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Abstract
This paper describes our approach to modelling and solving the Roadef 2022 Challenge, a trans-
portation planning problem introduced by Renault. We describe a high-level decomposition of the
problem, and the models for different stages, focussing on a MIP main problem which decides when
in time stacks of items should be transported. We present a lower bound on the number of trucks
required to deliver all stacks in time, and show how the lower bounds on individual placement
problems can be incorporated as cuts in the main MIP model.
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1 Introduction

This paper describes our model for solving the Roadef 2022 Challenge, and explains some of
the reasoning which lead to the choice of the method presented. The problem consists of
organizing the transport of car components from multiple suppliers to multiple factories over
a period of several months. The items to be transported are packed in rectangular boxes of
different sizes and weights, which need to be placed in trucks of given types to be delivered
on-time. A set of planned trucks is given, each truck used incurs a resource cost, which,
together with an inventory cost for early delivery form the cost function of the problem.
Items can either be placed on the truck floor or on top of compatible items with the same
footprint, forming stacks.
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The approach presented in this paper extends the model used by our team S43 in the
final stage of the competition by adding a cut generation method to the master MIP model,
which is responsible for assigning stacks in time. These cuts are created from a lower bound
on the placement, which is based purely on the size and orientation of the stacks to be placed.
We ignore load stage and axle weight constraints when creating the bound, and do not allow
to change the stacks built at an earlier stage in the problem decomposition. While these
restrictions limit the quality of the placements that can be achieved, the approach was taken
to de-risk the development of a solution given

the relatively short time for development,
the limits of our own efforts to participate in the Challenge,
and the run-time limits imposed on the solution process.

Overall, our approach tries to decompose the problem into multiple smaller sub-problems.
At its core is a master MIP model, which assigns stacks, created earlier in the workflow, to
trucks, while minimizing the overall objective, a mix of resource cost and earliness cost of
items delivered before their due date. Similar to a Logical Benders Decomposition [15, 9],
we create a set of sub-problems for placement, which use the assignment of stacks to trucks
created in the master problem. If we find that a placement of the assigned stacks to a truck
and created copies is not possible, a cut is generated in form of a linear constraint, or a
disjunction, which is then added to the master problem. We use a heuristic lower bound
calculation to check feasibility of the assignment, as relying on the enumeration of potential
placement routines was not deemed practical given the run-time limits of the competition.
While Constraint Programming can handle tight rectangle placement problems [19, 20], the
time needed to check for infeasibility of a placement with such models prohibits their use for
cut generation. Overall, we were forced to replace optimization based methods for a number
of sub-problems by heuristics, in order to solve the required number of sub-problems we
encounter for the larger problem instances.

2 Problem Description and Related Work

We can only give an overview of the problem posed in the Challenge, the details can be found
on the website [1, 2], together with datasets, a checker for solutions, and an overview of the
results achieved in the different stages of the competition.

The problem is part of the logistics operation of Renault, transporting components
from different suppliers to factories worldwide. Each item, represented as a rectangular
box, has a definition of its properties (origin, destination, size, quantity, weight, product,
potential forced orientation, time window of transport, and earliness cost per day). We are
given the schedule of planned trucks, which are defined by their route (order of pickup at
suppliers), their destination, arrival time, internal size of trailer, weight limits, and axle
weight parameters. We have to decide which quantity of specific items we want to transport
at which time point with which trucks, and how many copies of the planned truck we need
at each time point. Not all planned trucks need to be used, we pay a resource cost only for
the used planned trucks, and an extra cost for additional truck copies. For each item, we
pay no inventory cost if the item is delivered on its due-date, otherwise we pay a inventory
cost per day multiplied by the number of earliness days. Items cannot be delivered either
too early or too late.

For each truck used, we have to describe the loading of the items in the truck, by giving
the x, y, and z coordinates of the items placed. Items must be placed on top of each other in
stacks, where all items in a stack have the same width and length, and compatible forced
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orientation. The height of a stack is the sum of the heights of the items minus potential
overlap of items, which depends on the item type. More complex constraints restrict how
many of which items can be stacked together, and what maximal weight is allowed for the
stack, or for the items above the bottom piece of the stack.

Stacks must be placed in parallel to the sides of the trailer. The loading must respect
the load order, i.e. items from suppliers visited earlier by the truck must be loaded in front,
while items from later suppliers can only be placed either behind or to the right of stacks
from earlier supplier locations. Obviously, stacks must fit completely inside the trailer, and
cannot overlap each other. On the other hand, stacks must be supported in front by either
the front side of the trailer, or by another stack.

