
Towards Understanding Differences Between1

Modelling Pipelines: a Modelers Perspective2

Csobán Balogh #3

University of St Andrews, School of Computer Science, Scotland4

Ruth Hoffmann1 # Ñ5

School of Computer Science, University of St Andrews, Scotland6

Joan Espasa #Ñ7

University of St Andrews, School of Computer Science, Scotland8

Abstract9

In this work we aim to investigate the capabilities of the MiniZinc and Savile Row constraint10

programming pipelines from the user’s perspective. We evaluate their modelling and reformulation11

capabilities on a selection of six diverse problem classes using the commonly supported Chuffed12

solver. Our preliminary findings show that both pipelines are very competitive in performance.13

However, they seem to cater to distinct user preferences. MiniZinc allows better modeler control,14

and provides a slightly more expressive language due to the facilities for code organization and15

reusability. Conversely, Savile Row provides a solid set of default settings and a more consistent16

performance profile.17

2012 ACM Subject Classification Theory of computation → Constraint and logic programming;18

Computing methodologies → Modeling methodologies19

Keywords and phrases Constraint Modelling, Constraint Pipelines, Constraint Satisfaction Problems20

1 Introduction21

As with imperative programming languages like C, the process from writing out the problem22

constraints to arriving at a solution involves a pipeline of translation from a high-level23

language to a low-level language that can be directly interpreted by the solver. Modelling24

problems to be efficiently solved is no trivial task, and as a result there are automated25

modelling assistants who tailor the models to the required input to specific solvers. More26

concretely, we consider tailoring as the process of translating the constraint model with given27

input parameters (an instance) to a form readable by a specific constraint solver.28

In this work we are going to focus on two well-known pipelines: MiniZinc [12] and its29

homonymous language, and Savile Row [14] and its Essence’ [13] language. Both MiniZinc30

and Essence’ are high-level constraint modelling languages. The Savile Row modelling31

assistant was developed between the University of York and St Andrews. MiniZinc is an32

open-source language, developed at Monash University in collaboration with Data61 Decision33

Sciences and the University of Melbourne. Similarly, it has its own modelling assistant to34

tailor the input for the solvers. The following steps describe the usual workflow for a problem35

to be able to be solved using these two pipelines: 1. Using a high-level constraint modelling36

language, a problem is modelled. 2. The constraints are merged with the instance data and37

tailored to be fed as input to a specified constraint solver. 3. The constraint solver reads the38

low-level description and searches for solutions. 4. If a solution is found, the solution is then39

translated back to a user-readable form. We have decided to focus on Chuffed [5], as the40

solver is used by both pipelines, given its robustness, performance and for the maturity of its41

support by both pipelines.42

1 corresponding author

mailto:csoban@balogh.org
mailto:rh347@st-andrews.ac.uk
https://www.st-andrews.ac.uk/computer-science/people/rh347
https://orcid.org/0000-0002-1011-5894
mailto:jea20@st-andrews.ac.uk
https://www.st-andrews.ac.uk/computer-science/people/jea20
https://orcid.org/0000-0002-9021-3047

2 Towards Understanding Differences Between Modelling Pipelines

We selected a set of 6 diverse problems from CSPLib [7] and the Minizinc Challenges [17].43

While the benchmarks for these problems already existed encoded in either MiniZinc or44

Essence’ , no direct detailed comparison has been made between the two due to models45

not being available in both languages. In addition, to our knowledge our work is unique in46

considering the full pipeline: from modelling, translation and optimisation, to the effects47

upon the solver. Further, while two models for the same problem may arrive at the same48

solution, variations in a model, such as a different viewpoint, can result in great variations in49

solving time [9]. Our objective is to manually create models as similar as possible to try to50

isolate the pipeline effects as much as possible.51

In summary, our contributions are as follows: (i) new models in both Essence’ and52

MiniZinc of existing problems which allow to directly compare the considered pipelines, (ii)53

a discussion on how both languages compare when modelling the selected problems, (iii) an54

empirical evaluation of the pipelines performance over 3 different optimisation levels.55

2 The Models56

We now present the models for the categories and problems which we chose for this work:57

mathematical objects (Quasigroup Completion [15]), packing problems (Wordpress [4]),58

scheduling problems (Rotating Rostering [18] and Travelling Tournament Problem with59

