
Towards High-Level Modelling in Automated1

Planning2

Carla Davesa3

School of Computer Science, University of St Andrews, UK4

Joan Espasa5

School of Computer Science, University of St Andrews, UK6

Ian Miguel7

School of Computer Science, University of St Andrews, UK8

Mateu Villaret9

Departament d’Informàtica, Matemàtica Aplicada i Estadística, Universitat de Girona, Spain10

Abstract11

Planning is a fundamental activity, arising frequently in many contexts, from daily tasks to industrial12

processes. The planning task consists of selecting a sequence of actions to achieve a specified goal13

from specified initial conditions. The Planning Domain Definition Language (PDDL) is the leading14

language used in the field of automated planning to model planning problems. Previous work has15

highlighted the limitations of PDDL, particularly in terms of its expressivity. Our interest lies in16

facilitating the handling of complex problems and enhancing the overall capability of automated17

planning systems. Unified-Planning is a Python library offering high-level API to specify planning18

problems and to invoke automated planners. In this paper, we present an extension of the UP library19

aimed at enhancing its expressivity for high-level problem modelling. In particular, we have added20

an array type, an expression to count booleans, and the allowance for integer parameters in actions.21

We show how these facilities enable natural high-level models of three classical planning problems.22

2012 ACM Subject Classification Theory of computation; Computing methodologies → Planning23

and scheduling24

Keywords and phrases Automated Planning, Reformulation, Modelling25

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.2326

1 Introduction27

Planning is a fundamental activity, impacting our daily lives in many and varied ways.28

The planning task consists of selecting a sequence of actions to achieve a specified goal29

from specified initial conditions. This type of problem arises frequently in many contexts,30

from daily tasks to industrial processes. Examples include scheduling deliveries, organising31

project schedules, improving manufacturing efficiency, optimising resource allocation, and32

coordinating transportation routes. Automatically solving planning problems is a central33

discipline of Artificial Intelligence that involves specifying the desired outcome (the ‘what’)34

in a purely declarative manner, leaving it to the planning engine to determine the sequence35

of actions (the ‘how’) needed to reach that outcome.36

Consider a scenario where a delivery robot operates within an environment that can be37

represented as a grid of cells, each represented as distinct locations that the robot can occupy.38

The robot’s objective is to transport a package from one position to another. This involves39

considering various states such as the robot’s presence in a cell, the package’s location, and40

whether the robot is holding the package. The planning task requires defining a set of41

possible actions: the robot can move between cells, pick up and drop off packages. In the42

initial state, both the robot and package are located in specific cells, and the goal is to find a43

sequence of actions where the robot successfully delivers the package to the desired cell.44

© Carla Davesa, Joan Espasa, Ian Miguel and Mateu Villaret;
licensed under Creative Commons License CC-BY 4.0

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.CVIT.2016.23
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Towards High-Level Modelling in Automated Planning

In such scenarios, it is natural to represent the grid as a matrix. However, traditional45

planning frameworks do not support these grid-like structures directly, which poses challenges46

when modelling the problem. This motivates our work to develop new planning constructs47

and extensions that can effectively model problems in such structured environments.48

The difficulty of solving planning problems grows rapidly with their size in terms of49

the number of states and possible actions considered. Over many years, a great deal of50

effort by a number of different research groups has resulted in the development of highly51

efficient AI planners [26]. These planners serve as the computational engines that apply52

problem-solving algorithms to generate optimal or satisfactory plans given specific problem53

domains. However, it is beneficial to consider automated modelling as much a part of the54

process of solving a planning problem as the search for a solution. The choice of a model has55

a significant effect on the performance of state-of-the-art AI planning systems [8, 6], similarly56

to the importance of modelling to Constraint Programming. Constraint Programming has57

been successfully used to solve planning problems [4, 5] and is particularly well suited to58

planning problems when the problem requires a certain level of expressivity, such as temporal59

reasoning or optimality [27, 3].60

The Planning Domain Definition Language (PDDL) [17] is the leading language used61

in the field of automated planning to model planning problems and the domains in which62

they occur. It provides a formal way to concisely describe the problem in terms of objects,63

predicates, actions and functions with parameters. PDDL was created in an effort to64

standardise the input for AI planners, facilitating the solving of planning problems.65

Previous work [22] highlighted the limitations of PDDL, particularly in terms of its66

expressivity, prompting the development of abstraction techniques to extract higher level67

concepts from PDDL models. Our interest lies in facilitating the handling of complex problems68

and enhancing the overall capability of automated planning systems. The incorporation of69

high-level concepts, akin to those available in Essence [14] via Conjure [1] in Constraint70

Programming, such as functions, relations, arrays, (multi)sets, and sequences, can significantly71

enrich the modelling scope and flexibility.72

Unified-Planning (UP) [28] is a Python library offering high level API to specify planning73

problems and to invoke planning engines. This open-source library has gained substantial74

recognition within the research community due to its extensive adoption and continuous75

development, making it an excellent candidate on which to base our research efforts, offering76

ample opportunity for exploration and experimentation.77

In this paper, we present an extension of the UP library aimed at enhancing its ex-78

pressiveness for high-level problem modelling. The new high-level implementations we are79

introducing include:80

1. A new UP type: Array81

2. A new UP expression: Count82

3. Support for Integers as Parameters in Actions83

Furthermore, we have developed three new UP compilers, each dedicated to removing one84

of the high-level concepts we’ve implemented. These compilers automate the translation of85

these constructs into simpler ones, employing advanced problem transformations similar to86

those used for other features within the library.87

In the experimental part of this work, we model three classical planning problems —88

Plotting [11], Rush Hour [12], 8-Puzzle [21] — to demonstrate the effectiveness of our extended89

framework. These problems are particularly suitable for array-based modelling due to their90

grid-based nature, which aligns well with our new array type implementation.91

C. Davesa, J. Espasa, I. Miguel and M. Villaret 23:3

2 Background and Related Work92

A classical planning problem is typically formalised as a tuple ⊓ = ⟨F, A, I, G⟩, where F is93

a set of propositional state variables, A is a set of actions, I is the initial state, and G is94

the goal. A state is a variable-assignment (or valuation) function over state variables F ,95

which maps each variable of F into a truth value. An action a ∈ A is defined as a tuple96

a = ⟨Prea, Effa⟩, where Prea refers to the preconditions and Effa to the effects of the action.97

