LI) constraints are in the form > | ¢;z; ok, where
oe{<,<,=,%#,>,>}, q1 ..., are integer coefficients, k is an integer constant and x; are
Boolean or integer decision variables for PB and LI constraints respectively. An at-most-one
(AMO) constraint over a set of Boolean decision variables requires that zero or one of them
are set to true.

2 Method
We begin with a summary of the steps involved in INDICON, summarised in Figure 1.

1. We start with a corpus of problems (A). We solve the instances initially with each single
encoding choice per constraint type and record the timings (B). These allows us to identify
a good default encoding choice for the instance.

2. We extract features of each individual PB or LI constraint in the problem instances (C).

3. We use a clustering algorithm to group all the constraints across all instances into clusters
with similar features (D).

4. We prepare a number of encoding settings (E) for each instance so that we can systemat-
ically try different encodings for constraints by cluster.
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5. Each problem is solved using SAVILEROW with the per-cluster encoding settings (E) and
we record the runtimes (F).

6. The timing results (F) allow us to generate a training set (G) with the best encoding
label for each constraint.

We are now in a position to configure and train an ML model on the features and labels
obtained above. For the sake of robustness, the entire process of splitting the corpus, training
and testing is repeated 50 times for each setup.

7. The corpus of problems (A) is split into training and testing instances (H,I), keeping
instances from the same problem class together, i.e. only in either the training or test set.

8. An ML model is trained (J) to predict per-constraint encodings.

9. To evaluate performance, we solve the instances in our test set (I), consulting the ML
model (J) to decide which encoding to use for each individual constraint, and recording
the time taken (K) in order to analyse the performance.

In the rest of this section we briefly present the details of the steps introduced above.
Further details, results and discussion can be found in [7].

2.1 Problem Corpus

The problems used are largely the same as in LEASE-PI [9, 8] (with the addition of more
nurse scheduling problems based on instances in NSPLIB [10]), providing a variety of problem
categories. The corpus consists of 50 constraint models with up to 50 instances each. There
are 551 instances featuring PBs and 347 with LIs. Constraint models include problem classes
such as nurse scheduling, car sequencing, knapsack, n-queens, balanced incomplete block
design (BIBD), quasigroups, multi-mode resource-constrained project scheduling (MRCPSP),
and optimum portfolio design.

2.2 Menu of PB and LI Encodings

We use the same set of 9 encodings for PB and LI as in [9]: the 8 PB(AMO) encodings
described and analysed in [2] (GGPW, GGT, GGTd, GLPW, GMTO, GSWC, MDD, RGGT)
as well as the non-AMO-aware Tree encoding [9]. A PB(AMO) constraint is a PB constraint
where the decision variables are partitioned into subsets, each subject to an AMO constraint.
The AMO partition is automatically detected [1] for existing PB constraints. LI constraints
(if not encoded with Tree) are reformulated into PB(AMO)s where each integer variable is
represented by a set of Boolean variables with an AMO constraint. An equality (either PB
or LI) can be either encoded with Tree or broken down into two inequalities and encoded
with a PB(AMO) encoding.

2.3 Feature Extraction

We adapt the feature extraction to consider the same aspects of PB/LI constraints as in the
lipb featureset [9], but without aggregating over all constraints in the instance. In addition,
we extract the following:
is_equality records whether the constraint is an equality (rather than <).
amog_maxw_med is the median maximum weight across AMO groups and gives more
information about the distribution of maximum weights in the AMO groups when coupled
with the existing mean measure amog_maxw_mn.
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Figure 2 Dendrograms showing agglomerative clustering by constraint features. The x-axis shows
the Euclidean distance between clusters. On the y-axis labels indicate the number of data points in
a branch (in brackets); labels without brackets identify single-constraint clusters.

amog_maxw_mn2k is the ratio of the mean of maximum coefficients in the AMO groups to
the upper limit k and could be an indication of how difficult the constraint will be to
satisfy, with a higher value meaning a tighter constraint.

amog_maxw_sum (the sum of the maximum coefficients) tells us the size that the “left-hand
side” of the comparison could potentially reach.

2.4 Obtaining Training Data

The requirement for our training data is a feature vector per constraint (for the constraint
type in question) as well as a target label to learn. We initially solve each instance in the
corpus using each of the encodings available to establish a baseline default encoding for each
problem instance. To obtain the target label, we adopt two approaches.

Inheriting from Host Instance In this approach we use the baseline encoding of the instance
(as described above) as the target label for all the constraints in the instance. This is an easy
way to generate a training set, but it relies heavily on the assumption that constraints of one
type will have similar characteristics within one problem instance, which seems in opposition
to the motivation behind INDICON. Nevertheless, it turns out to be a useful method overall.