Besides a total weight limit for all items loaded in a trailer, and the weight limits on
individual stacks, we must also satisfy the axle weight constraints, i.e. the weight limits
imposed on each of the axles of the semi-truck. A non-linear model to compute the axle
weights is given as part of the problem specification. The axle weight limits must not only
hold for the fully loaded truck, but also for each of the partial loads when leaving each
supplier site. For the trucks given, loading too many stacks in the front of the truck quickly
exceeds the axle weight constraint of the second axle, while only filling the truck from the
back is not possible as it leaves the stacks unsupported. An acceptable solution must place
some stacks in the front of the truck to provide support for additional, heavier stacks placed
towards the rear of the truck.

While there is a multitude of papers on truck loading and the underlying two- or three
dimensional bin packing problem [13, 12, 10, 14, 6, 17, 22, 4, 23, 8, 18, 7, 16, 5, 21, 3, 11],
the Roadef problem defines many very specific side constraints that are not covered by the
existing literature. The closest work to our approach seems to be [11], which proposes the
use of a Benders Decomposition for the two-dimensional bin-packing problem. The method is
only evaluated on instances of several hundred items, and would not generalize to the larger
and more restricted problem instances of the competition. At the current time, very little is
known about the methods used by the individual teams participating in the competition,
only the cost value results of each team in the different stages of the competition have been
published so far.

3 High-Level Decomposition

We decided early on that we should use a problem decomposition to split the overall problem
into smaller, more easily managed sub-problems. Figure 1 shows the overall design. The
first step is a clustering method, which splits the overall transport problem into independent
sub-problems finding connected components in a graph built from trucks as nodes, and
an edge connecting two nodes if some item can be transported on either truck. Trucks in
different connected components cannot interact with each other, we can therefore solve the
placement problem for each connected component independently.

As a second step, we build stacks from all items that must be transported at the same
time. Once we have decided on the stacks to create, we only need to decide which truck will
contain which stack, which determines when the items will be transported, while leaving
the problem of how to pack the stacks into the trucks. Using stacks eliminates the third
dimension of the placement problem, and we have to consider a sequence of 2D placement
problems. The main master problem is assigning the stacks in time, deciding at the same time
whether we use a planned truck, and/or if we want to use additional copies of planned trucks.
In the master problem, we only use an approximation of the 2D placement, considering the
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overall area to be used, and the total weight allowed for each truck. The solution of the
master problem allocates each stack to a planned truck, but it is not guaranteed that the
assigned set of stacks actually fits within the truck and any allocated copies. We use a lower
bound estimate on the placement to detect infeasible assignments, and create cuts for the
master problem to avoid those assignments. The lower bound calculation only considers the
size, number and orientation of different stack types, and thus does not guarantee that only
feasible assignments are generated.

Clustering

Build
Stacks

Run-Time
Allocation

Master Problem:
Assign Stacks

in Time

Placement
Bounds

Placement
Portfolio

Local
Improvements

Generated
Cuts

Figure 1 Overall Problem Decomposition

When no more cuts can be added, we try to create an actual placement for each planned
truck, allowing the use of additional trucks if we cannot find a solution with the number
of trucks suggested by the master problem. We use a portfolio of placement routines to
generate placements, most of them heuristics to limit the amount of time needed for each
placement. We also check each placement for the axle weight constraints, and reject solutions
that are not acceptable.

At this point we have a feasible solution, each item belongs to a stack, each stack is
placed in a truck, and all constraints are satisfied. But we may be left with many partially
filled trucks. We now apply a local search improvement routine that tries to improve the
overall objective value, and we continue to do this until we no longer find improving moves
of stacks, or we run out of time.

One of the issues of decomposing the overall problem into multiple independent sub-
problems, and solving each by a sequence of process steps is that we have to carefully consider
the total time given to make sure that we find a feasible solution for all sub-problems,
and we spend the time given on the right sub-problem. In the competition each instance
is given a time limit of 30 minutes or one hour, depending on problem size. We use a
run-time allocation module to estimate the complexity of each sub-problem, and allocate
time accordingly. We assign more time for large clusters, and limit the time for each iteration
of the master problem, as well as the time spent in cut generation and placement. We also
solve sub problems starting with smaller instances, and reallocate any time left over for the
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remaining, more complex sub problems.
This decomposition chosen will typically produce sub-optimal solutions, as we commit

to certain decisions before understanding their impact at a later stage. We selected the
given approach based on the development time frame for the competition, our own, limited
development time, and the rather tight run-time limits for the problem instances. The results
indicate that good, if not exceptional results can be achieved by this method.