Predefined Values [16]), planning problems (Multi-Skilled Project Scheduling Problem) and60

routing problems (Capacitated Vehicle Routing Problem with Time Windows). All models61

can be found at https://github.com/stacs-cp/modref2024-pipeline-comparison.62

MiniZinc has predicates and further rich functionality and syntax that Essence’ is63

lacking. However, in all cases an equivalent expression can be created and run in Essence’64

to produce valid solutions. The main difference in both pipelines is the treatment of the65

search order. MiniZinc has an extensive number of search orders it may impose upon the66

variables, for example searching through an array of variables from the maximum of the67

domain to the minimum. Essence’ on the other hand provides similar functionality for68

the target solver Minion with search heuristics, but these fall short in control compared to69

MiniZinc . We have tried to recreate the MiniZinc search order through a rough translation70

by specifying which variables to branch on first, but there is little control in how to perform71

the search over the variables and their respective domains.72

2.1 Quasigroup Completion73

In Quasigroup Completion CSPLib [15], an order n quasigroup can be viewed as a size n74

Latin square, where a Latin square is a n × n table of numbers ranging from 1 up to n75

inclusive. The table’s rows and columns must be distinct in numbers. The Quasigroup76

Completion problem gives an incomplete quasigroup table and requires the remaining empty77

cells to be filled in with numbers.78

The provided MiniZinc model on CSPLib uses an explicit representation, making use of79

the allDifferent constraint to ensure columns and rows are distinct. The allDifferent80

constraint takes in an array, and imposes that every element appears at most once in the81

array. Given the simplicity of the problem and its reliance upon allDifferent through82

the explicit model, an equivalent occurrence model was created (for both pipelines). The83

occurrence model represents numbers through an array of zeros and ones [8].84

To impose allDifferent upon an occurrence representation, either allDifferent_except85

or sum could be used. Rather than compare slight variations of allDifferent, the interest86

https://github.com/stacs-cp/modref2024-pipeline-comparison

C. Balogh, R. Hoffmann and J. Espasa 3

is in comparing the difference between using a simple operator such as sum, and a powerful87

optimised propagator such as allDifferent.88

There does not exist an Essence’ model for Quasigroup Completion on CSPLib , so89

one needed to be created. The explicit model follows the MiniZinc model exactly, except90

Essence’ has a nice spread operator for slicing columns and rows from matrices instead of91

list comprehensions. In Essence’ we represent the occurrence model, by finding a three92

dimensional 0, 1 matrix and using a sum constraint.93

2.2 Wordpress Application Deployment in the Cloud94

Wordpress Application Deployment in the Cloud [4] was used in the 2022 MiniZinc chal-95

lenge [10] with minor adaptations. Wordpress is an application used to create websites and96

needs to be deployed to the cloud with a set of hardware and virtual machines (VMs). The97

goal is to deploy several Wordpress instances while minimising the cost of hardware, VM98

configurations and providers to deploy the instances into the cloud. The Wordpress problem99

is an example of a bin packing problem, a common problem in combinatorial optimization100

ranging over many applications such as loading trucks or graphics card resource allocation.101

The MiniZinc model used is taken from the MiniZinc challenge 2022 [10]. The original102

MiniZinc model [6], which the MiniZinc challenge model is based on, included variables not103

used within the input files given. More concretely, FVariables and FVInstances are Fixed104

Variables and Fixed Variable Instances respectively and were used to determine the effects of105

fixing certain variables otherwise left to be optimized and found. The paper also originally106

left the number of VMs as a decision variable, however the MiniZinc challenge model has an107

input parameter for the upper bound on the number of VMs to use. This restricts the search108

space on the number of VMs and focusing on the objective of minimising the cost.109

The Essence’ model is a one-to-one translation of the MiniZinc model. Note the110

MiniZinc model does not break symmetry upon the distribution of hardware on the VMs.111

The hardware deployed on a VM can be swapped to any other VM for an equivalent112

solution, resulting in the symmetry of the problem. The original model [6] does break113

the symmetry of the problem, using multiple different methods such as pricing and the114

lexicographical assignment of hardware on machines among others. This change from the115

paper to the MiniZinc challenge model might have been done to test a solvers ability to116

recognize symmetry and break it.117

While the non-symmetric version of the problem is of interest following the MiniZinc118

challenge to compare to, the symmetric model is more attuned to how a modeller would119

write this given problem. We created a version of the problem in Essence’ that breaks the120

aforementioned symmetries. To remain fair, an equivalent symmetry breaking version of the121

