
ManyWorlds:1

Combinatorial Programming with Functions2

Jo Devriendt # �3

Nonfiction Software, Belgium https://nonfictionsoftware.com4

Abstract5

The ManyWorlds programming language provides an abstract, high-level syntax built on a small set6

of core concepts to specify combinatorial problems. It uses total functions as fundamental building7

blocks and draws inspiration from the higher-order functions fold, map and filter to compactly8

aggregate expressions. ManyWorlds follows the knowledge base paradigm by stressing that each9

specification represents a set of many possible ‘worlds’ that a user can interact with in different10

ways. Finding an (optimal) world is complemented by counting the number of worlds, calculating11

the intersection of all worlds, and explaining why a world does – or does not – exist.12

ManyWorlds values accessibility and ease of development. It provides an online IDE, helpful13

parsing error messages, line-based explanations of inconsistency and expression evaluation support.14

The ManyWorlds compiler translates a high-level specification to an integer program, where com-15

pactness of the compiled problem is paramount. This compiler is still under development, but it16

already supports much of the envisioned language and is ready for third-party experimentation.17

This paper gives a high-level introduction to ManyWorlds and compares it to MiniZinc on the18

On-Call Rostering problem from previous MiniZinc challenges.19

2012 ACM Subject Classification Computing methodologies → Logic programming and answer set20

programming21

Keywords and phrases Constraint programming, Functional programming, First-order logic, Know-22

ledge base paradigm, Development support, Combinatorial optimization23

1 Introduction24

In its most abstract form, combinatorial programming consists of writing down unambiguous25

formulas that a computer can interpret and solve. Those formulas (or expressions) range from26

simple propositional clauses (SAT solving) over mathematical (in)equalities (pseudo-Boolean27

solving, integer programming, mathematical programming, . . .) to logic-based formalisms28

(first order logic and extensions, answer set programming, satisfiability modulo theories, . . .),29

perhaps with special purpose constraints (constraint programming).30

From a combinatorics point of view, all these formalisms allow to describe a set of possible31

worlds (solutions) by an unambiguous expression. The backend solvers, grounders, compilers32

and interpreters for these formalisms then reason about this set of possible worlds. The focus33

of a formalism or a backend may differ. E.g., it may specialize in finding an optimal world34

(optimization), on deciding whether at least one world exists (satisfiability), on counting the35

number of worlds (counting), on finding the intersection of all worlds (propagation), etc. But36

in the end, it all boils down to reasoning about a set of possible worlds.37

ManyWorlds is a new high-level combinatorial programming language that aims to be38

as accessible as possible. Its syntax and semantics are centered squarely on the concept39

of a function, which both programmers and high-schoolers are familiar with. This focus40

on functions keeps the syntax and semantics simple yet expressive: expressions are nested41

function applications, constraints are expressions that must be true, and possible worlds42

(solutions) are instantiations of functions that satisfy the constraints. To further improve43

accessibility, ManyWorlds features extensive debugging support, clear error reporting, low-44

mathematics syntax, arbitrary precision integer arithmetic, shorthand syntactic sugar, and45

in general tries to offload tedium to the compiler.46

mailto:jo.devriendt@nonfictionsoftware.com
https://orcid.org/0000-0002-6346-3665
https://nonfictionsoftware.com

2 ManyWorlds: Combinatorial Programming with Functions

One of ManyWorlds’ goals is to support the Knowledge Base Paradigm [18] where a47

program closely mirrors a problem domain description, and a single program can be used for48

multiple computational tasks.49

Beyond its syntax and semantics, ManyWorlds aims to provide a beginner-friendly user50

experience. A no-install online editor with basic syntax highlighting and in-browser syntax51

checking,1 a precompiled docker image,2 and source code with an open source license 3 are52

publically available. Every feature described in this paper, unless explicitly noted, is fully53

implemented, tested, and ready for third-party experimentation.54

2 Syntax and semantics55

2.1 Functional core56

Values in ManyWorlds can be one of three primitive types: bool, int and string –57

representing, respectively, the Boolean values true, false; integer numbers -1, 0, 1, 2 etc.;58

and character string values "hello world", etc. Typing is strict: only explicit conversion is59

possible.60

From this, type signatures can be built, e.g., int, string -> bool is a signature61

representing pairs of integers and strings mapped to true or false. ManyWorlds has the62

following infix and prefix builtin operators with associated signatures:63

+, -, *: int, int -> int;64

- (unary minus): int -> int;65

not: bool -> bool;66

and, or, xor, implies (material implication): bool, bool -> bool;67

>, <, >=, <=: int, int -> bool;68

=, !=: overloaded for int, int -> bool and string, string -> bool and bool, bool69

-> bool;70

... if ... else ... (Python-style ternary conditional): overloaded for string,71

bool, string -> string and int, bool, int -> int and bool, bool, bool -> bool.72

ManyWorlds also sports a number of builtin functions:73

abs (absolute value): int -> int;74

div, rem (truncated integer division and associated remainder): int, int -> int;75

min, max: int* -> int;76

count: bool* -> int;77

same, distinct (whether all arguments are equal or different): overloaded for int* ->78

bool and string* -> bool.79

<type>* denotes that the builtin function is overloaded for any number of arguments80

(including zero). E.g., both count(p(),q(),r()) and count(p()) are valid expressions.81

Any function in ManyWorlds, including operators and builtin functions, is total over82

its domain. This means that typically undefined operations (e.g., division by zero) do yield83

a valid result. For builtin functions and operators, ManyWorlds simply defines this result:84

division by zero yields zero, remainder by zero yields zero, and min and max applied to85

zero arguments yield zero. Enforcing totality is often employed by theorem provers to keep86

1 https://manyworlds.site
2 https://hub.docker.com/r/nonfictionsoftware/manyworlds
3 https://gitlab.com/nonfiction-software/manyworlds

https://manyworlds.site
https://hub.docker.com/r/nonfictionsoftware/manyworlds
https://gitlab.com/nonfiction-software/manyworlds