Preconditions (Pre) and the goal G are first-order formulas over propositional state variables.98

Action effects (Eff) are sets of assignments to propositional state variables. An action a is99

applicable in a state s only if its precondition is satisfied in s (s |= Prea). The outcome after100

the application of an action a will be the state where variables that are assigned in Effa take101

their new value, and variables not referenced in Effa keep their current values. A sequence of102

actions ⟨a0, . . . , an−1⟩ is called a plan. We say that the application of a plan starting from103

the initial state I brings the system to a state sn. If each action is applicable in the state104

resulting from the application of the previous action and the final state satisfies the goal (i.e.,105

sn |= G), the sequence of actions is a valid plan. A planning problem has a solution if a valid106

plan can be found for the problem.107

A formalisation for the previously mentioned delivery robot scenario, set within a 2x2108

grid with positions named P00, P01, P10, and P11, could be as follows:109

⊓ = ⟨110

F = {at_robot(p), at_package(p), holding_package},111

A = {112

Move(p1, p2) = ⟨at_robot(p1), {at_robot(p2), ¬at_robot(p1)}⟩,113

PickUp(p) = ⟨at_robot(p) ∧ at_package(p), {holding_package, ¬at_package(p)}⟩,114

DropOff(p) = ⟨at_robot(p) ∧ holding_package, {at_package(p), ¬holding_package}⟩,115

},116

I = {at_robot(P00), at_package(P10), ¬holding_package},117

G = {at_package(P11)}118

⟩119

Is important to note that some of these propositional variables F are actually first-order120

atoms over unquantified variables. For instance, the atom at_robot(p) is not a propositional121

variable by itself. Here, p is a parameter that represents a position in the grid and can122

be substituted with specific grid locations such as P00, P01, P10 and P11. During the123

grounding process, this predicate generates multiple propositional variables corresponding124

to each specific position in the grid: at_robot_P00, at_robot_P01, at_robot_P10 and125

at_robot_P11. The actions A define the tasks the robot can perform, such as Move(p1, p2),126

which allows the robot to move from position p1 to position p2 if it is currently in position127

p1. So when the action is executed, the robot moves to position p2 and it is no longer in128

position p1. The initial state I is the in P00, the package is in P10, and the robot not holding129

the package. The goal state G is to have the package in P11.130

The Planning Domain Definition Language (PDDL) [17] initially supported only Boolean131

types. Over the years, it has evolved significantly to include support for features such as132

numeric types, temporal constraints, hierarchical types, durative actions, derived predicates133

and conditional effects. This evolution has greatly enhanced the expressiveness and flexibility134

of PDDL, allowing for more sophisticated and detailed modelling of planning problems.135

CVIT 2016

23:4 Towards High-Level Modelling in Automated Planning

Despite these advancements, there remains a significant lack of expressiveness in PDDL,136

particularly when it comes to representing more complex planning scenarios [22].137

The UP library simplifies the processes of both formulating planning problems and utilising138

automated planners. The library allows users to define problems in a simple and intuitive139

manner and solve them using any of the wide array of supported solvers. Additionally, it140

provides functionality for exporting and importing problems in PDDL or ANML [24] format,141

and executing advanced problem transformations such as simplification, grounding, and142

removal of conditional effects.143

In the field of automated planning, various approaches have been explored to enhance144

planning modelling methodologies. This section offers an overview of recent advancements in145

planning techniques and related works that have inspired or guided our research.146

Geffner’s Functional STRIPS [16] introduced an extension of the STRIPS planning147

language by incorporating first-class function symbols. This addition allowed for greater148

flexibility in representing planning problems, enabling more efficient encodings and supporting149

complex tasks with minimal action definitions. Recent work by Geffner and Frances [13]150

explores how to address the computational challenges posed when solving problems expressed151

in Functional STRIPS by using a Constraint Satisfaction Problem to compute an heuristic152

that guides the search.153

Planning Modulo Theories (PMT) [18], inspired by SAT Modulo Theories (SMT), offers a154

flexible modelling language and framework where arbitrary first-order theories can be treated155

as parameters. Although further work has been done in the context of PMT [7], no concrete156

implementations have been released.157

Elahi and Rintanen [10] proposed a modelling language supporting complex data types158

like Booleans, numeric types, enumerated types, records, unions, arrays, sets, and lists, which159

are reduced to a Boolean representation. This Boolean representation is further reduced to160

PDDL, allowing existing domain-independent planners to solve problems specified in the161

richer modelling language. While this approach effectively enhances PDDL’s expressivity162

through the use of complex data types, our work aims to extend these capabilities further by163

leveraging the UP library. By directly integrating complex data types into UP, we benefit164

from Python’s simplicity and readability, along with its extensive libraries and community165

support. This results in intuitive and concise models that are easier to understand and166

manipulate. Inspired by Essence and Conjure, our method aims to introduce similar167

high-level modelling expressivity to automated planning, providing a more intuitive and168

fluent framework.169

3 Pipeline170

In this section, we provide an overview of the pipeline within the Unified-Planning framework.171

The framework is designed to streamline the process of transforming planning problems into172

formats that various planners can understand and solve. The different stages of this pipeline173

are depicted in Figure 1.174

The first step in defining a planning problem is to create a new instance that serves as175

a container for all the elements that constitute the problem: the fluents, actions, objects,176

initial state, and goals. Similarly to PDDL, objects typically represent entities in the problem177

domain, each with a type. Note that the term fluent has been historically used to refer178

to state variables that may change over time. UP also uses a lifted representation of the179

problem, with state variables and actions having parameters, enabling a concise definition of180

the problem.181

C. Davesa, J. Espasa, I. Miguel and M. Villaret 23:5

Figure 1 Automated Planning Modelling Pipeline

We further distinguish between two representation levels to clearly delimitate when182

compilers need to be used on elements of the problem that might need to be transformed to183

ensure compatibility with the planners. It’s important to note that if the original problem184

does not contain any high-level features or the chosen planner fully supports all the problem’s185

features, compilers may not be necessary.186

High-Level UP Representation Initially, the planning problem can be defined at a high-level,187

including complex features such as conditional effects, quantifiers, or user-type fluents.188

