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Abstract10

In a recent work, we introduced extensions to the Unified Planning framework to support more11

expressive modelling, including a new array type to handle multidimensional structures, support12

for bounded integer parameters in actions, and a new integer range variable type for quantified13

expressions. These are supported through a compilation process to the standard AI Planning14

language PDDL. When introducing complex data types such as arrays, accesses out of bounds may15

be a source of undefinedness. Undefinedness in numeric planning may occur only due to a lack of16

initialisation in numeric functions or due to ill-formed expressions such as division by zero. Planners17

should consider formulas containing expressions with undefined values as not satisfied in any state.18

However, the treatment of the undefinedness introduced through arrays cannot be delegated to the19

planner because arrays are not expressable in PDDL and hence planners do not natively support20

them. Therefore, out-of-bounds undefinedness must be addressed within the compilation process.21

In this work, we analyze several cases that demonstrate how out-of-bounds array access can be22

treated. There are a range of options, from simply treating a formula that contains an undefined23

subexpression as unsatisfiable, to a more nuanced treatment based upon where the undefinedness24

occurs, which provides more modelling convenience.25
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1 Introduction30

Automated Planning is a branch of Artificial Intelligence that focuses on selecting sequences31

of actions to achieve desired goals from specified initial conditions. Planning problems arise32

frequently in many contexts, from daily tasks to industrial processes. The Planning Domain33

Definition Language (PDDL)[6] is the leading language used in automated planning to model34

planning problems. It provides a formal way to describe a problem in terms of objects,35

predicates, actions, and functions with parameters.36

While PDDL is powerful, its low-level abstractions can make it challenging to model37

certain types of planning problems efficiently [2]. Unified Planning (UP)[8] is a Python library38

where users can leverage Python’s language features and libraries to construct planning39

models programmatically, and then transform them into PDDL. Many planning domains40

involve structured relationships and grid-like environments that are naturally represented41

using multidimensional arrays. To better support these domains, in previous work [10], we42

extended the UP framework with support for multidimensional arrays, bounded integer43

parameters in actions to enable direct indexing within these arrays, and range variables to44

support quantified expressions over integers.45
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These new modelling capabilities are designed to allow users to describe problems at a46

high level, without having to manually enumerate all possible cases. However, this introduces47

new challenges, especially regarding out-of-bounds array accesses, which may arise naturally48

when referring to neighbouring positions or iterating over structured data.49

In the setting of classical planning, this kind of undefinedness is not accounted for, as all50

states and actions are assumed to be well-defined. This is because PDDL does not support51

data structures like arrays or lists.52

PDDL2.1 introduces the notion of undefinednes in the context of numeric fluents [3]:53

These can initially be undefined, and any expression or comparison involving an undefined54

value is itself undefined. Consequently, any precondition or goal that contains such expressions55

cannot be satisfied, effectively making any plan that relies on undefined numeric values56

invalid. The Unified Planning (UP) framework claims to follow this same semantics. However,57

the treatment of undefinedness varies between engines as noted in the UP documentation [11]:58

“some engines might allow the reference to undefined values in disjunctions where at least59

one term is true, while the PDDL semantics would consider this expression as ill-formed.”60

This discrepancy reveals that undefinedness is not handled consistently in current tools.61

Recent work has explored ways to make planning more accessible by enabling more62

expressive and natural modelling. For example, several approaches [5, 7, 9, 1] allow users to63

describe problems at a higher level, often with support for arithmetic or structured data.64

However, these approaches do not address the treatment of undefined expressions or the65

potential issues arising from out-of-bound references.66

In our previous work [10], we focused on the reformulation of the proposed extensions,67

since no existing solver supports them directly. In the next section, we summarize how this68

compilation process is performed. Because array accesses can be checked during compilation,69

we can detect when an expression refers to a position outside the valid bounds and handle it70

accordingly.71

In this work, we explore strategies that handle such cases during compilation time,72

ensuring that no out-of-bound expressions are propagated to the solver. Our goal is to73

preserve the user’s modelling intent as accurately as possible. We provide several modelling74

scenarios where undefined expressions naturally appear and explain how our proposal handles75

them.76

2 Undefinedness in Planning with Arrays77

Our extensions to the Unified Planning (UP) framework [10] introduced:78

Multidimensional Arrays, enabling the direct representation of grid-like structures.79

An example is the fluent blocks from Listing 2.80

Bounded Integer Parameters in Actions, allowing direct indexing and arithmetic81

operations over arrays. This can be seen in the action defined in Listing 2.82

Range Variables, representing bounded integer variables that can be used in quantifiers.83