J. Devriendt 3

the semantics simple. E.g., Microsoft’s Z3 [6] allows division by zero, and ManyWorlds has87

adopted Coq’s convention that division and remainder by zero are zero [17].88

A user can declare user functions with the same type signatures, except that the89

codomain of a user function must be finite. E.g., declare f: int -> {0 .. 3}. declares90

a user function f with signature int -> int whose codomain is the finite set {0, 1, 2, 3}.91

The reason that codomains must be finite is that this makes it simple to derive a finite92

range of possible values for any user function application expression. As a result, most93

expressions will have an easily deducible finite range. E.g., f(x)+f(y) can only take a finite94

set of values given that f’s codomain is finite. The reason that user function domains must95

not be similarly finite is that it is straightforward to derive the domain of a function based96

on the finite ranges of the arguments with which the function occurs in the program, so97

ManyWorlds does not require a user to provide these.98

User functions are the beating heart of ManyWorlds. They represent constants (when99

given no input types), sets (when mapping a single input to bool), relations (when mapping100

multiple inputs to bool) or properties (typically mapping to int or string). A user function101

represents any function that matches its signature. E.g., the user function declare f: int102

-> {0 .. 3}. can represent any function from Z to {0, 1, 2, 3}. Hence, user functions fulfill103

the role of decision variables present in other combinatorial programming languages.104

Expressions in ManyWorlds are constructed by composing values, builtin operators,105

builtin functions and user functions while adhering to natural typing and function application106

rules. E.g., abs(f(1)) > f(0) implies f(f(10)) = 0 is a valid expression (given, e.g.,107

a user function declare f: int -> {0 .. 3}.). To write a constraint, we just have to108

assert a Boolean expression at the top level of the program by ending it with a ’.’ (which is109

the end delimiter for all top-level expressions, including constraints and declarations).110

A candidate (world) is a set of total functions that match the user function declarations111

in the program. Given a candidate, an expression evaluates to a value in the usual inductive112

manner: values evaluate to themselves, compound expressions take the evaluation of their113

subexpressions and map this to a value based on the corresponding total function (either114

from a builtin operator, from a builtin function, or from a user function with a matching115

total function in the candidate). A (valid) world or solution is a candidate that evaluates116

all constraints to true.117

With all of this machinery, we can program the well-known Send More Money problem:118

declare S, E, N, D, M, O, R, Y: -> {0 .. 9}.
M() > 0.
distinct(S(), E(), N(), D(), M(), O(), R(), Y()).

1000*S() + 100*E() + 10*N() + D() +
1000*M() + 100*O() + 10*R() + E() =

10000*M() + 1000*O() + 100*N() + 10*E() + Y() .

The first line declares eight constant user functions, while the following lines spell out119

the constraints that M() should be non-zero, all letters should take a distinct value, and the120

columnar addition should hold. This program allows one unique world which matches S, E,121

N, D, M, O, R, Y to the constant functions 9, 5, 6, 7, 1, 0, 8, 2, respectively.122

2.2 Enumeration definitions123

To describe data, enumeration definitions uniquely fix a user function by enumerating124

input-output tuples for the function, and by passing a default output value for all of the125

non-enumerated tuples. E.g.,126

4 ManyWorlds: Combinatorial Programming with Functions

declare item: string -> bool.
define item as {("i1",true), ("i2",true), ("i3",true)} default false.

The above fixes item to be the function mapping {"i1", "i2", "i3"} to true and all127

other strings to false. In other words, it represents the set {"i1", "i2", "i3"}.128

Enumeration definitions allow user functions to represent input data, and hence, to also129

take on the role of parameters present in other combinatorial programming languages.130

As it is cumbersome to write out these tuple enumerations by hand, ManyWorlds provides131

the possibility to call a Python function that generates a list of tuples. E.g., the below132

enumeration is equivalent to the above one:133

declare item: string -> bool.
define item as

{$python
def item():

return [("i"+str(k),True) for k in range(1,4)]
$}
default false.

2.3 Fold-Map-Filter134

Many high-level expressions are aggregations of simpler expressions parametrized by some135

set of objects. For instance, in many combinatorial problems, the sum of the weights of some136

items is a central concept. The weight of a given item is a simple expression, and we could137

write it as a sum as follows:138

weight("i1") + weight("i2") + weight("i3")

This is pretty cumbersome if we have hundreds of items, and if the set of items changes, we139

would prefer to not update the expression summing their weights.140

For this, ManyWorlds uses the fold-map-filter (FMF) expression. It takes four arguments:141

a builtin fold function, a map expression, a filter expression, and a list of scoped variables142

shared by the map and filter expressions. The filter is a Boolean expression that is true143

for a finite amount of instantiations of the scoped variables. The map maps those variable144

instantiations to a list of expressions of an appropriate type for the fold function. The fold145

function combines the mapped expressions to a new expression. E.g., given the declarations146

and definition147

declare item: string -> bool.
define item as {("i1",true), ("i2",true), ("i3",true)} default false.
declare weight: string -> {0 .. 5}.
declare value: string -> {0 .. 5}.
declare inKnapsack: string -> bool.

We can write the FMF expression148

sum[weight(x) for x where item(x) and inKnapsack(x)]

Here, the fold function is sum, the map is weight(x), the scoped variable is x and the filter149

is item(x) and inKnapsack(x). Hopefully, it is intuitive that this expression represents150

the sum of the weights of all items in a knapsack, regardless of their amount. Using FMF151

expressions, we complete the knapsack example by adding a knapsack constraint and a152

maximization objective:153

J. Devriendt 5

sum[weight(x) for x where item(x) and inKnapsack(x)] <= 10.
@maximize sum[value(x) for x where item(x) and inKnapsack(x)].