Clustering Across the Corpus We cluster the individual constraints into groups across all
the instances in the corpus. Many unsupervised learning algorithms exist which can generate
clusters from data points. We use agglomerative clustering (as implemented in [5]) because
it allows us to choose the number of clusters according to the data, rather than having to
specify it arbitrarily. Each feature vector of a constraint begins by being its own cluster.
As we increase the allowed distance between points in a cluster, clusters merge. This is
illustrated in Figure 2. In the left dendrogram (for PBs), we see for example that as the
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inter-cluster distance passes 12, 6 clusters become 5. The data remains split into 5 clusters
until the distance is 19. Then, the clusters keep joining quite quickly until we reach a distance
of 27 and we're left with 2 clusters. For our purpose we observe that 2 clusters and 5 clusters
cover the largest ranges of distances. Of these we choose 5 clusters as this allows us to try
more configurations for our encodings while still being practical to implement. Using similar
reasoning for the LI constraints, we select 6 clusters.

Systematically timing combinations of encodings Once each individual constraint is
associated to a cluster, we need to try different combinations of encodings by cluster in order
to obtain runtimes and thereby determine which encoding to learn for the constraints in each
cluster. Recall that we have 9 candidate encodings. Consider an instance with 5 clusters
of constraints — the comprehensive approach would be to try every possible combination;
however, that would amount to 9° combinations. A compromise is to choose the baseline
encoding for all constraints and then change the encodings of one cluster of constraints in
turn. This way the example above would require (1 + 8 x 5) = 41 combinations. Solving
the instance 41 times remains practical to implement and the number of runs needed scales
linearly with the number of encoding choices for a fixed number of clusters.

2.5 Training and Testing

We split our corpus into training and test sets randomly, ensuring that instances of a problem
class are either in the training or test set, never in both. This means when we are attempting
the challenging task of making predictions for unseen problem classes. The train/test split
is approximately 80% : 20% (approximate because of the different numbers of instances
available for each problem class). We carry out 50 splits with different random seeds.
Similar to [9] we train classifiers to select between pairs of encodings; the final prediction
is the result of voting from the trained classifier models. We separately train random forests,
gradient boosted trees and simple decision tree models. In early experiments we also tried
k-nearest neighbours and simple neural networks, as well as an ensemble of all classifiers
mentioned above, but the performance was worse than with the classifiers we present here.

2.6 Experimental Setup

All experiments were carried out on a high-performance cluster with Intel Xeon 6138 20-core
2.0 GHz processors; the memory limit per job was set to 6GB. SAVILEROW was run with
AMO detection switched on, a SAT clause limit of 10 million, and a timeout of 1 hour. Kissat
(sc2021-sweep) was used, with its own 1-hour timeout. Each solving run is repeated with 5
different seeds; the median runtime is then calculated and a 10-fold penalty is applied for
any total runtime over 1 hour to give PAR10 results.

3 Results and Discussion

The corpus contains problem classes with PBs, LIs, or both. We apply INDICON separately
to these two constraint types, using the problems containing the relevant constraint type.
3.1 Selecting Encodings for One Constraint Type

To evaluate the performance of INDICON, we record the PAR10 running time for the 50
test sets as a multiple of the virtual best time achievable by using a single encoding. It is
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Table 1 INDICON performance for the best 3 setups, ordered from best to worst performing. Each
setup is tested over 50 train/test splits. The performance is measured using PAR10 and shown as a
multiple of the Virtual Best* (* single-choice) time. For reference, Single Best time is also shown.

InDICON for PB InDICON for LI
Setup Runtime Setup Runtime
Clusters Classifier PAR10 x VB* Clusters Classifier PAR10 x VB*
1 RF 5.57 Single Best 4.58
1 DT 5.69 6 RF 6.44
GB 8.10 1 RF 6.70
Single Best 11.58 6 GB 11.12

prohibitive to calculate a true virtual best by running every single combination of encodings
for every constraint in any sizeable instance. Our reference is called VB* to emphasise that
this is a single-choice virtual best. We also show the single best (SB) result, which is the
result of always choosing the one encoding which performed best on the training set.

The results are shown in Table 1. For this corpus INDICON seems to work better for PBs
than for LIs, with the best setup achieving 5.57 times the VB* time, compared to 11.58
times for the single best (SB) time. In the LI setting, INDICON does not even match the SB
performance of 4.53 on this corpus, coming in at 6.44 times VB*. This may be explained
to an extent by the fact that in [9] the authors found that the choice of PB encoding could
make a much bigger difference to solving performance, whereas for LIs it tended to be the
case that there was one encoding (GGPW) which usually outperformed the others.

In terms of the classifiers used, it is interesting that a simple decision tree classifier
employed in a pairwise voting setup is performing almost as well as random forests — this
would open up the way to more explainability for the encoding choice made.

The best setups for PB come from the non-clustered training data, i.e. where the target
label for training was simply the encoding which worked best for the host instance of every
constraint. In the LI setting, the setup using 6 clusters slightly outperforms the setup based
on the simpler labelling source.

