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Abstract8

Constraint satisfaction solvers are fundamental tools for addressing diverse real-world challenges;9

however, different solvers often require models written in distinct programming or modeling languages,10

making interoperability and performance comparison difficult. To partially solve this challenge, we11

introduce a compiler that takes input models written for the MINION constraint solver and converts12

them to equivalent SMT-LIB2 representations. Our compiler is publicly available. Furthermore, we13

present a testing methodology to verify the correctness of our translations and empirically evaluate14

our compiler using the solver Z3. In this experiment, we not only tested the conversions of basic15

MINION language elements but also considered complex MINION models used for diagnosis.16
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1 Introduction21

Constraint satisfaction problems (CSPs) are the basis for many solutions to real-world22

problems such as configuration [24] and diagnosis [4]. The underlying idea is to formulate23

a problem as a CSP and to use a constraint solver to compute solutions. Due to the24

advancements in CSP solving, we can quickly obtain solutions to specific problems using25

general solvers such as MINION [17, 20], Choco [26], or Z3 [13]. For example, in previous26

research on software fault localization, the authors used MINION [29] and Z3 [6] to compute27

the root causes of detected failures of programs. There, the underlying concept was to28

map programs into a constraint representation. Unfortunately, many CSP solvers come29

with specific input languages requiring to adapt the constraint representation accordingly,30

causing additional effort. This mentioned problem motivates developing a compiler that31

allows us to reuse CSP representations originally developed for one solver to be converted32

into a representation for another.33

A compiler that maps CSPs written in one solver language into another has several34

applications. We discuss them focusing on MINION and the SMT-LIB2 [10] used by Z335

and other solvers. A compiler from MINION to SMT-LIB2 utilizes interoperability and36

model reuse. The integration of MINION and SMT-LIB2 promotes the interoperability37

between different constraint modeling and solving frameworks. It also facilitates the ex-38

change of models and solutions. This is especially relevant as a Research Tool where the39

compilation of MINION constraints to the SMT-LIB2 format facilitates research on solving40

algorithms by automating the translation of benchmarks written in MINION constraints41

for comparing solver implementations using at least similar examples. It is worth noting42
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that the compiled constraints might not be the most efficient. However, given the translated43

number of constraints in SMT-LIB2 format is polynomial-bounded, we do not add additional44

computational complexity for solving.45

The application of a compiler also supports tool dissemination and its ecosystem. Many46

constraint solvers understand the SMT-LIB2 format, such as Z3. We focus on Z3 as it47

is a widely adopted SMT solver that is used and supported by research and industrial48

communities. By compiling MINION constraints to SMT-LIB2 for solvers such as Z3,49

seamless integration with these tools and workflows is possible. This minimizes the need for50

custom interfaces or data conversions. Moreover, we can rely on different solvers without51

having to manually convert available MINION models.52

The compiler may also lead to performance enhancements. By compiling MINION53

constraints to SMT-LIB2 models, one can benefit from the advanced solving techniques of54

solvers such as Z3, potentially leading to faster and more scalable solutions for MINION-based55

CSPs. For instance, while MINION is designed to exploit modern hardware architectures,56

Z3 further includes learning capabilities improving its performance.57

Finally, the compiler can be used for verification and validation of solvers. Converting58

models from one language to another supports testing activities. We can test the output59

of constraint solvers like MINION and Z3 using the same but differently coded constraint60

problem. Given the correctness of the conversion, we can solve the same constraint problem61

using MINION and Z3 and look at the obtained solutions.62

Similarly to our work, Bofill et al. [9] present fzn2smt. fzn2smt compiles FlatZinc,63

which is an intermediate code for the MiniZinc constraint modeling language, to SMT-LIB64

and automatically determines the suitable, i.e., simplest, logic during translation. Their65

empirical evaluation demonstrates that SMT can enhance the efficiency and scalability66

of CSP solutions. FZN2OMT [11] is a framework that converts FlatZinc/MiniZinc into67

suitable models for Optimization Modulo Theories (OMT), an extension of SMT, and vice68

versa. While the tool can be readily integrated with the MiniZinc toolchain, the authors69

encountered performance issues in regard to the generated models. It is worth noting that70

besides compiling one modeling language for CSPs into another, there are also other ideas71

to overcome the problem of different input modeling languages. One, for example, is to72

introduce solver-independent languages like Essence/Essence Prime [1, 2]. Interestingly,73

there is work on mapping Essence Prime into a MINION representation. These tools aid in74

constraint modeling by converting constraint problem models formulated in Essence Prime75

into the input format of the MINION CSP solver [21] or SMT-LIB [12].76

Our proposed MINION to SMT-LIB2 compiler MIN2SMT2 takes MINION input77

models and converts them to an equivalent SMT-LIB2 representation. We tested the78

conversion on a large number of models and checked for equivalence of results when calling79

MINION and Z3 on the original and the compiled model. In this paper, we summarize the80

basic principles of the compilation and present the testing methodology used. We further81

discuss current limitations. Note that the compiler is available for free, including the source82

code 3.83

We structure the paper as follows: First, we discuss the basic foundations, the underlying84

solvers, and the principles behind testing. Afterward, we discuss the compilation method-85

ology used, followed by a detailed evaluation and testing section, where we also introduce86

2 Portions of this work have been previously published as part of the Master thesis [16] of one of the
authors.

3 https://gitlab.com/master-thesis-fruehwirt/minion-to-smt-lib2-compiler

https://gitlab.com/master-thesis-fruehwirt/minion-to-smt-lib2-compiler
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implemented optimizations. Finally, we conclude the paper.87