Let x be a tuple of scoped variables, m(x) a map expression and f(x) a filter expression.154

ManyWorlds supports the following builtin fold functions:155

any/all/none: whether m(x) is true for any/all/no x where f(x) holds;156

sum/product: the sum/product of all m(x) for x where f(x) holds;157

min/max: the minimum/maximum of all m(x) for x where f(x) holds;158

distinct/same: whether all m(x) are distinct/equal for x where f(x) holds;159

count: the number of m(x) that are true for x where f(x) holds;160

even/odd: whether the number of f(x) that are true is even/odd for x where f(x) holds.161

FMF expressions are extremely flexible and the current list of builtin fold functions162

captures a lot of relevant combinatorial concepts. Note that even though FMF expressions163

are inspired by the fold, map and filter higher order function constructs, each FMF expression164

still represents just a simple value.165

There is one caveat when using an FMF expression: the ManyWorlds compiler must be166

able to derive a finite over-estimation of variable instantiations that are true under the filter.167

In practice, this often means that the scoped variables occur in some positive Boolean user168

function application in the filter, with this user function having an enumeration definition169

that maps to false by default. In the above example, the compiler can deduce the finite170

over-estimation from the user function application item(x).171

This overestimation derivation approach is similar to safe rules in Answer Set Pro-172

gramming (ASP) [3]. It has the advantage that there is no forced singular finite type173

associated with each variable. E.g., the following FMF expression asserts that some property174

(represented by p) holds for some triangle in a network (represented by link):175

any[p(x,y,z) for x,y,z where link(x,y) and link(y,z) and link(z,x)]

When link is enumerated as the node-pairs of some large sparse network, it is both cumber-176

some and inefficient to burden a user to introduce an enumeration of the network’s nodes to177

scope the variables individually.178

FMF expressions are originally inspired by conditional quantification in first order logic,179

where formulas such as ∀x : φ(x) ⇒ ψ(x) represent the truth value that ψ(x) (the map)180

is true for all (the fold) those x’s (the scope) where φ(x) (the filter) holds. In predicate181

logic languages such as ASP [4] and FO(·) [5], aggregate expressions are used for purposes182

beyond quantification. E.g., the FO(·) aggregate expression sum{weight(x) | x ∈ item :183

inKnapsack(x)} corresponds to the above knapsack objective expression. Conveniently,184

FMF expressions provide a streamlined unification of both conditional quantification and185

aggregates. FMF expressions can be arbitrarily nested, with the common prohibition of186

variable shadowing (rescoping variables already scoped in a parent expression).187

3 Accessibility188

3.1 Simple yet expressive189

A main goal of the ManyWorlds language is to be accessible: the barriers to entry, the190

obstacles a new user has to overcome before being productive with the language, should be191

as small as possible. For this, a simple yet expressive syntax and semantics is crucial.192

To argue for simplicity, note that Section 2 describes the core concepts of ManyWorlds193

in only four pages, and most other syntax constructs are merely syntactic sugar on top of194

6 ManyWorlds: Combinatorial Programming with Functions

this functional core. Simplicity is also the reason why the syntax opts for a low-mathematics195

style, using keywords such as implies and or instead of ASCII logical connectives such196

as => and \/ – the former are easier to interpret and remember for most people. For the197

same reason, ManyWorlds sticks with bracket function application notation instead of having198

a space operator typical for curried functional languages – e.g., f(x,y) vs. f x y. Most199

well-known programming languages as well as high-school mathematics use the former, and200

ManyWorlds wants to spend its strangeness budget4 on other features.201

To argue for expressiveness, crucially, in ManyWorlds, one can nest any expression as202

an argument of another, given that the type of the argument and the nested expression203

match. E.g., to express the sum of distances in a Hamiltonian cycle (expressed by a next204

user function mapping a city to the next in the cycle) we can write the following:205

sum[distance(x,next(x)) for x where city(x)]

This expression nests both distance and next and can be used anywhere in the program206

where needed. Note that it does not matter whether distance or next is known at compile207

time (via an enumeration definition).5 The compiler will handle either case appropriately.208

As for the expressiveness of FMF expressions, we already argued that it captures209

quantification and aggregate expressions from predicate logic systems. In addition, the210

Global Constraint Catalog contains no less than thirteen joker value constraints (e.g.,211

alldifferent_except_0) [2, 13]. Seen through a functional lens, these are versions of212

constraints where a fixed filter function (“input is not joker”) is applied. ManyWorlds prefers213

filter functions instead of joker values, as these are more general, and hence, more expressive.214

3.2 Debugging215

Programming bugs can be roughly divided in three categories:216

3.2.1 Compile time bugs217

The compiler (or interpreter, grounder. . .) detects that the user has made a mistake. Often,218

this is a violation of the syntax or typing rules of the language. The ManyWorlds compiler219

performs such checks taking special care to produce informative error messages. E.g., type220

checking for scoped variables happens after parsing, at which point the input program string221

and parse tree are no longer in memory. Still, ManyWorlds will report the error with the222

line and number of the offending variable(s) in question.223

3.2.2 Run time bugs224

During execution of a program, an invalid state was reached. Examples are resource225

acquisition failures (e.g., running out of memory), invalid arithmetic operations (e.g., division226

by zero), invalid memory accesses etc. ManyWorlds’ enforcement of total functions and use227

of arbitrary precision integer arithmetic ensures any well-formed and well-typed program228

describes a set of possible worlds and any well-formed and well-typed expression can be229

evaluated. Hence, any input accepted by the compiler cannot really "fail" and the only run230

time bugs possible for ManyWorlds are those related to resource acquisition failure. E.g., an231

out-of-memory error, or the generation of more low level variables or constraints than the232

solver can handle.233

4 https://steveklabnik.com/writing/the-language-strangeness-budget
5 However, city must be enumeration-defined, to derive a finite over-estimation of the filter.

https://steveklabnik.com/writing/the-language-strangeness-budget

J. Devriendt 7

3.2.3 Logic bugs234

When a valid program runs fine but produces an unexpected answer, a logic bug is present.235

In combinatorial programming, these come in two flavors: no solution exists where a user236

expects one (an overconstrained program), and a solution exists where a user expects none237

(an underconstrained program).238

3.2.3.1 Overconstrained programs239

When the system reports that no world exists, the user can request a set of blocking240

constraints6 that together invalidate all candidate worlds. If the user expects a world to241

exist, at least one of these blockers does not represent what the user has in mind. Figuring242

out blockers by hand is pretty cumbersome, so ManyWorlds provides two blocker detection243

options: basic and detailed. With basic blockers, ManyWorlds will return the lines and244

constraints that are causing unsatisfiability. With detailed blockers, ManyWorlds will still245

return the line numbers of the basic blockers, but will also return simpler constraints that246

are implied by the basic blockers.247

E.g., consider the following unsatisfiable map coloring problem:248

declare color: string -> {"r", "g", "b"}.
declare border: string, string -> bool.
define border as {("be","fr",true), ("be","lu",true), ("be","nl",true),

("be","de",true), ("fr","lu",true), ("fr","de",true), ("lu","de",true),
("nl","de",true)} default false.

all[color(x) != color(y) for x,y where border(x,y)].