MiniZinc model was created to compare the symmetry breaking version of the Essence’122

model. Both the symmetry-breaking and non symmetry-breaking models will be compared.123

2.3 Rotating Rostering Problem124

The Rotating Rostering Problem [18] generalises many real life rostering problems, such as125

nurse rostering. The goal is to find a satisfiable assignment of shifts for each day to fulfill126

the shifts requirements and avoid conflicts. A shift type may either be a day off, a morning127

shift, a late shift, or a night shift. The shifts are ordered such that the following constraints128

are satisfied: 1. The number of staff required for a day is satisfied as needed. 2. There is a129

min and max number of consecutive shift assignments for the same shift type. 3. The shift130

ordering is forward rotating; a shift must be proceeded by a larger or equal shift type, or a131

4 Towards Understanding Differences Between Modelling Pipelines

rest day. 4. Weekends (Saturday Sunday) have the same shift type. 5. At least two days132

must be rest days every 14 days.133

When converting the MiniZinc model over to Essence’ , we identified what we believe134

is an overlooked edge case. Incorrect solutions rarely appeared, but surfaced when running135

generated instance solutions through a solution checker. The issue related to the minimum136

number of shift assignments mandated by the constraints. As part of the original constraints,137

if the shift type of one day is different to the next day, the following days must meet the138

minimum number of consecutive shifts. This works well, until the edge case of the very139

first shift forgoing the minimum number of consecutive shifts, as the constraints ensure the140

following days meet the minimum number of consecutive shifts as seen in Listing 1. To fix141

this, we simply an extra constraint from the very first shift as seen in Listing 2.142

Listing 1 MiniZinc minimum number of consecutive shifts constraint
143

1constraint forall(day in 1..numberOfDays - s_min) (144

2plan1d[day] != plan1d[day+1] -> all_equal(plan1d[day+1..day+s_min]));145146

Listing 2 MiniZinc minimum number of consecutive shifts additional constraint
147

1constraint(all_equal(plan1d[1..s_min]));148149

2.4 Traveling Tournament Problem with Predefined Venues150

The Traveling Tournament Problem with Predefined Venues (TTPPV) [16], is a specialisation151

of the Traveling Tournament Problem. A set of teams playing in a tournament is organized152

as a simple round robin schedule, with each game playing at different venues. The objective153

is to minimize the distance travelled by the teams between different venues.154

The difference to the Traveling Tournament Problem is that in TTPPV the venues of155

each game are predefined. This means if team a plays against team b, the venue is predefined156

as being at either a’s home or b’s home. With the predefined venues, the problem lies in the157

scheduling of the games and minimizing the sum of the traveling distances of the teams. The158

problem is further specialised by using circular distances between the venues for simplicity.159

The regular predicate is used within the MiniZinc model to assert there are at most 3160

consecutive home games and at most 3 consecutive away games. More generally, the regular161

predicate asserts that a sequence of variables take a value from a finite automaton, where162

the automaton in the MiniZinc model asserts at most two consecutive away or home games.163

When translating the regular predicate to Essence’ , we use a forAll statement, checking164

that there are not four consecutive assignments.165

2.5 Capacitated Vehicle Routing problem with Time Windows, Service166

Times and Pickup and Deliveries167

The Capacitated Vehicle Routing problem with Time Windows, Service Times and Pickup and168

Deliveries (CVRPTW) is an example of a routing problem which specialises the Capacitated169

Vehicle Routing Problem [19] and was sourced from the 2022 MiniZinc challenge [17]. It170

is defined as follows: there are several vehicles with a given capacity for goods, and there171

are a number of pickup and drop-off locations of customers to deliver to. These pickup and172

delivery locations have an associated demand for the goods the vehicles need to pick up or173

deliver. As an added constraint, there are specified time windows for the deliveries to each174

C. Balogh, R. Hoffmann and J. Espasa 5

customer such that the delivery truck must arrive and leave within this time window from175

the delivery location. The route chosen may not take any sub-tours for any route it takes.176

As part of the MiniZinc model, the circuit predicate is used to ensure the vehicle177

delivery routes do not take sub-tours in their route and visits each location uniquely for178

optimisation. A circuit is such that the cell value of an array points to the index of the next179

number, and this forms a circuit that continues around. For the translation to Essence’ ,180

we used the decomposition of the circuit predicate from the MiniZinc library 2.181