2 Foundations88

Formulating problems, such as diagnosis or configuration, in the form of constraints and89

using a solver for computing solutions have been active research areas for decades. Several90

papers and introductory books deal with the corresponding CSP, e.g., Dechter [14]. In this91

section, we summarize the foundations and available tools. We start by defining a CSP. For92

illustration purposes, we use the farmer’s Problem from [20]:93

“A farmer has seven animals on his farm: pigs and hens. They all together have 22 legs.94

How many pigs (4 legs) and how many hens (2 legs) does the farmer have?”95

To solve this problem, we first have to formulate it as a CSP.96

▶ Definition 1 (Constraint Satisfaction Problem (CSP)). A Constraint Satisfaction Problem97

(CSP) is a triple (V, D, CO) where98

V is a finite set of variables v1, . . . , vn99

D is a finite set of domains d1, . . . , dn for each variable. Each di specifies the value a100

variable vi can take.101

CO is a finite set of constraints c1, . . . , ck, were each constraint ci is a relation between a102

set of variables Si ⊆ V , which is called the scope of constraint ci. Each relation itself is a103

set of tuples a variable can take.104

Note that in Definition 1, we assume a relation to be defined as a set of tuples. In practice,105

we might not define such a relation by stating all possible tuples. Instead, we assume relations106

and operations like < or ¬ that implicitly define such a tuple space. A constraint can be107

fulfilled or violated. Before defining fulfillment or violation, we first introduce the concept of108

value assignments.109

Using the CSP definition, we formalize the farmer’s problem as follows:110

FP = ({p, h}, {p, h ∈ N0}, {p + h = 7, 4 · p + 2 · h = 22})

In the CSP FP p represents the number of pigs, and h the number of hens. Both variables111

are natural numbers. To solve the CSP, we need to assign values to variables such that all112

constraints are fulfilled. Formally, we start describing value assignments.113

▶ Definition 2 (Value assignment). Given a CSP (V, D, CO). A value assignment is a set of114

tuples (vi, xi) where vi ∈ V , and xi ∈ di where di ∈ D is the domain of the corresponding115

variable vi. Note that we assume that there is exactly one value for each variable in a value116

assignment.117

Given a constraint c from a CSP (V, D, CO) and a value assignment Γ, we define constraint118

fulfillment and violation as follows:119

▶ Definition 3 (Constraint fulfillment/violation). The value assignment Γ fulfills a constraint120

c with scope {v1, . . . , vm} if and only if (x1, . . . , xm) with (vi, xi) ∈ Γ is in the relation of the121

constraint. Otherwise, we say that the value assignment violates the constraint.122

A solution to the CSP is a value assignment that does not violate any constraint.123

▶ Definition 4 (CSP solution). A value assignment Γ for a CSP (V, D, CO) is a solution if124

and only if it does not violate any constraint c ∈ CO.125
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For the CSP FP formalizing the farmer’s problem, a solution is:126

p = 4, h = 3

Note that we may have not only one solution but many of them. Depending on the127

constraint solver and parameters, we may obtain one or all solutions.128

To solve a given CSP, every constraint solver searches for a solution that considers the129

constraints and the variables’ domains. It is worth noting that constraint solving can be seen130

as an extension to SAT solving [18], where we only consider Boolean domains and Boolean131

operators as constraints. For more information regarding solving techniques, we refer to132

Dechter [14]. In this paper, we assume that we have a solver S that provides us with solutions133

for a given CSP. In particular, we rely on the MINION constraint solver and Z3. MINION134

is a fast and scalable constraint solver that supports a wide variety of constraints. The135

syntax of MINION constraints is similar to the syntax of function calls in various high-level136

languages such as C. In addition to constraints for modeling Boolean properties such as137

equality, disequality, and inequality, constraints for modeling arithmetic problems such as138

sum or product are provided. There are also constraints for describing tables [17]. Z3 [27] is139

an SMT solver that allows reasoning over various mathematical structures combined with140

a Boolean SAT solver. Developed by Microsoft Research, Z3 is a high-performance SMT141

solver that supports a wide range of theories, including arithmetic, arrays, bit-vectors, and142

quantifiers. One of the key features of Z3 is its ability to handle complex formulas and143

theories. It can solve formulas that involve multiple theories, as well as handle quantifiers,144

which are often used in program verification and optimization. Additionally, the Z3 API145

enables interaction with Z3 from other programming languages, including Python, Java, and146

C++.147

When using a constraint solver, we have to formulate the CSP in the appropriate modeling148

languages, which come with their particularities. For example, in Listing 1 and Listing 2, we149

formulate the farmer’s problem in MINION4 and SMT-LIB2, respectively.150

Listing 1 The farmers problem in the MINION input language.
151

1 MINION 3152

2153

3 ** VARIABLES **154

4 DISCRETE pigs {0..7}155

5 DISCRETE hens {0..7}156

6157

7 ** CONSTRAINTS **158

8159

9 weightedsumgeq ([2 ,4] , [hens ,pigs], 22)160

10 weightedsumleq ([2 ,4] , [hens ,pigs], 22)161

11 sumgeq ([hens ,pigs ],7)162

12 sumleq ([hens ,pigs ],7)163

13164

14 ** EOF **165166

Listing 2 The farmers problem formalized in SMT-LIB2.
167

1 ( declare-const pigs Int)168

2 ( declare-const hens Int)169

4 Note that there is no equality constraint for weighted sum and sum in MINION.
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3170

4 ( assert (<= 0 pigs 7))171

5 ( assert (<= 0 hens 7))172

6 ( assert (= (+ (* 2 hens) (* 4 pigs )) 22))173

7 ( assert (= (+ hens pigs) 7))174

8175

9 ( check-sat )176177

Both representations of the farmer’s problem CSP FP are rather different. To compare178

two different CSP solvers, we must develop models for both separately, which requires179

additional effort. Hence, a compiler that takes a CSP written in the modeling language of180

one CSP solver and converts it into a modeling language the second CSP solver can process181

is an effective way to reduce this effort. However, to be of use, we must ensure that both182