These features might not be supported by all planners, requiring the use of compilers189

to transform the problem into a compatible ‘low-level’. We categorise the proposed190

implementations — array types, count expressions, integer parameters in actions — as191

high-level representations.192

Planner-Specific UP Representation After the potential application of compilers, the prob-193

lem is expressed in a simplified format. This version retains the semantics of the original194

problem instance while transforming any unsupported features by the targeted planner.195

Specific Planning Languages Representation196

Unified-Planning offers the ability to transform the problem representation into various197

specific planning languages such as PDDL and ANML. Whether the problem is translated to198

PDDL, ANML, or another specific planning language before passing to the solver, depends on199

the requirements of the chosen planner. Some planners necessitate translating the problem200

into a specific format before they can process it, essentially when they are designed to201

exclusively work with these languages. Alternatively, if the selected planner can directly202

understand the UP representation of the problem, this can straightforwardly interface with203

the planner without an additional compilation step.204

Solver205

Finally, the converted planning problem is fed into a planner for execution. UP provides206

access to a variety of planners, each with distinct capabilities, which can be utilised to solve207

different types of planning problems. The planner employs search algorithms and planning208

techniques to find a plan that transitions from the initial state to the goal state.209

CVIT 2016

23:6 Towards High-Level Modelling in Automated Planning

4 The Proposed UP Extensions210

4.1 Array Type211

The new Array Type class is designed to represent arrays consisting of a specified number212

of elements of a given type. It relies on two main parameters: size and elements_type.213

The size parameter signifies the number of elements contained within the array and must214

be an integer (Python class int) with a predefined value greater than one. On the other215

hand, elements_type represents the type of the elements within the array. It is optional216

and it defaults to None, meaning no specific type is assigned. In this case, the array will be217

assumed to be of Boolean type. The construction of the class is shown in Listing 1.218

Listing 1 Construction of the Array Type.
def ArrayType (size: int , elements_type : Type=None) -> unified_planning . model . types .Type

This type empowers us to represent tables or matrices effectively. With this implementa-219

tion, we can now define ArrayType Fluents, giving us the ability to access the array’s elements220

individually, treating each as a fluent, while also knowing the position of each within the221

array. Moreover, given that arrays are considered types themselves and the elements_type222

parameter represents a type, we can create arrays of arrays and so forth, enabling the creation223

of nested arrays.224

Assume the initial example of a robot that operates in a 3x3 grid, where the robot can225

only move to adjacent cells —left, right, up, or down—, but not diagonally. Without using226

arrays, it is necessary to define all the relationships between the different cells to determine227

if they are neighbours. However, by utilising arrays, their position and relationship becomes228

implicit. For example, we can define the grid cells using a double array-type fluent (matrix)229

that encapsulates Booleans, indicating whether the robot is in each cell of the grid. The same230

approach can be used for the package. Listing 2 shows the definition of the initial state and231

fluents. Note that all positions that are not specified in initial_values default to false.232

Array Type Compiler233

Given that this new implementation is not compatible with the planners, we’ve developed an234

ArraysRemover compiler to transform arrays into individual elements. For each array-type235

fluent, we create a series of fluents that correspond to its individual elements. These new236

fluents maintain the original name but are suffixed with ’_’ followed by the respective237

position indices of the array elements. For example, the i-th element of the array my_ints,238

accessed using my_ints[i], transforms into a new fluent named my_ints_i. Moreover, this239

methodology extends to multidimensional arrays. For each dimension, an index is added240

to represent all the elements. Considering the fluent at_robot of the previous example,241

the elements are separated into the nine new fluents with the format depicted in Listing 3.242

Furthermore, in all actions and goals, we not only replace array accesses, as previously243

illustrated, but also manage the entire array comprehensively. For instance, when encountering244

an expression such as at_robot[0] ⇐⇒ [False, False, False], we decompose it into:245

at_robot_0_0 ⇐⇒ False ∧ at_robot_0_1 ⇐⇒ False ∧ at_robot_0_2 ⇐⇒ False.246

Undefinedness247

Introducing arrays poses a significant issue when accessing positions outside the arrays’248

defined range. The concept of undefinedness in planning is not extensively addressed because249

C. Davesa, J. Espasa, I. Miguel and M. Villaret 23:7

Listing 2 UP representation of at_robot
fluent using Array-Type.
fluents = [

array [3, array [3, bool]] at_robot

]

initial fluents default = [

array [3, array [3, bool]] at_robot := [

[false , false , false],

[false , false , false],

[false , false , false]

]

]

initial values = [

at_robot [0][0] := true

]

Listing 3 UP representation of derived fluents
from at_robot after applying the Array Type
Compiler.
fluents = [

bool at_robot_0_0

bool at_robot_0_1

bool at_robot_0_2

...

bool at_robot_2_2

]

initial fluents default = [

bool at_robot_0_0 := false

bool at_robot_0_1 := false

bool at_robot_0_2 := false

...

bool at_robot_2_2 := false

]

initial values = [

at_robot_0_0 := true

]

Listing 4 UP representation of the move_right action using Integer-Type Parameters.
action move_right (integer [0, 2] r, integer [0, 1] c) {

preconditions = [

at_robot [r][c]

]

effects = [

at_robot [r][(c + 1)] := true

at_robot [r][c] := false

]

}

traditional planning models typically require well-defined states and actions. In our new250

implementation, we have been inspired by how undefinedness is handled in constraint251

programming, based on a study proposing three approaches [15]. Two of these methods252

involve introducing a new truth value, which we find impractical for the library due to253

substantial modification overhead. The third approach transforms expressions containing254

undefined values to False. For example, in an array-type fluent my_ints containing three255

integers, accessing my_ints[3] (where the array has elements only at indices 0, 1, and 2)256

would evaluate the expression (my_ints[3] == 2) as False.257

Our solution is a hybrid approach comprising two modes: restrictive and permissive.258