We now briefly describe the clustering and stack building modules, before starting on the
description of the master problem and the cut generation.

3.1 Clustering

Each problem instance contains items of different sizes and product types, coming from
potentially many different vendors, and being delivered to different parts of a factory. For
each of the items we can decide from the input data which planned trucks can potentially
carry it. We can then decompose the overall problem into independent clusters by exploiting
this information. We introduce an undirected graph with vertices being the planned trucks.
Two nodes (trucks) are connected by an edge, if there is an item that can be transported on
either of the trucks. We find all connected components of this graph, each of the components
is an independent sub-problem, which consists of a set of planned trucks that need to be
studied together. In the competition data, we note there often are trucks which cannot
transport any of the given items, these trucks can be ignored in the solution process. We
typically find a large number of very small clusters (often of only one planned truck), and
relatively few large clusters (some containing more than half of all trucks).

3.2 Stack Building

For each cluster, we generate a set of stacks by considering all items that need to arrive at
the factory at the same time. Currently we place items together on a stack if they have the
same arrival time and the same "stackability". This is a property defined in the input data to
decide if two items with the same footprint (length and width) can be placed together in the
same stack. This mainly depends on the products used. Building stacks basically consists
in solving a series of bin-packing problems, one for each stackability and orientation, with
side constraints. We have defined an optimization model to find the optimal assignment, but
found that due to the large number of instances we cannot afford to run this model. Instead,
we use a greedy heuristic, based on a first-fit decreasing bin packing strategy, which includes
the required side constraints. We use some trivial lower bounds to check the quality of the
solution, which seems to indicate that we produce solutions with a minimal number of stacks
in most cases. Note that we often create multiple, identical stacks using the same items, in
order to carry the required quantity of all items.

Once the stacks are generated, we calculate which trucks can transport each stack. This
is determined by the intersection of the time-windows of the all items in the stack, but also
considers possible differences in the size (especially height) of the trucks, and constraints on
the weight on the bottom of the truck, which can vary between different truck types. While
we need to check these constraints to ensure we only allow feasible assignments, in the given
problem instances these extra constraints only affect a very small number of stacks.
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4 MIP Master Problem: Assigning Stack Types in Time

We now consider the problem of assigning stacks of different types to planned trucks, within
one cluster defined earlier. We group the stacks by type, so that we avoid the potential
symmetries when we encounter multiple, equivalent stacks with the same properties. Stacks
which have the same size, height, forced orientation, load stage, total weight, inventory cost,
and list of feasible trucks can be combined into multiple copies of the same stack type.

4.1 Input Data
We denote the set of stack types by I, and use index i to denote a specific stack type. We use
the set J for the set of all potential planned trucks in the cluster, using index j for specific
trucks. We can also interpret set J as the collection of possible arrival time points. We use
the set S for the different size combinations of the stacks to be placed, and the set O of
values none, widthwise and lengthwise for the possible forced orientations of the stacks. We
use the following notation for data items, most of these values are themselves computed from
other input data of the competition.

ni number of stacks of stack type i

uj upper bound on the number of extra trucks that can be used at time point j

Ti the set of possible trucks on which stacks of type i can be placed
oi forced orientation of stack i, value none if not constrained
si the size type of stack i

wi the total weight of stack i, which is the sum of the item weights in the stack
fi the area of the footprint of the stack, e.g. 1200 ∗ 1000 for a stack of size 1200x1000 (sizes

are expressed in mm).
tj the truck type of truck j, given by the combination of length and width
gj the area of the load-bed of truck j, e.g. 13500 ∗ 2440 for a truck of type 13500x2440
vj the total allowed weight of items placed in truck j

aj the cost of using the planned truck for time point j

bj the cost of using an additional truck for timepoint j

cij the earliness cost of transporting one stack of type i with truck j

The earliness cost of a stack is the sum of the earliness costs of its items. The set of
possible trucks for a stack is based on the possible trucks for each item on the stack, together
with additional constraints that apply on the stack (height, density).