CSP solvers compute the same values for the original and the compiled model, respectively,183

i.e., that the compiler works as expected.184

We can ensure the correctness of the compiler in two ways. We may want to verify the185

compiler formally. Formal verification can be obtained by proving that every mapping from186

one constraint in language L1 into constraints in language L2 is correct. For this part, we187

only need to show that both representations are feasible for the same inputs. In addition,188

we would need to check that the variable conversion is correct. Note that formally showing189

model equivalence is difficult to achieve [22]. The second way of ensuring correctness is190

testing [23]. For this purpose, we select models m1, . . . , mn written in language L1, compile191

them into γ(m1), . . . , γ(mn) in language L2, where γ is the translation function. Afterwards,192

check the computed outcome of CSP solver C1 and C2. In case that for all i = 1 . . . n, both193

solvers compute the same output, i.e., C1(mi) = C2(γ(mi)), the compilation is correct (at194

least for the provided models). Note that this testing technique is ambiguous. Do we assume195

that both constraint solvers deliver all solutions, or is it sufficient that they can distinguish196

solutions to be solvable or unsolvable? We will clarify these questions in the concrete testing197

framework proposed later in this paper.198

It is worth noting that formal verification does not always guarantee correctness in199

practice, and neither does testing. For the former, we may make assumptions about the200

computing environment, e.g., assuming infinite memory, which is not true in practice. Donald201

Knuth stated this well: “Beware of bugs in the above code; I have only proved it correct, not202

tried it.” Hence, testing needs to be performed anyway.203

We do not formally prove the correctness for our concrete MIN2SMT compiler. However,204

we provide the SMT-LIB2 representation for each MINION constraint that the compiler205

considers. This mapping allows us to informally assess the correctness of the constraint206

conversion. Furthermore, we introduce an integration testing framework for verifying the207

mapping. In Section 4, we outline the testing approach and the obtained results in detail.208

3 Compilation methodology209

This section presents the practical approach to compiling MINION models into their210

corresponding SMT-LIB2 encoding. Our compiler has been implemented in Python3 using211

the parser generator ANTLR [25]. We use the naming conventions outlined in Table 1 to212

simplify the explanation.213
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Table 1 Description of the used naming convention.

Symbol Description
A, B vector variable
T table variable
t00, t01,. . . t22 table elements
n, m number of vector elements = A.length - 1 or number of ele-

ments of a n × m vector
v1, v2, . . . , vn vector elements
x, y, z, i(ndex), e(lement) variable or constant values
b Boolean variable
c constant values: 1, 2, 3, . . .

[c1,c2,. . .,cn] multiple constant values

3.1 Constraint variable declarations214

MIN2SMT supports three types of MINION variables: DISCRETE, SPARSEBOUND, and BOOL.215

The first two types always have a detailed specification of their domain, while Boolean216

variables inherently have the domain {0, 1}. For example, we may set the domain of a217

DISCRETE type to 1 . . . 10 and the one for SPARSEBOUND to the values 1, 3, 10. Variables can218

also appear as (multidimensional) vectors. Listing 4 depicts the conversion of the variable219

definitions from Listing 3 to SMT-LIB2.220

Listing 3 Supported MINION constraint variables.
221

1 DISCRETE A[2] { -1..5}222

2 DISCRETE a {0..10}223

3 SPARSEBOUND sb {1, 3, 4, 5}224

4 BOOL b225

5 BOOL ab [6]226227

Listing 4 Tranlsation of different MINION constraint variable types to SMT-LIB2.
228

1 ( declare-const A (Array Int Int ))229

2 ( declare-const a Int)230

3 ( declare-const sb Int)231

4 ( declare-const b Bool)232

5 ( declare-const ab (Array Int Bool ))233

6234

7 ; A[2] {-1 ..5}235

8 ( assert236

9 ( forall ((i Int ))237

10 (=> (<= 0 i 1) (<= -1 ( select A i) 5))238

11 )239

12 )240

13 ; a {0..40}241

14 ( assert (<= 0 a 40))242

15 ; sb {1 ,3 ,4 ,5}243

16 ( assert (or(= sb 1)(= sb 3)(= sb 4)(= sb 5)))244245

3.2 Constraints246

In this subsection, we list s subset of the available MINION constraints with descriptions247

adapted from Jefferson et al. [20] and provide additional information with regard to the248
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implementation of MIN2SMT. The full list can be found in Appendix A.249

MINION constraint SMT-LIB2 Conversion
alldiff(A) ensures that each ele-
ment of A takes a different value.

1 ( assert
2 ( forall ((i Int) (j Int ))
3 (=>
4 (and
5 (< 0 i n)
6 (< 0 j n)
7 (= ( select A i) ( select A j))
8 )
9 (= i j)

10 )
11 )
12 )

div(x, y, z) ensures that ⌊ x
y

⌋ =
z and is always false in case of
y = 0. The MINION implemen-
tation of the division differs from
the standard implementation of the
division in SMT-LIB2. Jefferson
et al. [20] presents the following
examples: 10

3 = 3, −10
3 = −4, 10

−3 =
−4 and −10

−3 = 3.

1 ( assert
2 (and
3 ( distinct y 0)
4 (ite
5 (or
6 (and (> x 0) (> y 0))
7 (and (< x 0) (> y 0))
8 )
9 (= z (div x y))

10 (=
11 (div (- x) (- y))
12 z
13 )
14 )
15 )
16 )

element(A,i,e) ensures that
A[i] = e, where 0 ≤ i ≤ n. The
constraint is false, if i is outside
the index range.