The basic blocker option yields Line 6: all[not color(x)=color(y) for x,y where249

border(x,y)], while the detailed blocker option yields:250

Line 6: not color("be")=color("de")
Line 6: not color("be")=color("fr")
Line 6: not color("be")=color("lu")
Line 6: not color("de")=color("fr")
Line 6: not color("de")=color("lu")
Line 6: not color("fr")=color("lu")

In other words, line 6 contains the culprit, but the problem also lies with countries "be",251

"de", "lu" and "fr", and not with "nl" (as this country does not occur in the detailed252

blockers). This way, a user can get a very fine-grained view of the problem.253

3.2.3.2 Underconstrained programs254

When a world exists that the user did not expect, the user wrote a constraint that is255

unexpectedly true in the given world. To remedy this, ManyWorlds provides an evaluation256

inference: it constructs a three-valued evaluation of an expression and all its subexpressions257

in a (partial) world. This provides insight into the inner workings of the constraint, and will258

hopefully, after some headscratching, point the user to the mistake.259

E.g., suppose a user made the common mistake of reversing the material implication:260

6 The blocker set can be minimized when preferred, forming a minimal unsatisfiable subset.

8 ManyWorlds: Combinatorial Programming with Functions

declare drinksAlcohol: -> bool.
declare age: -> {0 .. 150}.
age() >= 18 implies drinksAlcohol().

To their surprise, ManyWorlds may happily oblige with the world261

define drinksAlcohol() as true.
define age() as 0.

Evaluation with the original program extended with these definitions yields:262

· · age() [0]
· >= [false]
· · 18
implies [true]
· drinksAlcohol() [true].

The evaluation of each (sub)expression is given in square brackets (highlighted in red), the263

indentation reflects the height in the expression tree. Inspecting this evaluation informs the264

user why the implies statement is not violated, hopefully revealing the mistake.265

3.3 Robust compilation266

The ManyWorlds compiler follows a ground-and-solve (or flatten-and-solve) approach. It267

compiles an input program to an integer program, which is then solved by the low level268

solving, optimization, propagation and counting routines of the integer programming solver269

Exact [8].7 This compilation exploits functions with an enumeration definition to recursively270

simplify subexpressions and avoids creating auxiliary variables whenever feasible.271

For instance, all of the following high-level knapsack constraints are compiled (assuming272

appropriate declarations and definitions for the knapsack problem were given) to an identical,273

single 0-1 knapsack linear inequality:274

sum[weight(x) for x where item(x) and inKnapsack(x)] <= 5.
sum[weight(x) if inKnapsack(x) else 0 for x where item(x)] <= 5.
sum[weight(x) * inKnapsack_01(x) for x where item(x)] <= 5.

with declare inKnapsack_01: string -> {0, 1} as the 0-1 integer version of inKnapsack.275

Another example is the compilation of distinct (ManyWorlds’ alldifferent). Two po-276

tential encodings are often employed: an at-most-one encoding and a pairs-of-disequalities277

encoding. ManyWorlds decides the encoding based on the type of the map expression (string278

is better suited for at-most-one encoding than int), the number of subexpressions, and the279

size of their ranges. The philosophy is that in an accessible system, a (potentially novice)280

user should not face such decisions – the compiler should bear this burden.281

4 Advanced language features282

4.1 Syntactic sugar283

To streamline common expression patterns, programming languages introduce shorthand284

notations, and ManyWorlds is no exception. We have already seen the notation {0 .. 3},285

7 Exact was a top performing solver at the 2024 pseudo-Boolean competition (see https://www.cril.
univ-artois.fr/PB24/). The compiled integer program requires no specialized propagators so other
integer programming solvers could feasibly be used as a backend.

https://www.cril.univ-artois.fr/PB24/
https://www.cril.univ-artois.fr/PB24/

J. Devriendt 9

which is syntactic sugar for {0, 1, 2, 3}. For string ranges, {"i" 0 .. 3} can be used286

instead of {"i0"„ "i1", "i2", "i3"}.287

FMF builtin functions all and any represent universal and existential quantification,288

and it is often more readable to write them as quantifications. E.g.,289

forall x,y where border(x,y): color(x) != color(y)
exists x,y,z where link(x,y) and link(y,z) and link(z,x): p(x,y,z)

are syntactic sugar for290

all[color(x) != color(y) for x,y where border(x,y)]
any[p(x,y,z) for x,y,z where link(x,y) and link(y,z) and link(z,x)]

To denote that a tuple of expressions can take any value from a finite list of value tuples,291

ManyWorlds provides the in notation as syntactic sugar. E.g.,292

x,y in {(0,"r"), (1,"g"), (2,"b")}

is an alternative for the more cumbersome293

(x=0 and y="r") or (x=1 and y="g") or (x=2 and y="b")

Finally, set of known values or value tuples is expressed as a declaration of a Boolean func-294

tion followed immediately by its enumeration definition with default false. ManyWorlds295

provides decdef notations to compact these. E.g.,296

decdef border as {("be","fr"), ("be","lu"), ("be","nl"), ("be","de"),
("fr","lu"), ("fr","de"), ("lu","de"), "nl","de")}.

is shorthand for297

declare border: string, string -> bool.
define border as {("be","fr",true), ("be","lu",true), ("be","nl",true),

("be","de",true), ("fr","lu",true), ("fr","de",true), ("lu","de",true),
("nl","de",true)} default false.

The type signature string, string -> bool and default false are automatically in-298

ferred.299

4.2 Intensional definitions300

Enumeration definitions are extensional: they fix the meaning of a function by listing the301

exact input-output pairs of the function. This is useful for input data, but less useful302

to introduce intermediary concepts that may not be fixed by the input data. For this,303

ManyWorlds allows intensional definitions that fix the meaning of a function by describing304

it using regular ManyWorld expressions. A simple example:305

declare carried_heavy: string -> bool.
define carried_heavy(x) where item(x) as

inKnapsack(x) and weight(x) > 3
default false.