4.2 Variables
We express the problem in terms of stack types, and not individual stacks, to avoid the
symmetries introduced by multiple stacks with the same properties

We introduce integer variables xij ∈ [0, ni] to indicate how many stacks of type i we
transport at time j. We have 0/1 variables pj ∈ {0, 1} which states if we use the planned
truck at time j. We add integer variables qj ∈ [0, uj ] which indicate how many extra trucks
we use at time j. The upper bound uj must be large enough to allow for enough extra trucks
when they are needed for a given time point.

While we can express the basic constraints of the model using only these variables, we
also introduce some integer counting variables yjso which tell us how many stacks of size s

and forced orientation o we transport at time j.
There will be additional, implicit 0/1 variables introduced in the model when we use

disjunctions as cuts to remove infeasible size combinations later on.
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4.3 Constraints
We now state the constraints of the MIP model.

The first constraint states that the number of stacks of a given type allocated at the
different time points must be equal to the total number ni of stacks of that type.

∀i∈I :
∑
j∈J

xij = ni (1)

Stacks can only be placed on compatible trucks, so many of the xij values will be zero.

∀i∈I∀j∈J s.t. j /∈Ti
: xij = 0 (2)

We can only use additional trucks at time j if we use the planned truck for that time-point
as well. As the qj variables are integer and not just 0/1, we need to express this condition
by a weighted inequality. We can use the upper bound on their domain uj as an appropriate
big-M value.

∀j∈J : qj ≤ ujpj (3)

For any time point, the capacities of the selected trucks must be respected. We have the
constraint for weight

∀j∈J

∑
i∈I

xijwi ≤ (pj + qj)vj (4)

and another set of constraints for the area used by the stacks

∀j∈J :
∑
i∈I

xijfi ≤ (pj + qj)gj (5)

Note that we use the effective floor area of the truck for gj in order to strengthen the
constraint. The effective length (width) of a truck is defined by considering all possible
lengths (widths) of stacks that can be loaded on the truck, and finding the largest integer
value below the truck length (width) that can be reached by combination of those values.
This is computed by dynamic programming.

We need to link the x and y decision variables, by counting the number of stacks of a
given size and orientation, using the notation si for the size type of stack type i, and oi for
the forced orientation of stack type i.

∀j∈J∀s∈S∀o∈O : yjso =
∑

i∈I s.t. si=s∧oi=o

xij (6)

4.4 Cuts
Given only the constraints stated so far, the MIP solution will tend to try and place too
many stacks on a truck, as it ignores that placing stacks of certain sizes and orientation will
often result in unusable space that cannot be filled by the other stack types. We can use the
counting variables to express cuts that remove infeasible size combinations. These take two
forms, a linear combination, or a disjunctive constraint.

The linear cuts take the form

∀j∈J :
∑
s∈S

∑
o∈O

dtj
soyjso ≤ etj (pj + qj) (7)
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We describe later how we obtain valid coefficients (dtj
so, etj ) for the different cuts generated.

Note that while in principle we can allow any linear combination of the counting variables,
in practice we only generate such cuts for a limited number (up to four) of non-zero size and
orientation combinations. It is important to note that we only introduce valid cuts, which
do not eliminate feasible size combinations.

Unfortunately, some infeasible size combinations are inside the convex hull of the feasible
combinations. In order to also remove these points, we introduce disjunctive constraints. If
we know that some size combination r̄ is infeasible for a given truck type t, then increasing
any of its component values, adding an extra stack of that type, is also infeasible. We can
therefore exclude the point by a disjunction stating that at least one of the types occurs in a
quantity smaller than rtj , or we use additional trucks. This leads to disjunction of the form:

∀j∈J :
∨

s∈S,o∈O

(yjso ≤ rtj − 1) ∨ (qj >= 1) (8)

Note that our selected MIP solver will automatically convert the disjunctions into a set
of new binary variables, and modified inequalities.

4.5 Objective

The cost function consists of three elements, the cost of the chosen planned trucks, the cost
of any created additional trucks, and the inventory cost of delivering some stacks before their
latest delivery date.

min
∑
j∈J

ajpj +
∑
j∈J

bjqj +
∑
i∈I

∑
j∈J

cijxij (9)

Note that the placement routine may increase the number of additional trucks required
(and therefore the cost), if the placement was not able to fill all assigned stacks in the
provided planned and addition trucks.