An example is shown in Listing 5.84

These constructs enable more expressive and structured modelling, but they also introduce85

a challenge: how to deal with expressions that refer to array positions that are not valid in86

the context of the domain. For example, accessing grid[3][0] in a 3 × 3 array (with indices87

ranging from 0 to 2). Such expressions are undefined, and failing to handle them properly88

can result in invalid models.89

We use the term undefinedness to capture two main situations:90
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(i) Out-of-bounds accesses: when an expression refers to a position outside of an array’s91

defined range.92

(ii) Explicitly undefined positions accesses: when an expression refers to certain valid indices93

(according to the array’s range) which are intentionally excluded from the structure94

(e.g., to model obstacles or walls). This is a convenient feature we provide in our latest95

work [redacted1], via the optional undefined_positions parameter in array fluents,96

which takes a list of tuples matching the structure dimension. This allows “holes” to be97

defined in the structure, ensuring that no action can interact with those positions. For98

example, in Listing 3, the positions (0,0) and (5,0) are excluded from a 6 × 6 grid to99

represent a wall, as in a variant of the classical Rush Hour.100

Our compiler removes arrays from the problem by replacing them with individual fluents101

or values that represent each element of the array. Imagine, for instance, having a grid with102

two “forbidden cells” as illustrated in Figure 1. This would be represented in UP with a103

fluent grid that will be compiled into one fluent per valid cell, while positions specified in104

the undefined_positions parameter are discarded during compilation (see Figure 2).105

Figure 1
Grid example.

Figure 2 Compilation of a 2D array fluent with undefined positions to individual
fluents representing each element.

The compiler also handles action schemes with integer parameters by generating one106

(partially) grounded action for each valid combination of parameter values within their107

declared bounds in which the integer parameters are replaced by specific values within the108

preconditions and effects. Additionally, the compiler simplifies expressions that involve109

integer arithmetic during the substitution process. An example is shown in Figure 3, where110

the move_right action scheme of a Block is expanded into multiple grounded actions. Some111

action instances are discarded during this process due to how undefined accesses are handled.112

We explain this behaviour in the next section.113

This compiler also processes RangeVariable constructs by expanding integer quantifiers114

into equivalent logical expressions. A Forall over a RangeVariable is translated into a115

conjunction (And) over all possible values in the range, while an Exists over a RangeVariable116

is translated into a disjunction (Or) over the same values. Note that these quantifiers involve117

integer RangeVariables and are fully grounded during compilation. Therefore, when we refer118

to the treatment of undefined expressions within Forall and Exists in Table 1, we refer to119

quantifiers that remain in the model after this grounding step, i.e., those that quantify over120

objects as is usually done in PDDL.121

We illustrate this transformation by adding a precondition to the move_right action in122

Figure 3, requiring that the block being moved is different from all blocks above it in the123

same column. Listing 1 shows this as a Forall over a RangeVariable ranging from 0 to r:124

1 This is a reference to a work submitted under double blind rules.
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23:4 Undefinedness in Planning with Arrays

Figure 3 The parameterized action schema move_right (left) has two integer parameters to
represent the row and column. Those get compiled away by binding them to specific grid positions
(middle), and generating nine ground actions (right). Invalid actions (shown in red) are filtered out
during compilation, while valid actions are kept.

Listing 1 A Forall over a RangeVariable that gets expanded during compilation.
125

b = RangeVariable ("b", 0, r)126

move_right . add_precondition ( Forall (Not( Equals (grid[r][c], grid[b][c])), b))127128

At compilation time, this expression is expanded into a conjunction over all valid values129

of b in the given range. For example, in the partially grounded action move_right(r=2,130

c=0), the condition becomes:131

grid[2][0] ̸= grid[0][0] ∧ grid[2][0] ̸= grid[1][0] ∧ grid[2][0] ̸= grid[2][0]132

Handling undefined expressions properly is essential to ensure that the generated models133

are valid. In the following sections, we discuss how undefinedness can propagate in expressions134

and present our compilation-based approach for detecting and handling such cases, ensuring135

that the resulting model is valid and well-defined. As a result, modellers can write general136

action descriptions without having to handle special cases manually.137

3 Our Approach138

Out-of-range positions can be handled in the following two modes:139

Restrictive any out-of-bounds access is considered an error and aborts the compilation140

process.141

Permissive out-of-bounds accesses are interpreted according to the surrounding operator142

and context.143

In the permissive mode, we propose a semantics for ruling the compilation of undefined144

expressions that is adapted to the needs of planning. We refer to the undefined value as ⊥.145