This declares and defines the set of carried heavy items as those that are in the knapsack and306

have a weight greater than three. The user function carried_heavy can be used in other307

expressions without limitation, but its value in a world must satisfy the given definition.308

10 ManyWorlds: Combinatorial Programming with Functions

The head of an intensional definition (here carried_heavy(x)) denotes the user function309

that is being defined. The head also brings into scope a fresh variable for each input argument310

of the function. The body of an intensional definition occurs after the as keyword and denotes311

the expression to which the head user function is equivalent. The where clause restricts the312

set of inputs for which the definition’s body applies. For all other inputs, the definition fixes313

the defined function’s output to the default value, ensuring the definition is total.8 Similar314

to FMF expressions, the ManyWorlds compiler must be able to derive from the where clause315

a finite over-estimation of the instantiations for the variables that were brought in scope. As316

a result, only a finite amount of inputs will yield a non-default value for an intensionally317

defined user function.318

Intensional definitions are useful to define auxiliary symbols or derived concepts, that319

typically have a well-understood meaning in a user’s problem domain.320

A user function defined by an intensional definition has the crucial property that (when321

all the user functions in its body are defined) it has exactly one possible set of input-output322

tuples that satisfy the definition. As a consequence, an intensional definition in isolation323

can never yield unsatisfiability, and any program consisting purely of definitions for all324

functions allows a single unique world. Informally, a definition fixes a user function to be325

its body expression. This property distinguishes definitions from constraints (which can326

introduce unsatisfiability) and it allows more efficient algorithms under the hood. E.g., when327

intersecting or enumerating different worlds of a program, it suffices to search for worlds that328

differ only on undefined functions, as any defined function will not invalidate a found world.329

As in other programming languages,9 ManyWorlds allows at most one definition for each330

declared user function. ManyWorlds currently also does not allow (indirectly) recursive331

definitions at ground (flattened) level.10 E.g., the following is prohibited:332

declare f, g: -> {0 .. 10}.
define f() as g().
define g() as f().

But the following famous definition is allowed as it is not recursive at ground level:333

declare fib: int -> {0 .. 1e21}.
define fib(x) where x in {0 .. 100} as

0 if x = 0 else
1 if x = 1 else
fib(x-1) + fib(x-2)
default 0.

ManyWorlds’ intensional definitions are a generalization of the predicate definitions found334

in FO(·) [5]. Predicates can be viewed as Boolean functions, and for those, a semantics such335

as the well-founded semantics resolves the intricacies with ground-level recursion [7]. For336

ManyWorlds’ function definitions, the semantics is less clear, and ManyWorlds postpones337

ground recursion support until we have a better understanding of the algorithms involved.338

8 For definitions of constant functions, the default clause is optional.
9 E.g., https://en.wikipedia.org/wiki/One_Definition_Rule.
10 A compiler error for ground level recursion is still under development.

https://en.wikipedia.org/wiki/One_Definition_Rule

J. Devriendt 11

4.3 User types339

ManyWorlds has three primitive types – int, bool, string – to declare functions with.340

int and string represent infinite sets of values, which means that function application341

expressions can take any integer number or any string of characters as arguments. Sometimes,342

this is desirable. E.g., the above Fibonacci definition can have fib(x-1) as subexpression343

without the compiler complaining that x-1 may evaluate to a negative number.11
344

However, this infinite choice of valid function arguments yields a class of bugs that is hard345

to detect: typos in strings. E.g., color("1u") replaces the letter ‘l’ in “lu” (representing the346

country Luxemburg) by the digit 1 (one). The ManyWorlds compiler does not mind: it is a347

valid input to the function color. But it probably is not what the user meant. . .348

To prevent these, ManyWorlds allows to provide user types in function declaration349

signatures instead of the regular primitive types. A user type is a Boolean unary function,350

with an enumeration definition that defaults to false, which represents a finite set of values.351

Those values are the expected input for the function declaration with the user type, and352

ManyWorlds will emit a warning should it ever apply the function to a value outside of its353

user type during compilation. E.g.,354

decdef country as {"be", "nl", "lu", "fr", "de"}.
decdef rgb as {"r", "g", "b"}.
declare color: country -> rgb.
color("1u")="g".

states that color expects only country strings as input and rgb strings as output (the355

primitive input and output types string are automatically inferred). Running this program356

now helpfully yields:357

WARNING Encountered function application color("1u") but "1u" does not
belong to input user type country of color

In addition, user types provide a form of documentation of function declarations: color358

represents an assignment of rgb values to countries. This implicit domain knowledge can be359

formally expressed in the program with user types.360

5 Inferences361

ManyWorlds follows the Knowledge Base Paradigm [18] by stressing that each program362

represents a set of different worlds that a user can interact with. For this interaction, it363

provides a set of inferences: operations that calculate some property of the program and the364

set of worlds it represents.365

The most common inference is finding a world (which satisfies all constraints).366

Equally common is optimization: finding a world that is minimal or maximal under some367

objective. The objective is an integer expression preceded by the keywords @minimize or368

@maximize, as already exemplified by the knapsack example in Section 2.3.369

Third, intersect yields the intersection of all worlds of a program, which is the set of370

input-output tuples for declared functions which all worlds for the program share. This371

inference could equally well have been called “logical consequence” or “full propagation”, as372

it provides all implications of a set of constraints.373

11 Note that fib(-1) is defined as 0, as the unsatisfied where clause yields to the default 0.

12 ManyWorlds: Combinatorial Programming with Functions

Fourth, counting the number of worlds is a classic inference. ManyWorlds extends374

counting a bit further by also collecting the distribution of some objective amongst the set of375

possible worlds. The keyword in front of this statistics objective is @mode.12
376

We showcase @mode by analyzing the odds of a dice problem. Suppose we cast five regular377

dice with one to six dots on each side. What are the odds of having a total of 14 dots while378

at most two dice have the same number of dots? And what is the most common value of the379

largest die in such cases? The following program encodes these questions:380

decdef die as {"d" 1 .. 5}.
decdef dots as {1 .. 6}.
declare roll: die -> dots.

sum[roll(x) for x where die(x)] = 14.
forall y where dots(y): count[roll(x) = y for x where die(x)] =< 2.