5 Lower Bound

We now consider a lower bound on the number of trucks (of a given length and width) needed
to fit a set of stacks of given sizes and orientation. The lower bound only considers the area
and orientation of the stacks to be placed, and ignores stacks considered too small. We use
the following idea: Some stacks are large enough to use more than half the width of the given
truck, regardless of their orientation. These stacks can be placed in any order, but must
be sequentially in the truck, this requires at least the sum of their minimal lengths. Other
stacks are large enough so that we cannot place three of them at the same x-position in the
truck. These stacks are those whose minimal width is between one-third and one half of the
truck width, and which cannot be placed together with the stacks of the first group. Any
placement of the stacks of the second type can use at most two stacks next to each other.
We can therefore split these stacks into two groups, the left and the right group. We can use
dynamic programming to find the best distribution of all these stacks to the two groups, the
total space taken by the stacks is the space required by the items in the first group, and the
smallest maximum of the lengths required for the left and right groups. When we compare
this to the total length of the truck, we see if the stacks will fit into one truck or not.
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6 Deriving Cuts

We apply the lower bound calculation for each planned truck and its assigned stacks in the
solution of the master problem. If the lower bound finds that we cannot pack all required
stacks in the given trucks, then we need to generate a cut in the master problem to exclude
this choice in the future. While we could possibly just generate no-good cuts to exclude a
specific assignment, we can produce stronger cuts that reject more infeasible assignments. If,
for example, we find that we cannot pack k items of some type, then we also know that we
cannot pack k + 1 items of the type. Alternatively, if we exclude stacks of a given size, then
all stacks of a larger size also do not fit in the given space. The idea is to allow all feasible
combinations of stack sizes, while excluding the infeasible combination that was flagged by
the lower bound calculation.

We now describe how the cuts are generated. We first tackle the case of two size types,
leading to a two-dimensional cut. In the 2D case, we produce the set of facets of the
polyhedron which is spanned by the feasible points. In higher dimensions, this might be
too complex, and we only produce separating cuts which split the feasible from the given
infeasible point.

6.1 Two Dimensional Cuts
The procedure for two dimensions is as follows. We first generate all feasible combinations
of the two types to fill the given truck size, then we produce the convex hull of the set of
all feasible points. We can convert the edges of the convex hull into a set of inequalities of
the form ax + by ≤ c, and add these cuts to the master model for the instances where the
constraint is not already satisfied. We use an example to illustrate the procedure.

Figure 2 shows the situation for an example problem of packing stacks of sizes 2000x1600
and 1200x1000 into a truck of size 13500x2440. If we just consider the available area, we
would consider all integer point to the left of the red area bound line. If we strengthen this
constraint by considering the effective size of the truck for the given sizes, we obtain the
green effective area bound. But this includes many infeasible combinations, for example (9,0)
and (7,7). If we compute all (maximal) feasible points, we obtain the blue points. Taking the
convex hull of these points (and (0,0)), we find four corners, denoted by the blue circles. The
linking vertices of the convex hull define three hyperplanes of the form ax + by ≤ c, with
integer coefficients (4,1,32), (10,3,82), and (3,1,26). These cuts eliminate many, but not all
infeasible combinations, while retaining all feasible size combinations. When we consider the
minimal infeasible combinations that are left, marked as red points, we find that three points,
marked as red circles, are on or inside the convex space defined by the linear cuts. In order
to also remove these points, we need to use disjunctions. Any point above or to the right of a
red point is also infeasible, so the constraint for the infeasible point (6, 7) is x ≤ 5 ∨ y ≤ 6.

6.2 Higher Dimensions
While in two dimensions we can compute the convex hull in polynomial time, and generate
the facet-defining cuts based on the segments of the convex hull, the number of facets in
higher dimensions may be too high to compute exhaustively. But we can define a simpler cut
which separates an infeasible point from all feasible points by an inequality. We still need
the set of (maximal) feasible points, which may already be expensive to generate for higher
dimensions, e.g. combining five or more sizes in a single cut.

Given a set F of feasible points f̄ of dimension |D|, and an infeasible point ī, also of
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Figure 2 Cuts for Packing Stacks of Sizes 2000x1600, 1200x1000 in Truck 13500x2440
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dimension |D|, find positive integer coefficients ad and a right-hand side r with the following
optimization model.

min
∑
d∈D

ad + r (10)

such that

∀f̄∈F :
∑
d∈D

adf̄d ≤ r (11)

∑
d∈D

: adīd ≥ r + 1 (12)

We try to find the smallest integer coefficients for the cut that separates the feasible
points from the infeasible point. As all feasible and infeasible points are on integer grid
points, we can ask for the parameters of the cut to be integral as well. This model may not
have a solution, if the infeasible point lies inside the convex hull spanned by the feasible
points. In that case we can state a disjunctive constraint∨

d∈D

(xi ≤ id − 1) (13)

which eliminates the infeasible point at the cost of introducing implied new binary variables.