Restrictive encountering an out-of-range access triggers an error, halting the program with259

a message indicating the undefined element.260

Permissive handles out-of-range accesses differently depending on whether they occur in261

preconditions or effects. In preconditions, akin to constraint handling, if the fluent is a262

Boolean element, it evaluates itself to False. But, if the fluent is not Boolean, the simplest263

Boolean expression evaluates to False. In effects, an attempt to access out-of-range simply264

removes that action, notifying the user via a message.265

We illustrate in Listings 5 and 6 two different examples to demonstrate how the Permissive266

approach manages various scenarios within the preconditions.267

CVIT 2016

23:8 Towards High-Level Modelling in Automated Planning

Listing 5 UP representation sim-
plifying expressions for Boolean un-
defined fluents in permissive mode.
And(at_robot [2][2] ,at_robot[2][3])

And(at_robot [2][2] ,False)

False

Listing 6 UP representation simplifying expressions for
non-Boolean undefined fluents in permissive mode.
Or(Equals (Plus(my_ints[3],2),2), Equals (my_ints [2] ,0))

Or(False,Equals (my_ints [2] ,0)

Equals (my_ints [2] ,0)

4.2 Integer Type Parameters in Actions268

We identified support for bounded integer parameters to be passed to actions as a highly269

useful implementation when working with arrays.270

We will illustrate this approach with the previous example. To properly control the271

possible movements, we create four actions, each corresponding to one direction. For instance,272

with the move_right action, shown in Listing 4, we ensure that the robot cannot move273

outside the grid by allowing this movement only when the robot is in one of the first two274

columns. This means that only the integers 0 and 1 will be passed as parameters for the275

columns, preventing the robot from moving right when it is in the rightmost column.276

This approach allows for more flexible and concise problem descriptions in planning277

scenarios. It enables us to refer to any element within the array by indexing this integer in278

the array, eliminating the need to create an action for each individual element. However, it279

is crucial to ensure that the bounded integer values fall within the specified domain range,280

as values outside this range may lead to undefined behaviour. It is crucial to understand281

how undefined values will be handled according to the strategies outlined above, ensuring282

the implementation appropriately manages any out-of-range values introduced. Additionally,283

integers can be utilized not only for indexing arrays but also as values in preconditions or284

effects, as well as in arithmetic operations, enhancing the model’s flexibility and expressiveness.285

Integer Type Parameters in Actions Compiler286

This compiler overcomes the limitations of the previous implementation, as planners could287

not comprehend or process integer parameters or anything other than objects in actions. For288

each action, the compiler generates new actions for each possible combination of the integer289

parameters. These new actions do not include the integer parameters, as they are replaced290

by their respective values within the preconditions and effects. Retaining the original name,291

they are suffixed with ‘_’ followed by the current integer parameter values separated by ‘_’.292

For instance, when the compiler processes the move_right action described in Listing 4,293

it will transform it into six new actions, one for each possible combination of the parameters294

r and c — (0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1) —. In Listing 7, the action generated for295

the parameters (0,1) illustrates how the parameters r and c in both preconditions and296

effects are substituted with their specific values. Furthermore, this compiler simplifies297

expressions wherever possible during parameter substitution with integer values. This298

simplifier handles arithmetic operations at runtime, reducing the size and complexity of the299

generated expressions. For example, in the previous instance with at_robot[0][2], the300

value 2 results from the addition (1+1), which is computed automatically during compilation.301

This optimisation streamlines execution, enhances efficiency, and simplifies the problem302

description for the planner.303

C. Davesa, J. Espasa, I. Miguel and M. Villaret 23:9

Listing 7 UP representation
of move_right(r=0, c=1) action
after applying the Integer-Type
Parameters Compiler.
action move_right_0_1 {

preconditions = [

at_robot [0][1]

]

effects = [

at_robot [0][2] := true

at_robot [0][1] := false

]

}

Listing 8 Construction of the Count Expression.
def Count (self ,

*args: Union [BoolExpression , Iterable [BoolExpression]]

) -> unified_planning . model . fnode . FNode

Listing 9 UP representation of a goal ensuring only one room
is occupied by robots using the Count Expression.
goals = [

(Count (at_robot [0][0] , at_robot [0][1] , at_robot [0][2] ,

at_robot [1][0] , at_robot [1][1] , at_robot [1][2] ,

at_robot [2][0] , at_robot [2][1] , at_robot [2][2]) == 1)

]

4.3 Count Expression304

When encoding problems, we encounter situations where evaluating the number of True305

statements among multiple Boolean expressions becomes necessary. To address this, we306

have developed the Count expression, specifically designed to manage Boolean n-arguments307

efficiently. The purpose of this function is to return an integer representing the number of308

True expressions among multiple Boolean expressions. The construction of this expression309

is shown in Listing 8, and can be formulated in two ways: Count(a, b, c) or Count([a, b, c]),310

where a, b, c represent Boolean arguments.311

We can exemplify the function with an illustration of a possible goal from the previous312

example. Suppose our problem involves multiple robots, and the goal is for all robots to end313

up in the same room, leaving only one room occupied. To achieve this, we need to count314

how many cells are occupied by any robot. This is demonstrated in Listing 9.315

Count Expression Compiler316

This compiler translates each Count expression into a new set of expressions that the planner317

can comprehend, involving the creation of a new function (known as an integer fluent in318

Unified-Planning) for each argument of every Count expression in the problem. These319

functions are designed to represent the Boolean value of each argument: they take on a value320

of 0 if the expression is False and 1 if it is True. The new fluents will be named sequentially as321

count_0, count_1, count_2, and so on, for each argument of the expressions in the problem.322

When different Count expressions share an argument with the same expression, they will be323

assigned the same name. Moreover, substitutes each argument in the expression with its324

corresponding function, and replaces the Count operator expression with the well-known325

Plus operator, which adds up various integer expressions. This way, we sum up the new326

functions created, each corresponding to its original Boolean expression. This is shown in327

Listing 10. These functions are initialised depending on the initial value of the fluents and328

the evaluation of the expression. As depicted in Listing 12, in our example, only the position329