@mode max[roll(x) for x where die(x)].

Running the count inference prints:381

7776 candidate(s) exist
450 world(s) exist
-> 5.787037% of candidates

5: 210 (mode objective fixed to this)
6: 150
4: 90
mean: 5.133333 (77/15)
median: 5

So we know that in about 5.8% of all possible die rolls, the constraints are satisfied, and 5 is382

the most common value for the largest die in those cases. We get even more information:383

the distribution table for the objective, its mean, and its median.384

The last two currently implemented inferences are those used for the debug functionality:385

explaining unsatisfiabile programs and evaluating expressions in a partial word can be used386

for tasks other than debugging as well.387

6 Related work388

ManyWorlds’ main inspiration is FO(·) [5]: an extension of typed first order logic with389

arithmetic, aggregates and inductive definitions. FO(·) and ManyWorlds share an adherence390

to the Knowledge Base Paradigm [18] where a specification is seen purely as a description of391

a set of possible states (worlds), and a range of different computations (inferences) can be392

carried out over a single specification. ManyWorlds aims to be a simpler, less mathematical393

and more approachable language than FO(·), using functions as basic building block instead394

of FO(·)’s relations. This focus on functions instead of relations also is the main difference395

between ManyWorlds and the high-level, solver-agnostic combinatorial programming language396

ESRA [9].397

12 https://en.wikipedia.org/wiki/Mode_(statistics)

https://en.wikipedia.org/wiki/Mode_(statistics)

J. Devriendt 13

Concerning functions, the Satisfiability Modulo Theories (SMT) standard SMT-LIB [1]398

features uninterpreted functions as core building blocks. SMT-LIB is an expressive language,399

allowing even potentially infinite co-domains and variable ranges. It is, however, not accessible400

to a programmer without a formal mathematical background, if only because writing basic401

arithmetic in the enforced prefix notation takes quite some getting used to.402

Essence [10], EssencePrime [14] and MiniZinc [12] are high-level constraint programming403

languages with which ManyWorlds shares similarity. From a pure expressiveness viewpoint,404

ManyWorlds brings little new to the table. E.g., Essence supports enumerated types405

(covering the use case of string values in ManyWorlds), EssencePrime supports matrix406

comprehension, and MiniZinc supports enumerated types, set and list comprehensions, and407

a ternary conditional.408

Instead, ManyWorlds distinguishes itself by a focus on accessibility. It aims to be409

more abstract and to avoid the need to learn about global constraints, variable arrays,410

matrices, indices, lists, propagators, search heuristics etc. It minimizes the difference411

between parameters and decision variables, with the main remnant being the requirement to412

provide a derivable finite over-estimation of instantiations for variables scoped in a where413

clause. ManyWorlds replaces most mathematical notation by natural language connectives,414

lowering the barrier of entry for non-technical users. ManyWorlds also comes “batteries415

included” with strong debugging support using fine-grained blocker computation and recursive416

expression evaluation, and with multiple generic inferences at the touch of a button. In short,417

ManyWorlds aims to be a very humble Python to MiniZinc’s and Essence(Prime)’s powerful418

C++.419

7 ManyWorlds for a MiniZinc use case: on-call rostering420

A detailed language comparison to MiniZinc or Essence would go beyond the scope of this421

paper. Instead, we program the on-call rostering problem from the 2018 MiniZinc challenge13
422

in ManyWorlds and remark on the most striking differences.423

The on-call rostering problem consists of assigning weekdays to a single surgeon who424

is on call for that day – this assignment is called the roster. The surgeon assigned to a425

Friday is also on call for the whole weekend, so Fridays are treated special and Mondays426

are considered to immediately follow Fridays. Surgeons cannot be on call on consecutive427

Fridays or three days in a row, and those on call on Thursdays or Mondays should not be on428

call on the Friday in between. Finally, surgeons can input days when they are unavailable429

and can manually fix days in the roster (which overrides all previous hard constraints). The430

preferred roster minimizes the number of adjacent days with the same surgeon, the number431

of Wednesdays that have the same surgeon as the following Friday, and the difference in432

on-call work load between surgeons.433

We picked the on-call rostering problem because of its functional core – the roster is simply434

a function mapping days to surgeons – and two input properties are naturally expressed435

as functions as well – days are mapped to their weekday name and surgeons to their work436

load commitment. A cleaned up and commented ManyWorlds on-call rostering program is437

available online.14 We copied the variable names of the original MiniZinc program as user438

function names in the ManyWorlds program to make comparison easier.439

13 https://github.com/MiniZinc/mzn-challenge/blob/develop/2018/on-call-rostering/
oc-roster.mzn

14 https://tinyurl.com/manyworlds-on-call-roster

https://github.com/MiniZinc/mzn-challenge/blob/develop/2018/on-call-rostering/oc-roster.mzn
https://github.com/MiniZinc/mzn-challenge/blob/develop/2018/on-call-rostering/oc-roster.mzn
https://tinyurl.com/manyworlds-on-call-roster

14 ManyWorlds: Combinatorial Programming with Functions

Observation 1. All concepts in the on-call rostering problem can be represented by440

functions:441

properties such as the total number of weekends and week days each surgeon is on call –442

week_days_oc, weekend_days_oc443

sets such as the pool of surgeons or the list of days – staff, days444

relations such as the fixed and unavailable days – fixed, unavailable445

constants such as the number of staff and number of days, the minimization weights446

for soft constraints, and extra terms in the objective function – num_staff, num_days,447

adj_days_str, wed_before_weekend_str, week_day_bt, week_day_bt448

Observation 2. The MiniZinc specification does not explicitly introduce the weekday449

names, even though these feature prominently in the problem domain: Mondays, Tuesdays,450

Wednesdays, Thursdays and Fridays are all handled differently. On this front, ManyWorlds’451

string type allows a close translation of the problem domain description, increasing readability452

of the constraints and confidence of the programmer in the correctness of their code.453