To create the equivalent expression of circuit in Essence’ , a new variable is introduced to182

determine and constrain the ordering of values to form the circuit.The Essence’ equivalent183

of circuit for the decision variable successor in the model is as follows in Listing 3.184

Listing 3 Essence’ circuit predicate equivalent
185

1allDiff(successor),186

2forAll i : NODES . successor[i] != i,187

3allDiff(successorOrder),188

4successorOrder[1] = 1,189

5forAll i : NODES .190

6(successorOrder[i] = maxNodes -> successorOrder[successor[i]] = 1) /\191

7(successorOrder[i] != maxNodes -> successorOrder[successor[i]] =192

successorOrder[i] + 1)193194

2.6 Multi-Skilled Project Scheduling Problem195

The Multi-Skilled Project Scheduling Problem (MSPSP) is a variation on the basic resource-196

constraint project scheduling problem [1] used in the 2012 Minizinc Challenge. In this197

problem there are a series of workers, with each worker having a specific skill set. There are198

several activities with an associated skill requiring completion to finish the project, and the199

overall goal is to minimize the project time.200

The MiniZinc formulation uses set variables, where Essence’ (unlike Essence [3]) lacks201

modelling support for them. To overcome this limitation, the sets from MiniZinc were202

translated into the occurrence representation of the numbers. This allowed for each matrix to203

be equivalent in size to satisfy the Essence’ language limitations. A disadvantage of using204

this method is that by using the occurrence representation the parameter files become larger.205

The MiniZinc model also makes use of letting to create variables within constraints,206

but Essence’ cannot do the same. As a result, an equivalent expression is created. On Line 4207

of Listing 4, a new Boolean variable is introduced into the scope of the constraint. This208

variable acts like a normal decision variable, with the goal of assigning a satisfiable value. In209

Line 5 and Line 6 the Boolean variable before in combination with an implication ensures210

at least one of the expressions following the implication is true. This can be compactly211

expressed in Essence’ by using an or, as shown in Listing 5 on Line 5.212

Listing 4 Usage of MiniZinc letting in MSPSP
213

1constraint214

2forall (i, j in Tasks where i < j /\ not(j in suc[i]) /\ not(i in suc[j]))(215

3if exists(k in Skills)(rr[k,i] + rr[k,j] > rc[k]) then216

4let { var bool: before } in (217

2 fzn_circuit.mzn in [11]

6 Towards Understanding Differences Between Modelling Pipelines

5(before -> s[i] + d[i] <= s[j])218

6/\ (not(before) -> s[j] + d[j] <= s[i]))219

7else true endif);220221

Listing 5 Essence’ letting equivalent to Listing 4
222

1forAll i : Tasks . forAll j : Tasks .223

2(i < j /\ suc[i,j] = 0 /\ suc[j,i] = 0) ->224

3((exists k : Skills .225

4rr[k,i] + rr[k,j] > rc[k]) ->226

5((s[i] + d[i] <= s[j]) \/ (s[j] + d[j] <= s[i]))),227228

The MiniZinc model (Listing 6) has a series of further lettings: WTasks and TWorkers.229

WTasks and TWorkers are sets, where WTasks is the set of tasks where a skill for that task230

exists, and TWorkers is the set of workers who have an existing skill required. To create an231

equivalent in Essence’ , a single variable is introduced, TWorkers, encompassing WTasks232

and TWorkers together in a 2d matrix. This is expressed in Listing 7.233

Listing 6 Additional MiniZinc lettings in MSPSP
234

1let { set of int: WTasks =235

2{ i | i in Tasks where exists(k in has_skills[j])(rr[k, i] > 0) }236

3} in...237

4let { set of int: TWorkers =238

5{ j | j in Workers where exists(k in has_skills[j])(rr[k, i] > 0) }239

6} in...240241

Listing 7 Essence’ equivalent to Listing 6
242

1forAll i : Tasks . forAll j : Workers .243

2TWorkers[j, i] = 1 <->244

3exists k : Skills . has_skills[j, k] = 1 /\ rr[k,i] > 0,245246

TWorkers is then leveraged in all further constraints equivalent to the lettings of247

TWorkers and WTasks as seen in Listing 8. Listing 8 constraints the number of workers with248

a set skill working upon a task to satisfy the requirements. Using the TWorkers variable249

created in Listing 7, the equivalent of the MiniZinc Listing 8 is created for Essence’ in250