(0, 0) is set to True, resulting in the function related to this Boolean expression, count_0,330

having an initial value of 1.331

Furthermore, for each action, if any fluent is modified, those expressions (arguments332

from Count expressions) containing that fluent will also be evaluated to potentially change333

the value of the corresponding function based on the evaluation result. As illustrated in334

Listing 10, the Integer Type Parameters in Actions compiler and the Array Type Compiler335

have already been applied. It must be in this order, as discussed in Section 4.4. The336

CVIT 2016

23:10 Towards High-Level Modelling in Automated Planning

Listing 10 UP representation of the previous goal after
applying the Count compiler.
goals = [

(Plus(count_0 , count_1 , count_2 , count_3 , count_4 ,

count_5 , count_6 , count_7 , count_8) == 1)

]

Listing 11 UP representation of move_right(r=0, c=0)
action effects after applying the Count compiler.
action move_right_0_0 {

preconditions = [

at_robot_0_0

]

effects = [

at_robot_0_1 := true

at_robot_0_0 := false

count_0 := 0

count_1 := 1

]

}

Listing 12 UP representation
of at_robot initial values after
applying the Count compiler.
initial values = [

at_robot_0_0 := true

at_robot_0_1 := false

...

at_robot_2_2 := false

count_0 := 1

count_1 := 0

count_2 := 0

count_3 := 0

count_4 := 0

count_5 := 0

count_6 := 0

count_7 := 0

count_8 := 0

]

action move_right_0_0 modifies both at_robot_0_0 and at_robot_0_1. Consequently, the337

corresponding functions, count_0 and count_1, are re-evaluated to their new values: 0 if338

the Boolean evaluates to False and 1 if it evaluates to True. If the effect is conditional,339

the function’s effect will adhere to the same condition. Moreover, if the effect’s fluent has340

parameters, a condition will be added in this new effect, checking whether these parameters341

match those of the same fluent in the Count argument.342

4.4 Sequence of Compiler Application343

To ensure the proper utilisation of the compilers we’ve developed, it is crucial to follow a344

specific sequence in their application. The required order, assuming all three implementations345

are included in a problem, is as follows:346

1. Integer Parameters in Actions Compiler347

2. Array Type Compiler348

3. Count Expression Compiler349

When a problem includes integer parameters in actions it is crucial to apply the Integer350

Parameters in Actions Compiler before any other compiler. Not applying this compiler351

first could lead to issues if our problem also involves arrays. For example, accessing specific352

elements like my_ints[i] where i is an integer parameter requires knowing its value to353

determine the array element. Applying the Array Type Compiler first without this information354

would result in errors due to the undefined value of i.355

The Count Expression Compiler should be applied after resolving complexities related to356

arrays using the other two compilers. This sequence is critical because the expressions it357

handles may reference array elements. Additionally, to effectively adjust the new functions358

associated with each argument of count expressions, it is essential to first evaluate the359

changes affecting the fluents within the action effects. Without substituting integers and360

removing arrays beforehand, we would not know which fluents are affected by action changes.361

C. Davesa, J. Espasa, I. Miguel and M. Villaret 23:11

Consequently, we would be unable to implement the required adjustments to our functions362

when evaluating expressions with the updated values.363

5 Experiments364

In this section, we evaluate our new UP-extended implementation encoding three typical365

planning games: Plotting, Rush-Hour, and 8-Puzzle, against existing PDDL models. These366

experiments were conducted using a cluster comprising 20 nodes, each equipped Intel(R)367

Xeon(R) E-2234 CPUs @ 3.60 GHz with 16GB of RAM. The solvers used in our experiments368

are Enhsp-opt [23] for our UP-extended model and Fast-Downward [19] with the seq-opt-lmcut369

heuristic for the selected PDDL models. We employ two different planners to leverage their370

respective strengths: Enhsp (version 20) supports numeric extensions crucial for our model,371

while Fast-Downward (version 23.06+), although lacking numeric support, provides robust372

heuristic-based search capabilities. Our aim was to measure the combined preprocessing and373

solving time, with a configured timeout of 1 hour (all results are presented in seconds), and374

see if the proposed UP extensions had a reasonable cost regarding solving time. For each375

problem we will highlight the advantages in modelling provided by some of the features that376

we have developed in UP. The models with UP-extended, along with the implementation of377

the proposed extensions, can be found on GitHub at https://github.com/stacs-cp/unified-378

planning/tree/new_types2.379

(a) Example of a 5x5 grid Initial
Plotting Instance

(b) Example of an Initial
Rush Hour Instance

(c) Example of an Initial 8-
Puzzle Instance

Figure 2 Examples of different instances of Plotting, Rush-Hour and 8-Puzzle games.

5.1 Plotting380

Plotting is a tile-matching puzzle video game published by Taito (Figure 2a illustrates an381

instance of the game). The objective of the game is to remove at least a certain number of382

coloured blocks from a grid by sequentially shooting blocks into the same grid. The interest383

and difficulty of Plotting is due to the complex transitions after every shot: various blocks384

are affected directly, while others can be indirectly affected by gravity.385

Listing 13 depicts the grid represented as a double array, with each cell indicating the386

color of a block. The initial grid configuration is defined using a Python nested list.387

We define several actions that manipulate the grid of colored blocks based on the shot.388

These actions utilise integer parameters to reference different blocks, and we ensure these389

parameters are within valid ranges to prevent out-of-bounds access. One such action, detailed390

in Listing 14, is shoot_partial_row, which clears blocks of a colour p from a row r up to391

the last column l of that row, stopping when the next block is of a different color.392

CVIT 2016

23:12 Towards High-Level Modelling in Automated Planning

Listing 13 UP extended: Defining the Plotting game problem instance using Array Type.
grid = [[R,R,B,G,Y],[R,B,Y,Y,Y],[B,G,B,G,B],[G,Y,G,R,B],[Y,G,R,R,B]]

blocks = Fluent (‘blocks ’, ArrayType (rows , ArrayType (columns , Colour)))

plotting_problem . add_fluent (blocks)

plotting_problem . set_initial_value (blocks , grid)