Observation 3. The MiniZinc specification contains sanity checks using the special454

assert notation (lines 114 to 155). These are undoubtedly useful, and the ManyWorlds455

specification mirrors these as regular constraints. Should these fail, the program will be456

unsatisfiable and a user can just calculate the basic blocking constraints. These will point457

to the line of the offending constraint, telling the user what the problem is. An informal458

explanation of each input-checking constraint is added as a comment the line, taking over459

the role of the information string in the MiniZinc assert.460

Observation 4. The MiniZinc specification introduces auxiliary variables week_days_oc461

and week_days_oc to more easily write the complex work load balancing constraints. Auxil-462

iary variables are a common modeling practice and often they match sensible concepts in the463

problem domain with well-understood meanings. ManyWorlds’ intensional definitions are an464

elegant way to specify auxiliary concepts: the defined function represents the concept, and the465

body of the definition represents the meaning of the auxiliary concept in the problem domain.466

In the ManyWorlds on-call rostering program, the intensional definitions for week_days_oc467

and week_days_oc exemplify this.468

Observation 5. The minimization objective of the MiniZinc program makes use of further469

auxiliary variables adj_days and wed_before_weekend to represent the soft constraints on470

adjacent days and Wednesdays before weekends. The ManyWorlds program encodes these471

directly in the objective, making for a pretty complex expression. This is a subjective472

modeling choice, but it showcases that ManyWorlds can handle deeply nested expressions473

without hassle.474

Observation 6. Of course, other ways of specifying the on-call rostering problem are475

possible in both ManyWorlds and MiniZinc and more elegant or more efficient ways476

probably exist. In the end, a programmer always has to balance computational efficiency477

with closely modeling the problem domain. ManyWorlds definitely is geared toward the478

latter, while the MiniZinc specification allows the opposite: lines 277 to 293 pass hints to the479

search heuristic of the solver, hopefully improving performance. ManyWorlds currently has480

no such feature.481

7.1 Performance comparison482

Though a full performance comparison of ManyWorlds with other combinatorial systems is483

out of the scope of this paper, we can solve the MiniZinc on-call rostering specification with484

Gecode [16] and OR-Tools [15] and compare it with ManyWorlds’ on-call rostering runtime.485

J. Devriendt 15

MiniZinc (Gecode) MiniZinc (OR-Tools) ManyWorlds (Exact)
Instance Objective Time Objective Time Objective Time
2s-200d 65 25 000+ 64 6204.30 64 0.04
4s-100d 58 25 000+ 61 25 000+ 2 0.24
10s-100d-C 47 25 000+ 47 1.29 47 0.06
20s-100d-B 59 25 000+ 58 25 000+ 16 0.43
30s-400d-A 293 25 000+ 299 25 000+ 2 11.12

Table 1 Objective values and runtimes (in seconds) for three different approaches to solve the
on-call rostering problem. Entries in bold denote that optimality was proven.

We run Gecode version 6.2.0, OR-Tools version 9.1.9490 and ManyWorlds commit486

78bd63d3 on an AMD 5950X machine with 32 GiB of RAM and a timeout of 25 000487

seconds. The five instances on the MiniZinc Challenge repository are used.15 Run scripts488

and specifications are available online.16 All time data includes compilation (flattening) time,489

which was insignificant relative to the solve time. Table 1 presents the results.490

For these five optimization problem instances, ManyWorlds performs great!491

8 Conclusion and Future Work492

ManyWorlds is a new combinatorial programming language that aims to be accessible by493

using functions as its fundamental building block.494

The number of supported features is steadily rising, but a lot are still missing. Crucially,495

the performance characteristics of ManyWorlds are not yet established either. In the long496

run, the goal is to have “good enough” performance on finding (optimal) worlds and to have497

“first-in-class” intersect and blocker calculation performance.498

The latter are crucial in interactive configuration settings [18] where a user iteratively499

fixes a partial world and the system provides feedback in the form of logical consequences and500

explanations for those derived consequences. For this use case, we also envision extending501

ManyWorlds with a relevance inference [11], which computes the ground function symbols502

that can still contribute to the satisfaction of a constraint. Here, the property that each503

definition fixes a function to one unique interpretation is again important.504

On the syntax front, full support for tuple expressions would be great to have, as well as a505

form of definition that calls Python routines lazily instead of the eager Python enumeration506

definitions. The latter would allow a user to elegantly call string, date or mathematical507

library functions from Python without having to precompute all possible inputs. Next,508

a stateful interface for ManyWorlds would allow repeated calls and the combined use of509

different inferences – the backend solver Exact already provides the necessary stateful solving510

routines.511

Finally, the practical usability of ManyWorlds should be further established. It is worth512

noting that already one major project with ManyWorlds was completed: a worst-case513

analysis of three different electoral systems applied to the recent Belgian elections.17 More is514

– hopefully – to come!515

15 https://github.com/MiniZinc/mzn-challenge/tree/develop/2018/on-call-rostering
16 https://gitlab.com/nonfiction-software/manyworlds/-/tree/main/examples/on_call_

rostering_scripts?11d91404
17 https://manyworlds.site/belgian_elections

https://github.com/MiniZinc/mzn-challenge/tree/develop/2018/on-call-rostering
https://gitlab.com/nonfiction-software/manyworlds/-/tree/main/examples/on_call_rostering_scripts?11d91404
https://gitlab.com/nonfiction-software/manyworlds/-/tree/main/examples/on_call_rostering_scripts?11d91404
https://manyworlds.site/belgian_elections

16 ManyWorlds: Combinatorial Programming with Functions

References516

1 Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The SMT-LIB Standard: Version 2.6.517

Technical report, Department of Computer Science, The University of Iowa, 2017. Available518

at www.SMT-LIB.org.519

2 Nicolas Beldiceanu, Mats Carlsson, Sophie Demassey, and Thierry Petit. Global con-520

straint catalogue: Past, present and future. Constraints, 12:21–62, 2007. URL: https:521

//api.semanticscholar.org/CorpusID:14681654.522

3 Pedro Cabalar, David Pearce, and Agustín Valverde. A revised concept of safety for general523

answer set programs. In Esra Erdem, Fangzhen Lin, and Torsten Schaub, editors, Logic524