1 ( assert
2 (and
3 (= ( select A i) e)
4 (< i n)
5 )
6 )
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hamming(A, B, c) ensures that the
hamming distance between A and B

is greater or equal to c. This means∑
i
A[i] ̸= B[i] ≥ c.

1 ( assert
2 (>=
3 (+
4 (ite
5 ( distinct
6 ( select A 0) ( select B 0)
7 )
8 1 0
9 )

10 ...
11 (ite
12 ( distinct
13 ( select A n) ( select B n)
14 )
15 1 0
16 )
17 )
18 c
19 )
20 )

lexleq(A, B) ensures that A is lex-
icographically less than or equal to
B, where A and B are both of same
length.

1 ( define-fun-rec fun_lexleq ((i Int ))
2 Bool
3 (ite
4 (>= i n)
5 true
6 (ite
7 (> ( select A i) ( select B i))
8 false
9 (ite

10 (< ( select A i) ( select B i))
11 true
12 ( fun_lexleq (+ i 1))
13 )
14 )
15 )
16 )
17 ( assert ( fun_lexleq 0))
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occurrence(A, c, x) ensures that
the value x occurs exactly c times
in A. 1 ( assert

2 (=
3 c
4 (+
5 (ite (= ( select A 0) x) 1 0)
6 ...
7 (ite (= ( select A n) x) 1 0)
8 )
9 )

10 )

watchvecneq(A, B) ensures that A

and B are not the same, i.e., ∃i :
A[i] ̸= B[i]. 1 ( assert

2 (or
3 ( distinct ( select A 0) ( select B 0))
4 ...
5 ( distinct ( select A n) ( select B n))
6 )
7 )

3.3 Optimizations250

Optimizations are essential in compiler construction. They enhance the generated code’s251

performance by minimizing the number of instructions executed by the target machine252

while ensuring that the program’s behavior remains unaltered. Besides removing unused253

variables that unnecessarily lengthen the translated code and would also be included in the254

solution-finding process, we implemented three optimizations to reduce the execution time255

on the compiled SMT-LIB2 encoding.256

3.3.1 Geq/Leq Optimization257

Due to implementation considerations, MINION does not support a “sum equals” con-258

straint [20]. Hence, in order to create such a relation, two constraints are necessary: sumgeq259

and sumleq, encoding “sum greater equals” and “sum less equals” (see Listing 1 as an260

example). However, in MIN2SMT, we employed an optimization to replace sumgeq / sum-261

leq pairs with the corresponding sumeq constraint. This optimization is only applicable262

if the related sumgeq/sumleq constraints occur in the input code using the exact same263

arguments. This optimization reduces the code size of the resulting SMT-LIB2 code, as the264

two constraints are replaced by a single remaining constraint, which has to be translated265

after the optimization. For the same reason, this optimization has been implemented for the266

watchsumgeq / watchsumleq and weightedsumgeq / weightedsumleq constraints.267

3.3.2 Sum Constraints268

Several constraints, such as sumgeq/ sumleq or hamming, require a summation logic when269

translated to SMT-LIB2. In our original summation strategy, we simply looped over all270
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elements to compute the sum; however, the execution of many tests, had to be canceled271

manually, as Z3 sometimes took several hours to find a solution. Thus, it was optimized272

in terms of execution time by performing loop unrolling [5]. In loop unrolling the number273

of iterations is reduced by repeating similar independent statements instead of performing274

a loop. While this optimization can reduce the execution time significantly, it has the275

disadvantage that more instructions than in the original code are necessary. Listing 12 and276

13 demonstrates the loop unrolling technique.277

Listing 12 Example input of the loop un-
rolling optimization for the sumgeq constraint.
sumgeq(A, a) ensures that

∑
i
Ai ≥ a.

1 DISCRETE A[5] {0..6}
2 DISCRETE a {0..6}
3 sumgeq (A, a)

Listing 13 Example output of the loop
unrolling optimization for the constraint in
Listing 12.

1 ( assert
2 (>=
3 (+
4 ( select A 0)
5 ( select A 1)
6 ( select A 2)
7 ( select A 3)
8 ( select A 4)
9 )

10 a
11 )
12 )

278

3.3.3 Table Constraints279

table specifies a constraint via a list of tuples, such that each tuple represents the allowed280

assignments, i.e., table(A, T) ensures that there exists at least one column t in table T ,281

such that t = A. Its counterpart negativetable, thus specifies all disallowed assignments in282

form of a table. These two special constraint types are defined within the **TUPLELIST**283

section of the MINION code. Listing 14 provides an example of the usage of the table284

constraint, where a 2 × 2 table, i.e., featuring two tuples and two variables, with the identifier285

A is defined. Adding the table constraint in line 8 ensures that the variables of vector [a, 2]286

will satisfy the constraint A.287

We decided to define tables with a fixed number of rows and columns and concrete values288

as this pre-initialization allows the compiler itself to already prepare the individual values289

accordingly. Thus, there is no need to compare entire columns anymore; instead, individual290

values are compared. This results in a disjunction of conjunctions of value comparisons, as291

shown in Listing 15. The values of the table are inserted directly in the assertion at compile292

time.293



S. Frühwirt, R.Koitz-Hristov and F. Wotawa 11

Listing 14 Example of the table con-
straint

1 ** VARIABLES **
2 BOOL a
3 ** TUPLELIST **
4 A 2 2
5 1 2
6 3 4
7 ** CONSTRAINTS **
8 table ([a, 2], A)

Listing 15 Optimized output for the table
constraint from Listing 14.