7 Placement

We use a number of heuristics to create actual placements for a set of assigned stacks. There
are different variants that try to solve specific sub-problems, for example the case when all
assigned stacks have the same size and orientation. In that case, we can use precomputed
placement solutions to optimally place the stacks in the available space, trying to use any
empty space to limit the mid-axle weight of the placement. Figure 3 gives an example of
placing 20 or 21 stacks of size 1200x1000 into a truck of size 13500x2440. Different load
stages will be handled by assigning earlier stages to the left, while the axle weight is reduced
by pushing heavier items to the right.

Figure 3 Placement Template of Stacks of Size 1200x1000 in Truck of Size 13500x2440

A more generic placement routine is used when there are multiple stack sizes and load
stages, the heuristic tries to fill the truck from left to right, providing support for each
stack placed, while respecting the load order, and trying to reduce the mid-axle weight by
placing heavier items to the right. Different combinations of options are used to create a
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set of potential placements. Each of the placements is then evaluated for the axle-weight
constraints, and the best resulting solution is kept. For debugging and visualization we also
keep so-called counter-factuals, which show which better placement solutions have not been
selected. Figure 4 shows an example from a generated report on the solution, colours of
stacks indicate load stages. The selected placement requires two trucks, the counter-factual
shows a solution using a single truck, but which violates the mid-axle weight constraint.

Figure 4 Counter-factual Example: Placement below violates axle-weight constraint, but uses
one less truck

8 Post-Optimization

When we have run the master problem and the placement problems for each truck, we
have a feasible solution. If the placement did not require any additional trucks, we have an
optimal solution for our decomposition, but usually not for the overall problem. But in most
cases we need additional trucks to complete the placement, as our lower bound calculation
only considers the stack sizes, but not load stages, nor axle weight constraints. In addition,
it is not complete, as it does not handle all size combinations. Most of the extra trucks
created will be nearly empty, with only some overflow placed in the extra truck. On the
other hand, the cost of these extra trucks is quite high, we should therefore aim to remove
them. The easiest way to achieve this is to move the stacks placed in these trucks to earlier
or later trucks, where we still have some spare capacity. We have defined a local search
which identifies such moves, and then picks the best subset of all possible moves to reduce
the overall cost. This is implemented as a set partitioning model, solved with the MIP solver.
This is very likely an overly complex approach, and a simple, greedy local search working
at the stack or item level might produce better results. Time constraints stopped us from
implementing such a solution.

9 Experimental Evaluation

The instances provided by the Roadef Challenge are grouped by the different competition
stages (datasets A, B, C, and X) and consist of different problem families, which correspond
to different plants of Renault around the world. We use the instances of family AS in our
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evaluation. Table 1 gives an overview of the instances, the full data are available on the
competition website. Datasets A and B consist of smaller problem instances, from 8,000 to
15,000 pieces to be transported, while the instances in datasets C and X contain around
50,000 items. There are up to 2,000 planned trucks available. We also show the number of
stacks that were created by our stack building method, and the number of clusters computed
by our clustering method, together with the number of trucks and stacks in the largest cluster
of each instances. This defines the number and the size of the master MIP problems that we
need to solve to obtain a solution. In the last column, we show the ratio of inventory cost to
transport cost required for the instance, this controls the weight factors in the Objective 9.