Programming and Nonmonotonic Reasoning, pages 58–70, Berlin, Heidelberg, 2009. Springer525

Berlin Heidelberg.526

4 Francesco Calimeri, Wolfgang Faber, Martin Gebser, Giovambattista Ianni, Roland Kam-527

inski, Thomas Krennwallner, Nicola Leone, Marco Maratea, Francesco Ricca, and Tor-528

sten Schaub. ASP-Core-2 input language format. TPLP, 20(2):294–309, 2020. doi:529

10.1017/S1471068419000450.530

5 Broes De Cat, Bart Bogaerts, Maurice Bruynooghe, Gerda Janssens, and Marc Denecker.531

Predicate logic as a modeling language: the IDP system. In Michael Kifer and Yanhong Annie532

Liu, editors, Declarative Logic Programming: Theory, Systems, and Applications, pages533

279–323. ACM / Morgan & Claypool, 2018. doi:10.1145/3191315.3191321.534

6 Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In C. R. Ramakrishnan535

and Jakob Rehof, editors, Tools and Algorithms for the Construction and Analysis of Systems,536

pages 337–340, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.537

7 Marc Denecker and Joost Vennekens. The well-founded semantics is the principle of inductive538

definition, revisited. KR, pages 22–31, 01 2014.539

8 Jo Devriendt. Exact solver, 2023. URL: https://gitlab.com/nonfiction-software/exact.540

9 Pierre Flener, Justin Pearson, and Magnus Ågren. Introducing ESRA, a relational language541

for modelling combinatorial problems. In Maurice Bruynooghe, editor, Logic Based Program542

Synthesis and Transformation, pages 214–232, Berlin, Heidelberg, 2004. Springer Berlin543

Heidelberg.544

10 Alan M. Frisch, Warwick Harvey, Christopher Jefferson, Bernadette Martínez Hernández, and545

Ian Miguel. Essence: A constraint language for specifying combinatorial problems. Constraints,546

13:268–306, 2007. URL: https://api.semanticscholar.org/CorpusID:1931705.547

11 Joachim Jansen, Bart Bogaerts, Jo Devriendt, Gerda Janssens, and Marc Denecker. Relevance548

for sat(id). In Proceedings of the Twenty-Fifth International Joint Conference on Artificial549

Intelligence, IJCAI 2016, pages 596–602, United States, 2016. AAAI Press. International Joint550

Conference on Artificial Intelligence, IJCAI ; Conference date: 09-07-2016 Through 15-07-2016.551

URL: http://ijcai-16.org/index.php/welcome/view/home.552

12 Nicholas Nethercote, Peter J. Stuckey, Ralph Becket, Sebastian Brand, Gregory J. Duck, and553

Guido Tack. MiniZinc: Towards a standard CP modelling language. In Christian Bessière,554

editor, Principles and Practice of Constraint Programming – CP 2007, pages 529–543, Berlin,555

Heidelberg, 2007. Springer Berlin Heidelberg.556

13 Nicolas Beldiceanu and Mats Carlsson and Sophie Demassey and Thierry Petit. Global557

constraint catalog joker value constraints. https://sofdem.github.io/gccat/gccat/Kjoker_558

value.html#uid7497, 2014.559

14 Peter Nightingale and Andrea Rendl. Essence’ description. ArXiv, abs/1601.02865, 2016.560

URL: https://api.semanticscholar.org/CorpusID:17820419.561

15 Laurent Perron and Frédéric Didier. Cp-sat. URL: https://developers.google.com/562

optimization/cp/cp_solver/.563

16 Christian Schulte, Guido Tack, and Mikael Z. Lagerkvist. Modeling and programming with564

gecode, 2010. URL: http://www.gecode.org/doc-latest/MPG.pdf.565

17 The Coq Development Team. The Coq reference manual – release 8.19.0. https://coq.inria.566

fr/doc/V8.19.0/refman, 2024.567

https://api.semanticscholar.org/CorpusID:14681654
https://api.semanticscholar.org/CorpusID:14681654
https://api.semanticscholar.org/CorpusID:14681654
https://doi.org/10.1017/S1471068419000450
https://doi.org/10.1017/S1471068419000450
https://doi.org/10.1017/S1471068419000450
https://doi.org/10.1145/3191315.3191321
https://gitlab.com/nonfiction-software/exact
https://api.semanticscholar.org/CorpusID:1931705
http://ijcai-16.org/index.php/welcome/view/home
https://sofdem.github.io/gccat/gccat/Kjoker_value.html#uid7497
https://sofdem.github.io/gccat/gccat/Kjoker_value.html#uid7497
https://sofdem.github.io/gccat/gccat/Kjoker_value.html#uid7497
https://api.semanticscholar.org/CorpusID:17820419
https://developers.google.com/optimization/cp/cp_solver/
https://developers.google.com/optimization/cp/cp_solver/
https://developers.google.com/optimization/cp/cp_solver/
http://www.gecode.org/doc-latest/MPG.pdf
https://coq.inria.fr/doc/V8.19.0/refman
https://coq.inria.fr/doc/V8.19.0/refman
https://coq.inria.fr/doc/V8.19.0/refman

J. Devriendt 17

18 Pieter Van Hertum, Ingmar Dasseville, Gerda Janssens, and Marc Denecker. The KB paradigm568

and its application to interactive configuration. Theory Pract. Log. Program., 17(1):91–117,569

2017. doi:10.1017/S1471068416000156.570

https://doi.org/10.1017/S1471068416000156

	1 Introduction
	2 Syntax and semantics
	2.1 Functional core
	2.2 Enumeration definitions
	2.3 Fold-Map-Filter

	3 Accessibility
	3.1 Simple yet expressive
	3.2 Debugging
	3.2.1 Compile time bugs
	3.2.2 Run time bugs
	3.2.3 Logic bugs

	3.3 Robust compilation

	4 Advanced language features
	4.1 Syntactic sugar
	4.2 Intensional definitions
	4.3 User types

	5 Inferences
	6 Related work
	7 ManyWorlds for a MiniZinc use case: on-call rostering
	7.1 Performance comparison

	8 Conclusion and Future Work