Listing 14 UP extended: Defining the Shoot-Full-Row action.
spr = unified_planning . model . InstantaneousAction (‘ shoot_partial_row ’, p=Colour ,

r= IntType (0, rows -1) , l= IntType (0, columns -2))

spr. add_precondition (Not(Or(Equals (p, W), Equals (p, N))))

for c in range (0, columns -1):

spr. add_precondition (Or(GT(c,l), Equals (blocks [r][c], p), Equals (blocks [r][c], N)))

spr. add_precondition (Or(

*[And(Equals (blocks [r][c], p), LE(c,l)) for c in range (columns -1)]

))

spr. add_effect (hand , blocks [r][l+1])

spr. add_effect (blocks [r][l+1] , p)

for c in range (0, columns -1):

spr. add_effect (blocks [0][c], N, LE(c,l))

for a in range (1, rows):

spr. add_effect (blocks [a][c], blocks [a -1][c], And(LE(c,l), LE(a,r)))

In Listing 14, we highlight some of the most interesting preconditions and effects of this393

action, particularly to demonstrate the effectiveness of Python functions, such as for loops,394

for iterating over different elements. The first precondition ensures that the next block of the395

column l is different from p and not N, where N indicates no block is present. The first loop396

ensures that all elements in the row until the column l are either p or N. And the following397

precondition confirms that at least one of these elements (i.e., among all elements being398

cleared) is p, preventing unnecessary actions when all blocks are N. The effects described399

detail how the action modifies the grid. Initially, the hand takes on the value of the next block400

in sequence (the first block different), while this position saves the value of p. Additionally,401

the nested loops update the grid’s elements in accordance with gravity, ensuring the correct402

movement of blocks above the affected row.403

As shown in Listing 15, the objective of the game is to have no more than a specified404

number of blocks remaining, in this example, 4 or fewer. Our new implementation of the405

Count expression is particularly useful for this purpose as it facilitates the counting of blocks406

that are different from N, indicating how many blocks are left on the grid.407

Listing 15 UP extended: Defining the Goal.
remaining = [Not(Equals (blocks [i][j], N)) for i in range (rows) for j in range (columns)]

plotting_problem . add_goal (LE(Count (remaining), 4))

For the experimental part, we compared our UP-extended model with the PDDL extracted408

from the paper ‘Challenges in Modelling and Solving Plotting with PDDL’ by J. Espasa et409

al. [2]. We utilised the instances from the database of the same work, which consists of 522410

instances. In Figure 3, we show results for several instances based on grid size, number of411

colours, and number of remaining blocks. Our model successfully solves 216 instances out of412

the total, whereas the PDDL model solves only 78 instances. Our high-level implementations413

has resulted in a more concise, understandable, and manageable model in comparison to the414

C. Davesa, J. Espasa, I. Miguel and M. Villaret 23:13

Figure 3 Comparison of Plotting models: UP-extended vs PDDL.

one of [2] where the authors needed to simulate cell positions by ad-hoc encoding numbers415

and relational predicates (as ≤) into PDDL.416

5.2 Rush Hour417

Rush Hour is a sliding block puzzle game set on a 6x6 grid, where blocks represent vehicles418

stuck in a traffic jam (Figure 2b illustrates an instance of the game). The objective is to move419

a special vehicle, the red car, to the exit located at the right edge of the grid. However, the420

movement of vehicles is restricted: they can only move forwards or backwards in a straight421

line and cannot cross over each other.422

In modelling the Rush Hour game, we utilise a 6x6 grid represented by a double array,423

where each cell denotes a letter representing a vehicle, as depicted in Listing 16. This424

grid instantiation process utilises Michael Fogleman’s database [12], which provides string425

representations where ‘o’ denotes an empty cell, and each letter represents a distinct vehicle.426

Vehicles include cars, which occupy 2 cells, and trucks, which occupy 3 cells. Python’s ability427

to manage strings as iterable sequences allows for a concise representation of the grid and428

enhances flexibility in modifying its configuration.429

Listing 16 Defining the Rush Hour game problem instance using Array Type.
occupied = Fluent (’occupied ’, ArrayType (6, ArrayType (6, Vehicle)))

rush_hour_problem . add_fluent (occupied)

grid = ‘GBBoLoGHIoLMGHIAAMCCCKoMooJKDDEEJFFo ’

for i, char in enumerate (grid):

r, c = divmod (i, columns)

if char == ’.’:

rush_hour_problem . set_initial_value (occupied [r][c], none)

else:

obj = Object (f ’{ char}’, Vehicle)

if not rush_hour_problem . has_object (char):

rush_hour_problem . add_object (obj)

rush_hour_problem . set_initial_value (is_car (obj), grid. count (char) == 2)

rush_hour_problem . set_initial_value (occupied [r][c], obj)

Utilising the permissive mode when handling undefinedness (See Undefinedness above)430

is highly beneficial in encoding the Rush Hour problem. It eliminates the requirement to431

specify exact movement possibilities for each vehicle position while ensuring they remain432

CVIT 2016

23:14 Towards High-Level Modelling in Automated Planning

Listing 17 Defining the Move-Horizontal-Car action.
mhc = unified_planning . model . InstantaneousAction (‘ move_horizontal_car ’, v=Vehicle ,

r= IntType (0,rows -1) , c= IntType (0, columns -2) , m= IntType (-(columns -2) , columns -2))

Figure 4 Comparison of Rush Hour models: UP-extended vs PDDL

within the grid. Depending on the vehicle’s location, it may have a varying number of433

possible moves without exiting the grid. By using this mode, we can define the range of434

movements from a minimum of 1 up to the maximum possible movement. For instance, in the435

move_horizontal_car action, illustrated in Listing 17, this maximum distance is columns-2436

when the car starts at one edge and moves towards the opposite edge. The permissive mode437

automatically filters out actions that exceed defined movement ranges, ensuring that actions438

are generated only for scenarios where vehicles can move within specified cell limits without439

leaving the grid. This optimization streamlines action creation by defining movement ranges440

at a higher level, eliminating the need to specify possible moves for each individual cell.441