1 ( assert
2 (or
3 (and
4 (= 1 (ite a 1 0))
5 (= 2 2)
6 )
7 (and
8 (= 3 (ite a 1 0))
9 (= 4 2)

10 )
11 )
12 )

294

3.4 Limitations295

Currently, the MINION constraints gacschema, gcc, gccweak, haggisgac, haggisgac_-296

stable, lighttable, mddc, negativemddc, shortstr2, and str2plus are unsupported297

because they implement unique algorithms or address CSP-specific issues, such as Generalized298

Arc Consistency (GAC). GAC is a constraint propagation technique used in constraint299

satisfaction problems. SMT-LIB2 does not have a built-in mechanism for expressing GAC,300

as it is primarily focused on first-order logic and SMT theories. Furthermore, some MINION301

constraints that explicitly enforce GAC but are otherwise identical to other constraints302

were mapped to their companion constraints, e.g., watchelement, watchelement_one, and303

gacalldiff.304

MIN2SMT does not support the **SEARCH**5 and **SHORTTUPLELIST**6 sections cur-305

rently. The search section allows for the definition of a variable ordering for the output,306

a value ordering, and an objective function, as well as the specification of which variables307

should be printed. However, SMT-LIB2 does not provide any of these features [8]. The308

short tuple list section is not used since no constraints that accept short tuple lists were309

implemented.310

The direct translation used by MIN2SMT for Boolean variables may lead to an incorrect311

SMT-LIB2 representation. In MINION summing up Boolean values can be done, whereas312

this is not allowed when using Z3 on the compiled SMT-LIB2 model.313

4 Testing and Evaluation314

Software testing is a crucial part of software development. It detects deviations from the315

software specification and reduces the probability of occurrence of errors in production. We316

developed and ran unit tests on all classes and components involved in the compilation317

process. Although unit tests assess the most basic functionalities, it is also essential to devise318

a method to test the entire translation process as a larger unit, i.e., integration testing.319

5 In the search section the user can specify, for instance, variable orderings or details on how to print the
solution output.

6 Short tuples allow tuples to be expressed as a smaller list and are only accepted by a limited set of
constraints.
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4.1 Integration Testing320

The main aim is to examine whether both solvers (MINION and Z3) produce the same321

results and, thus, whether the MINION input and the compiled SMT-LIB2 output are322

equivalent. In order to achieve this, we distinguish two cases: (1) MINION is not able to323

find any solution. In this case, the Z3 solver must also produce the result UNSAT. (2) If the324

MINION solver yields one or more solutions, then the Z3 solver must also yield SAT when325

the variables are asserted with the provided models. For verification of this equivalency, an326

integration test framework was developed for both cases. While the UNSAT case is trivial to327

test, in the SAT case the following integration test framework is necessary (see Figure 1):328

1. The MINION code is run by the MINION solver, using the -findallsols flag. If this329

flag is set, all possible solutions, i.e., all solutions, will be found and listed.330

2. The integration test interface parses the MINION output.331

3. The MINION code gets translated by the MIN2SMT compiler. As a by-product, the332

compiler passes the symbol table of variables to the test interface.333

4. After merging the solutions from step 2 with the variable meta-information from step 3,334

the test interface injects the resulting data into the SMT-LIB2 code.335

5. The resulting SMT-LIB2 file is run by the Z3 solver. The result must also be SAT.336

6. The process outlined in steps 4 and 5 is repeated for each resulting solution.337

Figure 1 Workflow of the test framework in the SAT case.

For the test framework to provide a correct output, the entire **SEARCH** section must338

be removed from the MINION code. Otherwise, automatically mapping the variables with339

the corresponding values would not work, as this section defines which variables have to be340

in the output and in which order.341

4.2 Test data342

We gathered a large collection of different categories of programs to enable thorough integra-343

tion testing:344

TS1 Constraint test cases: For each supported MINION constraint, we have written one or345

multiple test files using different types of parameters and variable types.346
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TS2 MINION examples: This set includes various complex CSPs or logic puzzles such as347

The farmer’s problem, The Zebra Puzzle, or the N-Queens problem from Jefferson et348

al. [20].349

TS3 ISCAS85 data set: This benchmark contains combinational circuits [19] and mainly350

utilize the following constraints: diseq, reify, reifyimply, eq, max, min, sumgeq, and351

sumleq. In addition, a larger set of variables (between 300-4500) and one large vector352

(up to 2300 elements) are used.353

TS4 Mutation testing examples: Wotawa, Nica, and Aichernig [28] utilized these test cases354

for experimental and benchmarking activities. The following constraints were used355

in these files: watched-or, eq, ineq, reify, element, watchsumgeq, watchsumleq,356

sumgeq, and sumleq.357

TS5 Spreadsheet evaluation data: These MINION files were generated automatically from358

spreadsheets [3].359

Overall, more than 1,700 test files were used for extensive integration testing and the360

MIN2SMT compiler passed all test cases.361

4.3 Experimental evaluation362

For the empirical evaluation of the compiler and its optimizations, we utilize our integration363

test framework and subsets of the test suites described previously. In particular, we focus364

on the execution speed of the generated code with and without the implemented encoding365

optimizations described in Section 3.3 using the SMT-solver Z3. The experiments were366

executed on a computer with an AMD®Ryzen 5 5625u processor (4.3 GHz, six cores) with367

16 GB RAM under Ubuntu 22.04, 64-bit.368

4.3.1 Geq/Leq Optimization369

The Geq/Leq optimization introduced in Section 3.3.1 reduces the code size by the translation370

of two constraints to one. We evaluated this optimization on 38 test cases from test set TS3.371

In Figure 2, we depict the runtime distributions of the original and optimized encoding on all372

test cases, on only the UNSAT test cases and on only the SAT test cases. The original version373

required 347.62 (Median=115.00, Standard Deviation=483.67, Min=0.73, Max=1, 442.00)374

seconds on average over all test cases while the optimization reduced this number to 27.74375