3.2 Comparison with Per-Instance Selection in LeaSE-PI

We carry out a second experiment in order to compare the performance of INDICON with
LEASE-PI. We consider the 250 instances which contain both PB and LI constraints and
appear in at least one of the LEASE-PI and one of the INDICON test sets. For each instance
we randomly sample with replacement 100 results from LEASE-PT and 100 results of running
INDICON to select both PB and LI encodings. Each solving run is done 5 times and the
median time is recorded to account for randomness in SAT solving.

The results are shown in Figure 3. The left plot shows how many instances were solved
as we increase the CPU time. We see that INDICON is competitive with LEASE-PI and
does better for some of the harder instances which take around 3000 seconds to solve. This
slight edge is confirmed by the mean PARI10 solving time across the 25000 “contests”: for
LEASE-PI the mean is 1161 seconds with 689 timeouts, and for INDICON the mean is 1145
seconds with 668 timeouts. From the scatter plot on the right of Figure 3 we see a fairly
consistent performance between the two selectors, without any extreme differences as there
are no crosses in the top left or bottom right corners. The curve at the bottom left indicates
that LEASE-PI is doing better on the easiest instances, whose runtime is under 1 second.
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Figure 3 Comparison of INDICON and LEASE-PI performance on sample of instances when
INDICON has been used to set both PB and LI constraints. Left: number of instances solved by CPU
time up to 1 hour for the single-choice virtual best (VB*), single best (SB), default encoding (Def),
best LEASE-PI setup and INDICON. Right: PAR10 times for the best LEASE-PI versus INDICON.

The overhead of retrieving a separate encoding choice for each constraint from the ML
classifiers becomes less significant as the overall solving times increase for harder problems.

The LeaSE-PI paper [9] has a section (Analysis of the configuration space) which shows
that the best choice for LI was much more dominated by one good choice, whereas for PB
constraints the best choice of encoding was much more varied. This is not fully explained,
but it could be that in the corpus we used the sum (LI) constraints were encoding larger
integer values, whereas the coefficients in the PBs were smaller. The mean value for median
coefficient in a PB is 1.03, compared to 142 for LI constraints. In INDICON we once again
find that selecting encodings for PB constraints affects the performance more than for LI
constraints, as discussed in Section 3.1.

A final observation is that in LEASE-PI the ML setup is able to take into account both
types of constraints across the entire instance, so to some extent it could learn combinations of
constraint choices based on how decision variables are shared between the different constraints.
Here, we make the choice in isolation for each constraint type but are still able to match the
performance of LEASE-PI. We did run trials which included whole-instance features in the
INDICON training data, but performance actually suffered.

3.3 Explaining Decisions using Decision Trees

We noted that decision trees in a pairwise arrangement perform almost as well as random
forests for selecting PB encodings. To illustrate how this selection is made, we show in
Figure 4 a small sample of the decision trees resulting from training to select the PB encoding.
In the first example (a), we see that GGT is chosen when the upper limit & is either 1 or
above 18, whereas MDD is preferred for intermediate k values. In example (b), GSWC is
preferred to RGGT either when k& = 1 and the comparison is equality, or where k is larger,
but the median coefficient is below 2.

4 Related Work

LEASE-PI selects SAT encodings per constraint type using ML; in [9] the authors compare
LEASE-PD’s performance with AUTOFOLIO [4] which is a sophisticated (albeit general)
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Figure 4 Sample decision trees from pairwise training to select PB encodings. The p values are
the proportion of training samples; the symbols on the left side of operators are constraint features,
e.g. k is the upper limit of the PB or LI constraint, ¢2 is the median coefficient, and isequality is 1
for an equality constraint and O otherwise.

algorithm selection tool. LEASE-PI significantly outperforms AUTOFOLIO on the specific
task in question. In this paper we show that INDICON performs slightly better even than
LEASE-PI. More generally, the use of ML to select SAT encodings for integer variables is
addressed by MeSAT [6]. Proteus [3] also makes this kind of choice based on CSP instance
features, having first chosen whether to use a SAT solver at all (as opposed to a constraint
solver); it also goes on to predict which SAT solver to use.

5 Conclusion

We have presented INDICON, an ML system for selecting SAT encodings of individual
constraints in a CP model. To our knowledge, INDICON is unique in choosing an encoding
for each constraint separately. We have shown that the performance of INDICON for selecting
both PB and LI constraint encodings is marginally better than the existing state of the
art. The key benefits of INDICON compared to the prior work are scaling and simplicity
(leading to explainability). It treats each constraint type as a separate ML problem, and
as a consequence it scales linearly in the number of constraint types (unlike LEASE-PT [9],
the best version of which scales exponentially in the number of constraint types). INDICON
typically learns simpler models than LEASE-PI, which benefits explainability of the system.
Even very simple ML models such as decision trees can provide competitive results in this
context.
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