Listing 9.251

Listing 8 MiniZinc letting over TWorkers
252

1constraint forall (i in Tasks) (253

2let {254

3set of int: TWorkers =255

4{ j | j in Workers where exists(k in has_skills[j])(rr[k, i] > 0) }256

5} in (257

6forall (k in Skills where rr[k, i] > 0)258

7(sum(j in TWorkers where k in has_skills[j])(259

8bool2int(w[j, i])) >= rr[k, i])260

9/\ forall (j in Workers where not(j in TWorkers))261

10(w[j, i] = false)));262263

Listing 9 Essence’ equivalent to Listing 8

C. Balogh, R. Hoffmann and J. Espasa 7

264
1forAll i : Tasks . forAll k : Skills .265

2rr[k, i] > 0 ->266

3sum([w[j,i] /\ TWorkers[j,i] = 1 /\ has_skills[j,k] = 1 | j : Workers])267

>= rr[k, i],268

4forAll i : Tasks . forAll j : Workers .269

5TWorkers[j, i] = 0 -> w[j,i] = false,270271

The cumulative predicate is used to determine if the cumulative resource usage is within272

bounds. That is, a set of tasks with start times, durations, and resource requirements, never273

exceed the global resource bound at any time. The cumulative predicate is a common274

predicate used in scheduling problems and is therefore optimized in most solvers such as275

Chuffed . In the translation to Essence’ we used the default MiniZinc decomposition of276

cumulative3. The cumulative predicate is used twice in the MSPSP MiniZinc model, both277

with letting statements.The first cumulative imposes that at least one worker fulfills the278

task assignment while respecting the duration and timings. The second cumulative ensures279

the resources requirements is exceeded or equaled by workers while respecting durations and280

orderings. The equivalent Essence’ is created in Listing 10.281

Listing 10 Essence’ equivalent of cumulative in MSPSP
282

1forAll work : Workers .283

2sum(TWorkers[work,..]) > 1 ->284

3(forAll j : Tasks .285

41 >= sum([(TWorkers[work, j] = 1) /\ (TWorkers[work, i] = 1) /\286

5(s[i] <= s[j]) /\ (s[j] < (s[i] + d[i]))287

6/\ w[work,i] | i : Tasks])),288

7forAll k : Skills .289

8(sum([rr[k,i] > 0 | i : Tasks]) > 1 /\290

9sum([rr[k,i] | i : Tasks, rr[k,i] > 0]) > rc[k]) ->291

10forAll j : Tasks .292

11rr[k,j] > 0 ->293

12rc[k] >= sum([(s[i] <= s[j] /\ s[j] < (s[i] + d[i]))*rr[k,i] | i :294

Tasks, rr[k,i] > 0]),295296

3 Experiments297

Our experiments aim to identify performance differences between Savile Row 1.9.1 and298

MiniZinc 2.7.5. The experiments were run using 3 different optimisation levels that the299

respective developers offer for each pipeline. That is, no optimisation (O0S0 in Savile Row ,300

O0 in MiniZinc), intermediate optimisation (O2S1 in Savile Row , O1 in MiniZinc) and full301

optimisations (O3S2 in Savile Row , O5 in MiniZinc). Note that these will differ between302

pipelines, in particular due to Savile Row allowing control over the amount of symmetry303

breaking constraints introduced during tailoring, something that MiniZinc does not enable.304

Certain problems were lacking in the number of instances or in their variety. To com-305

pensate, additional instances were generated through a combination of Python scripts or306

parameterised generators as constraint models, similarly to previous approaches [2].307

Timing information is presented as the quotient of Essence’ over MiniZinc . That is, a308

3 fzn_cumulative_task of fzn_cumulative.mzn in [11]

8 Towards Understanding Differences Between Modelling Pipelines

number > 1 suggests MiniZinc was faster, while a number < 1 suggests Essence’ was faster.309

These timings use the geometric mean, which uses the product rather than the sum, giving a310

better indicator of the central tendency of runs. In Table 1 we can see that both pipelines311

produce very similar and consistent results with respect to solving a given problem. Both312

pipelines solve all instances for the Rostering and Scheduling problems, and neither finds any313

solutions to the vehicle routing problems (within the set timeout). When the problems get314

harder (or more varied), such as the Quasigroup problems, modelling in Savile Row seems315

to be more consistent between the model representations and different optimisations levels.316