Table 1 Instance Data Overview

Dataset Instance Pieces
Planned
Trucks Stacks Clusters

Largest
Nr Trucks
in Cluster

Largest
Nr Stacks
in Cluster

Inventory
Transport

Cost Factor

A AS 8,402 656 3,658 81 236 1,354 10:1
B AS 15,707 2,037 7,203 207 642 2,972 1:1
B AS2 15,707 2,037 7,203 207 642 2,972 5:1
C AS 52,264 1,593 19,588 129 1,352 11,064 1:1
C AS2 48,193 1,490 17,910 119 1,256 10,708 5:1
C AS3 48,193 1,490 17,910 119 1,256 10,708 1:5
X AS 51,025 1,474 19,279 375 1,453 10,310 1:1
X AS2 51,025 1,474 19,279 375 1,453 10,310 5:1
X AS3 51,025 1,474 19,279 375 1,453 10,310 1:5
X AS4 51,923 1,408 20,206 367 1,484 10,535 1:1
X AS5 51,923 1,408 20,206 367 1,484 10,535 5:1
X AS6 51,923 1,408 20,206 367 1,484 10,535 1:5
X AS7 51,923 1,408 20,206 367 1,484 10,535 1:1

For time and space reasons we did not perform a complete evaluation of the proposed
method against all problem instances of the competition, but show only instances of the
AS family. In Table 2 we present the results obtained by the current method of this paper,
the results obtained by our submission to the final stage of the competition, and the best
known result for each instance from the Roadef website. Please note that the best known
results for dataset A and B only reflect earlier stages of the competition. We also show the
gap between the submitted version and the best known result, the gap between the current
version and the best known result, and the improvement of the current result compared to
our submitted version.

For our current results, we show the aggregated lower bound of the MIP problems, the
total cost of the MIP solutions, and the cost of the resulting placement. We also note the
number of excess trucks, i.e. how many more trucks the placement needs to find a feasible
solution, compared to the assignment given by the master problem. All results include all
generated cuts. We see that for the smaller problems we are able to add enough cuts to
find a master problem solution which requires very few excess trucks, leading to an overall
solution better than the best published values. The results are not quite as good for the
larger problem instances, where our solutions are still inferior to the best known results,
while providing a significant improvement over our submitted results for the competition.
This comes at the cost of a significantly increased run-time, caused by the cut generation.

Table 3 illustrates the impact of the cut generation on instance X/AS. We compare results
when no cuts are generated, when only the convex, linear cuts are produced, and when all
cuts, including the disjunctive cuts, are generated. Adding the linear cuts increases both the
lower bound and the solution cost for the master MIP problems, but results in a much lower
cost of the placement. This gap cannot be fully made up by the local search, so that the end
result is a significantly improved solution, at a moderate run-time increase. Adding all cuts
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increases the MIP bound and solution only marginally, but still leads to a better placement,
and final result. This comes at the cost of a significantly increased run-time, which no longer
fits in the competition time limit. This increase is caused by both an increasing complexity
of the master problem, as more disjunctive cuts add more and more 0/1 variables, and by an
increased number of iterations needed to reach a fix point.

Table 3 Impact of Cut Level on Solution Quality for Instance X/AS

Cut Level
MIP

Bound
MIP

Solution
Max

Iterations Placement
Excess
Trucks Result

Time
(s)

No Cuts 1,880,938 1,894,162 - 2,455,762 312 2,136,968 1,379
Convex Only 1,918,031 1,929,144 7 2,103,777 97 2,017,089 2,521
All Cuts 1,918,919 1,930,494 35 2,049,294 66 2,002,947 7,237

Our submitted version used basically the same approach, but did not implement the
cut generation, so that the master model only used the area and weight constraints to
assign stacks to trucks. If the placement did not find a solution with the number of trucks
computed, additional trucks would be used in the placement, and the local search routine
was attempting to redistribute the nearly empty trucks that were created. The current cut
generation provides up to 9% improvement over this earlier model.

10 Conclusion

This paper describes our current model for the Roadef Challenge 2022, which adds a cut
generation based on a lower bound calculation to the master MIP model. This results
in a significant improvement of the cost values, while not quite reaching the best results
obtained in the competition. There are probably multiple reasons for this. Our decomposition
chosen may exclude some solutions that can be found with a more flexible technique which
avoids fixing the stack structure from the start. The time allocation could be improved to
more accurately predict the time needed to find high-quality solutions to sub-problem, and
spend the limited run-time for better effect. The cuts generated are purely based on size
consideration, and ignore load stage and axle weight constraint completely. This has the
advantage that the cuts generated can be applied to any truck of the same size, and can
be reused across instances. But more placement specific cuts could be found that help to
improve the master solution quality and lead to fewer excess trucks in the placement. On
the other hand, the lower bound calculation ignores smaller stacks completely, and therefore
is not guaranteed to be exact. Further work would be required to improve the lower bound
reasoning. Finally, our placement portfolio does not always find the best possible placement,
we could study improvements especially for problems with many load stages and/or high
item weights.
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