We compare our UP-extended model with an adapted version of ehajdin’s PDDL model,442

available on GitHub [9]. Originally designed to restrict vehicle movements to one step per443

move, we modified it to enable full vehicle mobility, allowing movements ranging from 1 to 4444

steps per move. From Fogleman’s database, we selected the 43 most complex instances based445

on factors influencing difficulty outlined in the undergraduate thesis [25]. These instances446

are used to evaluate and compare the effectiveness of both models. From this selection, we447

highlight the 6 most difficult instances in Figure 4. While the model does not show improved448

efficiency compared to the PDDL implementation, it notably enhances problem description449

fluency and clarity, and significantly reduces model size.450

5.3 8-Puzzle451

The N-puzzle is a classic sliding puzzle game consisting of a k ∗ k grid with ((k ∗ k) − 1)452

numbered tiles (N) and one blank space (Figure 2c illustrates an instance of the game).453

The objective is to rearrange the tiles by sliding them horizontally or vertically into the454

blank space, with the goal of achieving a specific configuration, often the ordered sequence of455

numbers from 1 to N.456

Listing 18 Defining the 8-Puzzle grid.
puzzle = Fluent (’puzzle ’, ArrayType (k, ArrayType (k, IntType (0 ,8))))

The definition of the grid, depicted in Listing 18, is represented as a 2D array where each457

cell contains an integer value ranging from 0 to n. The value 0 represents the empty space.458

The representation of slide_up action is shown in Listing 19, which moves a tile up into459

the empty space in the grid. The parameters r and c are integers representing the row and460

C. Davesa, J. Espasa, I. Miguel and M. Villaret 23:15

Figure 5 Comparison of 8-puzzle models: UP-extended vs PDDL

column indices of the grid. Note that the range for r is from 1 to k − 1, since you cannot461

slide up from the first row. The first precondition ensures that the tile above the current462

position (r, c) is the empty space, making the slide-up move possible. The effects describe463

the result of the action: the tile at the current position moves up and original position is464

now empty.465

Listing 19 Defining the Slide-Up action.
su = unified_planning . model . InstantaneousAction (’slide_up ’, r= IntType (1,k -1) ,

c= IntType (0,k -1))

su. add_precondition (Equals (puzzle [r -1][c], 0))

su. add_effect (puzzle [r -1][c], puzzle [r][c])

su. add_effect (puzzle [r][c], 0)

To evaluate the performance of our model, we selected the two instances requiring the466

highest number of steps for a solution, both needing 31 steps, and the two configurations467

with the highest number of solutions, each having 64 solutions and requiring 30 steps, as468

detailed in the paper [21]. We obtained the PDDL model for these instances from the GitHub469

repository of the user mazina [20].470

We observe the results in Figure 5. As with the Rush Hour model, our implementation471

did not outperform the PDDL implementation in terms of solving time. However, it also472

significantly enhanced the clarity and natural representation of the problem, while also473

reducing the model size.474

6 Conclusions and Future Work475

This proposed extension allows plans to be expressed more naturally, facilitating the manage-476

ment of complex problems. By making the modelling process more intuitive, it significantly477

reduces the manual effort and time required to select an optimal modelling approach. One478

significant advantage of this Python-based framework is its ability to effectively utilise Python479

functions, such as for loops, for iterating over different elements, allowing better manipulation480

of complex structures. This capability enhances the flexibility and power of the modelling481

process, making it easier to handle intricate scenarios. A key benefit of this pipeline is the482

significant modelling flexibility it provides, enabling the use of different compilers depending483

on the planner, which illustrates the diverse methods to model, transform and solve the same484

problem. As we have seen, arrays have been particularly useful in our examples.485

Looking ahead, we aim to implement more high-level concepts such as functions, relations,486

(multi)sets, and sequences to further enhance the modelling capabilities of the framework. We487

also want to explore alternative compilers for each feature obtaining different possible encoding488

paths from our high-level UP extensions to PDDL (as done in constraint programming with489

Conjure [1] between Essence and Essence Prime). We also plan to conduct an experimental490

analysis of the solving time cost of using our proposed high-level UP representations.491

CVIT 2016

23:16 Towards High-Level Modelling in Automated Planning

References492

1 Özgür Akgün, Alan M Frisch, Ian P Gent, Christopher Jefferson, Ian Miguel, and Peter493

Nightingale. Conjure: Automatic generation of constraint models from problem specifications.494

Artificial Intelligence, 310:103751, 2022.495

2 Joan Espasa Arxer, Ian James Miguel, Peter Nightingale, András Z Salamon, and Mateu496

Villaret. Challenges in modelling and solving plotting with pddl. In Knowledge Engineering497

for Planning and Scheduling, 2023.498

3 Behrouz Babaki, Gilles Pesant, and Claude-Guy Quimper. Solving classical AI planning prob-499

lems using planning-independent CP modeling and search. In 13th International Symposium500

on Combinatorial Search (SOCS), pages 2–10. AAAI Press, 2020.501

4 Roman Barták, Miguel A Salido, and Francesca Rossi. Constraint satisfaction techniques in502

planning and scheduling. Journal of Intelligent Manufacturing, 21(1):5–15, 2010.503

5 Roman Barták and Daniel Toropila. Reformulating constraint models for classical planning.504

In 21st FLAIRS, pages 525–530, 2008.505

6 Roman Barták and Jindrich Vodrázka. The effect of domain modeling on efficiency of planning:506

Lessons from the nomystery domain. In TAAI, pages 433–440, 2015.507

7 Miquel Bofill, Joan Espasa, and Mateu Villaret. Relaxing non-interference requirements in508

parallel plans. Log. J. IGPL, 29(1):45–71, 2021.509

8 Lukás Chrpa. Modeling planning tasks: Representation matters. In Knowledge Engineering510

Tools and Techniques for AI Planning, pages 107–123, 2020.511

9 ehajdini. Rush hour - pddl. March 2019. URL: https://github.com/ehajdini/AI/blob/512

master/RushHour_PDDL/domain1.pddl.513

10 Mojtaba Elahi and Jussi Rintanen. Planning with complex data types in PDDL. CoRR,514

abs/2212.14462, 2022.515

11 Joan Espasa, Ian Miguel, and Mateu Villaret. Plotting: A planning problem with com-516

plex transitions. In 28th International Conference on Principles and Practice of Constraint517