In the other problem groups both pipelines can be considered equal.317

From a timing perspective, MiniZinc clearly outperforms Savile Row in MSPSP and318

Rostering (the problem classes where both solvers find all solutions). Meanwhile, in the319

two Quasigroup models Savile Row performs faster, and is solving more of the instances.320

We see this as an indicator that, in the given dataset, Savile Row performs better on321

harder instances. We believe that MiniZinc outperforms Savile Row on easy instances, as322

MiniZinc has a very low initialisation time when compared to Savile Row , as it is written323

in C++. In problems where both pipelines solved some of the problems, the results are324

inconclusive. Although the Wordpress problem without the explicit symmetry breaking325

constraints performs better in the highest optimisation level in MiniZinc , with the explicit326

symmetry breaking constraints Savile Row performs better the higher the optimisation327

levels.328

Essence’ MiniZinc Timing Ratio
Problem # O0S0 O2S1 O3S2 O0 O1 O5 O0S0

O0
O2S1

O1
O3S2

O5

Quasigroup 43 41 42 41 40 39 40 0.08 0.5 0.6
Quasigroup Occ. 43 41 41 42 32 37 38 0.12 0.08 0.38

Wordpress 9 6 6 6 6 6 6 1.54 1.83 5.29
Wordpress Symm. 9 4 4 6 4 4 4 1.47 1.36 0.49

TTPPV 20 3 3 3 3 3 3 0.99 1.35 1.98
MSPSP 6 6 6 6 6 6 6 138.48 88.57 612.61

CVRPTW 5 0 0 0 0 0 0 1.0 1.0 1.0
Rostering 7 7 7 7 7 7 7 29.5 15.15 77.7

Table 1 Columns Essence’ and MiniZinc show the number of solved instances per problem,
split between the 3 considered optimisation levels. Timing ratios show the ratio between Essence’
and MiniZinc options, where > 1 denotes MiniZinc was faster and < 1 otherwise.

4 Conclusions and Further Work329

These initial findings seem to suggest that Minizinc might be better suited for scenarios where330

an expert modeler can leverage the capabilities of the pipeline and where code maintainability331

are crucial. Conversely, Savilerow strong reformulation capabilities and good default settings332

would be the preferred choice for tackling complex problems where consistent performance is333

paramount. To solidify these findings, a wider selection of both solvers and problems have to334

be considered.335

References336

1 Rina Agarwal, Manoj K Tiwari, and Sanat K Mukherjee. Artificial immune system based337

approach for solving resource constraint project scheduling problem. The International Journal338

C. Balogh, R. Hoffmann and J. Espasa 9

of Advanced Manufacturing Technology, 34(5):584–593, 2007.339

2 Özgür Akgün, Nguyen Dang, Ian Miguel, András Z. Salamon, and Christopher Stone. Instance340

generation via generator instances. In Thomas Schiex and Simon de Givry, editors, Principles341

and Practice of Constraint Programming, pages 3–19, Cham, 2019. Springer International342

Publishing.343

3 Özgür Akgün, Alan M. Frisch, Ian P. Gent, Christopher Jefferson, Ian Miguel, and Peter344

Nightingale. Conjure: Automatic Generation of Constraint Models from Problem Specifications.345

Artif. Intell., 310:103751, 2022. doi:10.1016/J.ARTINT.2022.103751.346

4 David Bogdan-Nicolae. CSPLib problem 090: Wordpress application deployment in the cloud.347

http://www.csplib.org/Problems/prob090.348

5 Geoffrey Chu, Peter J Stuckey, Andreas Schutt, Thorsten Ehlers, Graeme Gange, and Kathryn349

Francis. Chuffed, a lazy clause generation solver, 2018. URL: https://github.com/chuffed/350

chuffed.351

6 Mădălina Eraşcu, Flavia Micota, and Daniela Zaharie. Scalable optimal deployment in the cloud352

of component-based applications using optimization modulo theory, mathematical programming353

and symmetry breaking. Journal of Logical and Algebraic Methods in Programming, 121:100664,354

2021.355

7 Ian P Gent and Toby Walsh. Csplib: a benchmark library for constraints. In International356

Conference on Principles and Practice of Constraint Programming, pages 480–481. Springer,357