(Median=8.39, Standard Deviation=108.88, Min=0.35, Max=679.00) seconds. However,376

the disadvantage of this optimization method is that the compile time is nearly doubled for377

test cases within this test suite. Furthermore, for test cases with the result SAT, there is378

hardly any difference in whether the optimization is active or not. Only in those test cases379

where the result is UNSAT and the search takes a long time the search duration is significantly380

reduced in most cases.381

4.3.2 Sum Constraints382

Twenty different randomly chosen test cases from TS3 were used for benchmarking the383

sum constraint optimization. The used test cases feature arrays with sizes between 383 to384

2, 307 elements, including between 445 to 4, 792 variables. Our evaluation revealed that385

the original and optimized compilation technique had a duration of 501.36 (Median=47.15,386

Standard Deviation=679.74, Min=1.16, Max=1857.00) and 368.10 (Median=54.17, Stan-387

dard Deviation=517.80, Min=1.14, Max=1, 491.00) seconds on average, respectively. The388

optimized version achieved a noticeable performance boost on several test cases, especially in389
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Figure 2 Execution time distributions of the test cases for the Geq/Leq optimization on a
logarithmic scale [in seconds].

(a) Execution time distribution on a logarithmic scale for all
and the UNSAT test cases.

(b) Execution time distribution on a linear
scale for all and the SAT test cases.

Figure 3 Distributions of runtime for the sum constraint optimization experiment.

the UNSAT case as shown in Figure 3a. However, in 45% of the examples, the original version390

outperformed the optimized encoding, and in the case of SAT the execution times remain391

almost constant between the original and optimized version (see Figure 3b). Especially if the392

result is UNSAT, searching for a solution can still take a long time despite optimizations.393

4.3.3 Table Constraints394

Overall, 28 test cases from TS5 were used within this evaluation. The maximal execution395

time was limited to 90 seconds for the MINION solver and to 3 minutes for Z3. This means396

that the corresponding test case failed if no equivalent solution could be found within this397

time range. This was the case for five test cases using the SMT-LIB2 translation of the398

original compilation procedure.399

The experiments showed that the original version required 47.58 (Median=15.24, Standard400

Deviation=65.71, Min=0.11, Max=180.00) seconds on average while the optimization reduces401
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this number to 0.45 (Median= 0.33, Standard Deviation= 0.37, Min= 0.06, Max= 1.83)402

seconds. Figure 4 presents the execution time distribution for the initial solution and the403

optimization. As the figure indicates, the optimization has led to a notable improvement404

in performance on all cases. Tests that initially timed out and all other tests (SAT and405

UNSAT) are usually executed in less than one second after the optimization, making this the406

optimization with the greatest performance gain.407

Figure 4 Distributions of the test cases for the table constraint optimization on a logarithmic
scale.

5 Conclusions408

In this paper, we have presented a comprehensive compilation approach for translating409

MINION models into their corresponding SMT-LIB2 encoding. To improve the execution410

time of the generated SMT-LIB2 constraints, we implemented several optimizations and411

assessed them in an empirical evaluation. From the experiment data, we could conclude that412

the Geq/Leq optimization did have a positive effect on the performance in comparison to413

the original encoding, in particular in the UNSAT case. For the Sum-constraints optimization,414

we could not generalize such a finding. While there are instances where the optimization415

exhibits noticeable performance enhancements, this method did not necessarily provide an416

improvement in all test cases. The Table-constraints optimization was the most impactful,417

as it drastically reduced the execution time across all scenarios. The Z3 solver generally418

shows better performance in handling complex and UNSAT instances compared to MINION,419

especially after optimizations. However, for simpler and smaller problems, MINION can420

still be very effective and sometimes faster421

While certain MINION constraints remain unsupported due to unique algorithms or422

CSP-specific issues, our methodology provides a solid foundation for future enhancements and423

extensions. Overall, this compilation methodology not only facilitates seamless translation424

but also contributes to improved efficiency and reliability in solving constraint satisfaction425

problems. The next logical step for future work is to evaluate the generated SMT-LIB2426

models on other solvers such as Yices [15] or CVC5 [7].427
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A Compilation methodology for all constraints511

MINION constraint SMT-LIB2 Conversion
abs(x,y) ensures that x = |y|. This
means that x is the absolute value
of y. 1 ( assert (= x (abs y)))

alldiff(A) ensures that each ele-
ment of A takes a different value.

1 ( assert
2 ( forall ((i Int) (j Int ))
3 (=>
4 (and
5 (< 0 i n)
6 (< 0 j n)
7 (= ( select A i) ( select A j))
8 )
9 (= i j)

10 )
11 )
12 )

alldiffmatrix(A, c) ensures that
in each row of the multidimensional
vector A the constant value c ap-
pears exactly once.

1 ( define-fun-rec fun_alldiffmatrix
2 ((i Int) (j Int) (acc Int )) Bool
3 (ite (>= j m)
4 (= acc 1)
5 (ite (= ( select A i j) c)
6 (ite (= acc 1)
7 false
8 ( fun_alldiffmatrix i (+ j 1) 1)
9 )

10 ( fun_alldiffmatrix i (+ j 1) acc)
11 )
12 )
13 )
14 ( assert (and
15 ( fun_alldiffmatrix 0 0 0)
16 ...
17 ( fun_alldiffmatrix n 0 0)
18 )
19 )

difference(x, y, z) ensures that
z = |x − y|.

1 ( assert (= (abs (- x y)) z))
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diseq(x, y) ensures that the two
variables have a different value.

1 ( assert ( distinct x y))

div(x, y, z) ensures that ⌊ x
y

⌋ =
z and is always false in case of
y = 0. The MINION implemen-
tation of the division differs from
the standard implementation of the
division in SMT-LIB2. Jefferson
et al. [20] presents the following
examples: 10

3 = 3, −10
3 = −4, 10

−3 =
−4 and −10

−3 = 3.