Programming, CP, volume 235 of LIPIcs, pages 22:1–22:17, 2022.518

12 Michael Fogleman. Solving rush hour, the puzzle. July 2018. URL: https://www.519

michaelfogleman.com/rush/.520

13 Guillem Francès and Hector Geffner. Effective planning with more expressive languages. In521

25th International Joint Conference on Artificial Intelligence, IJCAI, pages 4155–4159, 2016.522

14 Alan M Frisch, Warwick Harvey, Chris Jefferson, Bernadette Martínez-Hernández, and Ian523

Miguel. Essence: A constraint language for specifying combinatorial problems. Constraints,524

13:268–306, 2008.525

15 Alan M. Frisch and Peter J. Stuckey. The proper treatment of undefinedness in constraint526

languages. In 15th CP, volume 5732 of LNCS, pages 367–382. Springer.527

16 Hector Geffner. Functional strips: A more flexible language for planning and problem solving.528

In Logic-Based Artificial Intelligence, volume 597 of The Springer International Series in529

Engineering and Computer Science. Springer, 2000.530

17 Alfonso Emilio Gerevini. An introduction to the planning domain definition language (PDDL):531

book review. Artif. Intell., 280:103221, 2020.532

18 Peter Gregory, Derek Long, Maria Fox, and J. Christopher Beck. Planning modulo theories:533

Extending the planning paradigm. In 22nd ICAPS, 2012.534

19 Malte Helmert. The fast downward planning system. J. Artif. Intell. Res., 26:191–246, 2006.535

URL: https://doi.org/10.1613/jair.1705, doi:10.1613/JAIR.1705.536

20 mazina. Domains-planning-domain-definition-language/pddl. 2012. URL: https:537

//github.com/SoarGroup/Domains-Planning-Domain-Definition-Language/blob/master/538

pddl/eight01x.pddl.539

21 Alexander Reinefeld. Complete solution of the eight-puzzle and the benefit of node ordering540

in IDA. In Ruzena Bajcsy, editor, Proceedings of the 13th International Joint Conference541

on Artificial Intelligence. Chambéry, France, August 28 - September 3, 1993, pages 248–253.542

Morgan Kaufmann, 1993. URL: http://ijcai.org/Proceedings/93-1/Papers/035.pdf.543

https://github.com/ehajdini/AI/blob/master/RushHour_PDDL/domain1.pddl
https://github.com/ehajdini/AI/blob/master/RushHour_PDDL/domain1.pddl
https://github.com/ehajdini/AI/blob/master/RushHour_PDDL/domain1.pddl
https://www.michaelfogleman.com/rush/
https://www.michaelfogleman.com/rush/
https://www.michaelfogleman.com/rush/
https://doi.org/10.1613/jair.1705
https://doi.org/10.1613/JAIR.1705
https://github.com/SoarGroup/Domains-Planning-Domain-Definition-Language/blob/master/pddl/eight01x.pddl
https://github.com/SoarGroup/Domains-Planning-Domain-Definition-Language/blob/master/pddl/eight01x.pddl
https://github.com/SoarGroup/Domains-Planning-Domain-Definition-Language/blob/master/pddl/eight01x.pddl
https://github.com/SoarGroup/Domains-Planning-Domain-Definition-Language/blob/master/pddl/eight01x.pddl
https://github.com/SoarGroup/Domains-Planning-Domain-Definition-Language/blob/master/pddl/eight01x.pddl
http://ijcai.org/Proceedings/93-1/Papers/035.pdf

C. Davesa, J. Espasa, I. Miguel and M. Villaret 23:17

22 Jussi Rintanen. Impact of modeling languages on the theory and practice in planning research.544

In 29th AAAI, pages 4052–4056, 2015.545

23 Enrico Scala. The enhsp planning system, 2023. URL: https://gitlab.com/enricos83/546

ENHSP-Public/-/tree/enhsp-20.547

24 David E Smith, Jeremy Frank, and William Cushing. The anml language. In The ICAPS-08548

Workshop on Knowledge Engineering for Planning and Scheduling (KEPS), volume 31, 2008.549

25 Carla Davesa Sureda. Rush hour, 2023. URL: https://dugi-doc.udg.edu/handle/10256/550

24566.551

26 Ayal Taitler, Ron Alford, Joan Espasa, Gregor Behnke, Daniel Fišer, Michael Gimelfarb,552

Florian Pommerening, Scott Sanner, Enrico Scala, Dominik Schreiber, Javier Segovia-Aguas,553

and Jendrik Seipp. The 2023 International Planning Competition. AI Magazine, 45(2):280–296.554

27 Vincent Vidal and Héctor Geffner. Branching and pruning: An optimal temporal POCL555

planner based on constraint programming. volume 170, pages 298–335. Elsevier, 2006.556

28 Zheng Zang, Jiarui Song, Yaomin Lu, Xi Zhang, Yingqi Tan, Zhiyang Ju, Haotian Dong,557

Yuanyuan Li, and Jianwei Gong. A unified framework integrating trajectory planning and558

motion optimization based on spatio-temporal safety corridor for multiple agvs. IEEE Trans.559

Intell. Veh., 9(1):1217–1228, 2024.560

CVIT 2016

https://gitlab.com/enricos83/ENHSP-Public/-/tree/enhsp-20
https://gitlab.com/enricos83/ENHSP-Public/-/tree/enhsp-20
https://gitlab.com/enricos83/ENHSP-Public/-/tree/enhsp-20
https://dugi-doc.udg.edu/handle/10256/24566
https://dugi-doc.udg.edu/handle/10256/24566
https://dugi-doc.udg.edu/handle/10256/24566

	1 Introduction
	2 Background and Related Work
	3 Pipeline
	4 The Proposed UP Extensions
	4.1 Array Type
	4.2 Integer Type Parameters in Actions
	4.3 Count Expression
	4.4 Sequence of Compiler Application

	5 Experiments
	5.1 Plotting
	5.2 Rush Hour
	5.3 8-Puzzle

	6 Conclusions and Future Work