1999.358

8 Christopher Jefferson and Alan M Frisch. On the effectiveness of set and multiset repres-359

entations in constraint programming. Modelling and Reformulating Constraint Satisfaction360

Problems, page 125, 2004.361

9 Vipin Kumar. Algorithms for constraint-satisfaction problems: A survey. AI magazine,362

13(1):32–32, 1992.363

10 MiniZinc. Minizinc challenge 2022 results, 2022. URL: https://www.minizinc.org/364

challenge2022/results2022.html.365

11 MiniZinc Developers. MiniZinc Standard Library. https://github.com/MiniZinc/366

libminizinc/tree/master/share/minizinc/std.367

12 Nicholas Nethercote, Peter J. Stuckey, Ralph Becket, Sebastian Brand, Gregory J. Duck, and368

Guido Tack. Minizinc: Towards a standard cp modelling language. In Christian Bessière,369

editor, Principles and Practice of Constraint Programming – CP 2007, pages 529–543, Berlin,370

Heidelberg, 2007. Springer Berlin Heidelberg.371

13 Peter Nightingale. Savile row manual. CoRR, abs/2201.03472, 2022. URL: https://arxiv.372

org/abs/2201.03472, arXiv:2201.03472.373

14 Peter Nightingale, Özgür Akgün, Ian P. Gent, Christopher Jefferson, Ian Miguel, and374

Patrick Spracklen. Automatically improving constraint models in savile row. Artificial375

Intelligence, 251:35–61, 2017. URL: https://www.sciencedirect.com/science/article/376

pii/S0004370217300747, doi:https://doi.org/10.1016/j.artint.2017.07.001.377

15 Gilles Pesant. CSPLib problem 067: Quasigroup completion. http://www.csplib.org/378

Problems/prob067.379

16 Gilles Pesant. CSPLib problem 068: Traveling tournament problem with predefined venues380

(ttppv). http://www.csplib.org/Problems/prob068.381

17 Peter J Stuckey, Thibaut Feydy, Andreas Schutt, Guido Tack, and Julien Fischer. The minizinc382

challenge 2008–2013. AI Magazine, 35(2):55–60, 2014.383

18 Petra Hofstedt Sven Löffler, Ilja Becker. CSPLib problem 087: Rotating rostering problem.384

http://www.csplib.org/Problems/prob087.385

19 Özgür Akgün. CSPLib problem 086: Capacitated vehicle routing problem. http://www.386

csplib.org/Problems/prob086.387

https://doi.org/10.1016/J.ARTINT.2022.103751
http://www.csplib.org/Problems/prob090
https://github.com/chuffed/chuffed
https://github.com/chuffed/chuffed
https://github.com/chuffed/chuffed
https://www.minizinc.org/challenge2022/results2022.html
https://www.minizinc.org/challenge2022/results2022.html
https://www.minizinc.org/challenge2022/results2022.html
https://github.com/MiniZinc/libminizinc/tree/master/share/minizinc/std
https://github.com/MiniZinc/libminizinc/tree/master/share/minizinc/std
https://github.com/MiniZinc/libminizinc/tree/master/share/minizinc/std
https://arxiv.org/abs/2201.03472
https://arxiv.org/abs/2201.03472
https://arxiv.org/abs/2201.03472
http://arxiv.org/abs/2201.03472
https://www.sciencedirect.com/science/article/pii/S0004370217300747
https://www.sciencedirect.com/science/article/pii/S0004370217300747
https://www.sciencedirect.com/science/article/pii/S0004370217300747
https://doi.org/https://doi.org/10.1016/j.artint.2017.07.001
http://www.csplib.org/Problems/prob067
http://www.csplib.org/Problems/prob067
http://www.csplib.org/Problems/prob067
http://www.csplib.org/Problems/prob068
http://www.csplib.org/Problems/prob087
http://www.csplib.org/Problems/prob086
http://www.csplib.org/Problems/prob086
http://www.csplib.org/Problems/prob086

	1 Introduction
	2 The Models
	2.1 Quasigroup Completion
	2.2 Wordpress Application Deployment in the Cloud
	2.3 Rotating Rostering Problem
	2.4 Traveling Tournament Problem with Predefined Venues
	2.5 Capacitated Vehicle Routing problem with Time Windows, Service Times and Pickup and Deliveries
	2.6 Multi-Skilled Project Scheduling Problem

	3 Experiments
	4 Conclusions and Further Work