1 ( assert
2 (and
3 ( distinct y 0)
4 (ite
5 (or
6 (and (> x 0) (> y 0))
7 (and (< x 0) (> y 0))
8 )
9 (= z (div x y))

10 (=
11 (div (- x) (- y))
12 z
13 )
14 )
15 )
16 )

element(A,i,e) ensures that
A[i] = e, where 0 ≤ i ≤ n. The
constraint is false, if i is outside
the index range.

1 ( assert
2 (and
3 (= ( select A i) e)
4 (< i n)
5 )
6 )

element_one(A, i, e) is identical
to element(A,i,e). However, A is
indexed from 1. 1 ( assert

2 (and
3 (= ( select A (- i 1)) e)
4 (< (- i 1) n)
5 )
6 )
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eq(x, y) ensures that two variables
take equal values. Since MINION
Boolean values are represented with
0/1 values and, on the contrary,
SMT-LIB2 expects true and false
for Boolean constraints, the values
have to be translated properly.

1 BOOL b1
2 BOOL b2
3 eq(b1 , 0)
4 eq(1, b2)

therefore translates to

1 ( assert (= b1 false ))
2 ( assert (= b2 true ))

1 ( assert (= x y))

gacalldiff(A) is identical to
alldiff but this constraint enfore-
ces Generalized Arc Consistency
(GAC) in MINION.
hamming(A, B, c) ensures that the
hamming distance between A and B

is greater or equal to c. This means∑
i
A[i] ̸= B[i] ≥ c.

1 ( assert
2 (>=
3 (+
4 (ite
5 ( distinct
6 ( select A 0) ( select B 0)
7 )
8 1 0
9 )

10 ...
11 (ite
12 ( distinct
13 ( select A n) ( select B n)
14 )
15 1 0
16 )
17 )
18 c
19 )
20 )

ineq(x, y, c) ensures that x ≤ y+
c. This constraint can be used to
express x ≤ y iff c = −1. 1 ( assert (<= x (+ y c)))
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lexleq(A, B) ensures that A is lex-
icographically less than or equal to
B, where A and B are both of same
length.

1 ( define-fun-rec fun_lexleq ((i Int ))
2 Bool
3 (ite
4 (>= i n)
5 true
6 (ite
7 (> ( select A i) ( select B i))
8 false
9 (ite

10 (< ( select A i) ( select B i))
11 true
12 ( fun_lexleq (+ i 1))
13 )
14 )
15 )
16 )
17 ( assert ( fun_lexleq 0))

lexless(A, B) ensures that A is
lexicographically less than B, where
A and B are both of same length. 1 ( define-fun-rec fun_lexless ((i Int ))

2 Bool
3 (ite
4 (>= i n)
5 false
6 (ite
7 (> ( select A i) ( select B i))
8 false
9 (ite

10 (< ( select A i) ( select B i))
11 true
12 ( fun_lexless (+ i 1))
13 )
14 )
15 )
16 )
17 ( assert ( fun_lexless 0))
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litsumgeq(A, [1,2,3,4,5], 3)
ensures that there exists at
least c distinct indices i such
that A[i] = B[i]. This means∑

i
A[i] ̸= B[i] ≥ c.

1 ( assert
2 (>=
3 (+
4 (ite (= ( select A 0) v1) 1 0)
5 ...
6 (ite (= ( select A n) vn) 1 0)
7 )
8 c
9 )

10 )

max(A, x) ensures that x is equal
to the maximum of any element of
A. 1 ( assert

2 (and
3 (or
4 (= x ( select A 0))
5 ...
6 (= x ( select A n))
7 )
8 (>= x ( select A 0))
9 ...

10 (>= x ( select A n))
11 )
12 )

min(A, x) ensures that x is equal
to the minimum of any element of
A. 1 ( assert

2 (and
3 (or
4 (= x ( select A 0))
5 ...
6 (= x ( select A n))
7 )
8 (<= x ( select A 0))
9 ...

10 (<= x ( select A n))
11 )
12 )

minuseq(x, y) ensures that x =
−y.

1 ( assert (= x (- y)))
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modulo(x, y, z) ensures that x

mod y = z. The constraint is al-
ways false when y = 0. The MIN-
ION implementation of the mod-
ulo operator differs from the stan-
dard implementation of the mod-
ulo operator in SMT-LIB2. Jeffer-
son et al. [20] presents the follow-
ing examples: 3 mod 5 = 3, −3
mod 5 = 2, 3 mod − 5 = −2 and
−3 mod − 5 = −3.

1 ( assert
2 (and
3 ( distinct y 0)
4 (ite
5 (or
6 (and (> x 0) (> y 0))
7 (and (< x 0) (> y 0))
8 )
9 (= (mod x y) z)

10 (ite
11 (and (> x 0) (< y 0))
12 (=
13 (mod (- x) (- y))
14 (- z)
15 )
16 (=
17 (mod (- x) y)
18 (- z)
19 )
20 )
21 )
22 )
23 )

mod_undefzero(x, y, z) is identi-
cal to modulo, except the constraint
is always true when y = 0.

negativetable(A, T) ensures that
there exists no column t in table T ,
such that t = A. Tables are defined
in the **TUPLELIST** section.

1 ( assert
2 (and
3 (or
4 (= t00 ( select A 0))
5 (= t01 ( select A 1))
6 (= t02 ( select A 2))
7 )
8 (or
9 (= t10 ( select A 0))

10 (= t11 ( select A 1))
11 (= t12 ( select A 2))
12 )
13 (or
14 (= t20 ( select A 0))
15 (= t21 ( select A 1))
16 (= t22 ( select A 2))
17 )
18 )
19 )
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occurrence(A, c, x) ensures that
the value x occurs exactly c times
in A. 1 ( assert

2 (=
3 c
4 (+
5 (ite (= ( select A 0) x) 1 0)
6 ...
7 (ite (= ( select A n) x) 1 0)
8 )
9 )

10 )

occurrencegeq(A, c, x) ensures
that the value x occurs at least c

times in A. 1 ( assert
2 (>=
3 c
4 (+
5 (ite (= ( select A 0) x) 1 0)
6 ...
7 (ite (= ( select A n) x) 1 0)
8 )
9 )

10 )

occurrenceleq(A, c, x) ensures
that the value x occurs at most c

times in A. 1 ( assert
2 (<=
3 c
4 (+
5 (ite (= ( select A 0) x) 1 0)
6 ...
7 (ite (= ( select A n) x) 1 0)
8 )
9 )

10 )

pow(x, y, z) ensures that xy = z.

1 ( assert
2 (ite
3 (= y 0)
4 (= z 1)
5 (= z (^ x y))
6 )
7 )
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product(x, y, z) ensures that x×
y = z. For Boolean variables, the
product constraint acts as conjunc-
tion.

1 ( assert (= z (* x y)))

1 ( assert (= z (and x y)))

reify(Constraint, b) ensures
that the constraint must be satisfied
if b = true and the constraint must
not be satisfied if b = false.

1 ( assert (= b Constraint ))

reifyimply(Constraint, b) en-
sures, an implication between b

and the constraint which means
b =⇒ Constraint.

1 ( assert (=> b Constraint ))

sumgeq(A, c) ensures that∑
i
Ai ≥ c.

1 ( assert
2 (>=
3 (+
4 ( select A 0)
5 ...
6 ( select A n)
7 )
8 c
9 )

10 )

sumleq(A, c) ensures that∑
i
Ai ≤ c.

1 ( assert
2 (<=
3 (+
4 ( select A 0)
5 ...
6 ( select A n)
7 )
8 c
9 )

10 )
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table(A, T) ensures that there ex-
ists at least one column t in table T ,
such that t = A. Tables are defined
in the **TUPLELIST** section.

1 ( assert
2 (or
3 (and
4 (= t00 ( select A 0))
5 (= t01 ( select A 1))
6 (= t02 ( select A 2))
7 )
8 (and
9 (= t10 ( select A 0))

10 (= t11 ( select A 1))
11 (= t12 ( select A 2))
12 )
13 (and
14 (= t20 ( select A 0))
15 (= t21 ( select A 1))
16 (= t22 ( select A 2))
17 )
18 )
19 )

w-inintervalset(a, [c1,
c2, c4, c5]) ensures that
c1 ≤ x ≤ c2, c3 ≤ x ≤ c4 . . . holds.
The interval list must be given in
numerical (strictly monotonously
rising) order.

1 ( assert (or (<= c1 a c2) (<= c4 a c5 )))

w-inrange(x, [c1, c2]) ensures
that c1 ≤ x ≤ c2.

1 ( assert (<= c1 x c2))

w-inset(x, A) ensures that x

equals one of the values in the given
set. 1 ( assert

2 (or
3 (= x v1)
4 ...
5 (= x vn)
6 )
7 )

w-literal(x, c) ensures that x =
c.

1 ( assert (= x c))

w-notinrange(x, [c1, c2])
ensures that x < c1 or x > c2.

1 ( assert (or (< x c1) (> x c2 )))
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w-notinset(x, [c1, c2, ...,
cn]) ensures that x is not equal to
any of the values in the given set. 1 ( assert

2 (and
3 ( distinct x c1)
4 ( distinct x c2)
5 ...
6 ( distinct x cn)
7 )
8 )

w-notliteral(x, c) ensures that
x ̸= c.

1 ( assert ( distinct x c))

watched-and(Constraint1,
Constraint2, ..., Constraintn)
ensures that all constraints are
true. This constraint may be used
in combination with Constraint
reify.

1 ( assert
2 (and
3 Constraint1
4 Constraint2
5 ...
6 Constraintn
7 )
8 )

watched-or(Constraint1,
Constraint2, ..., Constraintn)
ensures that at least one constraint
is true.

1 ( assert
2 (or
3 Constraint1
4 Constraint2
5 ...
6 Constraintn
7 )
8 )

watchelement(A, i, e): see con-
straint element.
watchelement_one(A, i, e): see
constraint element_one.
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watchelement_undefzero(A, i,
e) ensures that A[i] = e, where
0 ≤ i ≤ |A|. The constraint is true,
if i is outside the index range and
e = 0.

1 ( assert
2 (or
3 (= ( select A i) e)
4 (and
5 (>= i n)
6 (= e 0)
7 )
8 )
9 )

watchless(x, y) ensures that x <

y.
1 ( assert (< x y))

watchsumgeq(A, c): see constraint
sumgeq.
watchsumleq(A, c): see constraint
sumleq.
watchvecneq(A, B) ensures that A

and B are not the same, i.e., ∃i :
A[i] ̸= B[i]. 1 ( assert

2 (or
3 ( distinct ( select A 0) ( select B 0))
4 ...
5 ( distinct ( select A n) ( select B n))
6 )
7 )

weightedsumgeq([c0, c1,
..., cn], A, x) ensures that∑

i
Ai · ci ≥ x. 1 ( assert

2 (>=
3 (+
4 (* c1 ( select A 0))
5 (* c2 ( select A 1))
6 ...
7 (* cn ( select A n))
8 x
9 )

10 )
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weightedsumleq([c0, c1,
..., cn], A, x) ensures that∑

i
Ai · ci ≤ x. 1 ( assert

2 (<=
3 (+
4 (* c1 ( select A 0))
5 (* c2 ( select A 1))
6 ...
7 (* cn ( select A n))
8 x
9 )

10 )
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