Our approach is operator-aware: instead of propagating undefinedness blindly, it handles it in146

a way that reflects the role of each logical operator. Internally, undefined subexpressions are147

treated according to the context in which they appear. As we will illustrate, an out-of-bounds148

access occurring in a precondition is a distinct situation from a similar occurrence in an effect.149
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This analysis is performed entirely at compilation time, inside the compilers, which either150

eliminate the corresponding actions or modify the expressions according to our semantics.151

Importantly, when we say that an action is discarded, we refer to a specific instantiation152

generated during (partial) grounding. As a result, some instances of the same action scheme153

may be eliminated while others are preserved. This selective removal ensures that the154

resulting model is clean and safe before it is given to the solver, preventing the generation of155

possible invalid plans due to incomplete actions.156

In our previous work [10], we introduced a new expression, Count, to allow users to count157

how many among a list of Boolean arguments evaluate to True. The expression can be written158

as Count(a,b,c) or Count([a,b,c]), where a, b and c are arbitrary Boolean expressions.159

When dealing with undefined values, Count behaves similarly to Or: any undefined arguments160

are ignored. Only those that are well defined contribute to the count.161

Table 1 Propagation of undefined expressions by logical operators

Operator
Behaviour with

Undefined Argument
Evaluation

And

If any argument is undefined,
result is undefined

⊥ ∧ a ⇒ ⊥
Not ¬⊥ ⇒ ⊥
Iff a ↔ ⊥ ⇒ ⊥
⋄ ∈ {=, ̸=, <, >, ≥, ≤} ⊥ ⋄ a ⇒ ⊥
Forall ∀x. ⊥ ⇒ ⊥
Exists ∃x. ⊥ ⇒ ⊥

Or Any undefined argument is
ignored, unless all are
undefined

⊥ ∨ a ⇒ a

⊥ ∨ ⊥ ⇒ ⊥

Count
Count([a, ⊥, b]) ⇒ Count([a, b])
Count([ ]) ⇒ 0

Implies a → b treated as ¬a ∨ b
⊥ → b ⇒ ⊥ ∨ b ⇒ b

a → ⊥ ⇒ ¬a ∨ ⊥ ⇒ ¬a

Table 2 Handling of undefined expressions depending on the context

# Expression Context Behaviour Justification
1 Precondition

Discard the
entire action

The action is unsafe and invalid.
2 Left-hand side of effect Writing to an invalid variable is al-

ways invalid.
3 Right-hand side of effect Cannot assign an undefined value.
4 Conditional effect condition Discard only

the effect
The effect cannot happen, but the
rest of the action may still be valid.

CVIT 2016
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We illustrate each case from Table 2 with concrete examples and explain the justification162

for the chosen behaviour. Each example shows how an undefined expression affects the163

compilation process and why the action or effect is discarded or retained. In addition,164

these examples help demonstrate how undefined values propagate depending on the logical165

operators involved, as described in Table 1.166

Case 1: Precondition167

Any precondition that fully evaluates to ⊥ or False causes the corresponding action to be168

removed from the domain. This ensures that trivially inapplicable actions are removed.169

Figure 4 Plotting (Taito, 1989). The goal is to
reduce the number of blocks in the grid to a target
number (8 here) or fewer. The avatar (left) shoots
blocks into the grid. If the shot block hits one of the
same colour, that block is removed. State changes
are complex because multiple blocks may be removed
in a single shot and gravity affects the blocks in the
grid.

Example 1: We demonstrate the handling of an undefined expression in a precondition170

with Plotting (Figure 4). In our formulation in Listing 2, the fluent blocks is a 2D array of171

Colour type values indexed by rows and cols, both integers.172

Listing 2 Plotting: undefined precondition.
173

rows = 2174

cols = 3175

Colour = UserType (" Colour ")176

empty = Object (" empty ")177

blocks = Fluent (" blocks ", ArrayType (rows , ArrayType (cols , Colour )))178

179

# Shoots a block of colour p into column c, clearing blocks up to row l.180

sc = InstantaneousAction (" shoot_col ", p=Colour , c= IntType (0,cols -1) , l= IntType (0,rows -1))181

# Either l is the last row (we clear the full column ), or the next block below (l+1) is182

different from p and is not empty .183

sc. add_precondition (Or( Equals (l, last_row ), And(Not( Equals ( blocks [l+1][c], p)),184

Not( Equals ( blocks [l+1][c], empty )))))185186

The shoot-col action consist in shooting the block held by the avatar against a column c187

given as a parameter of the action. All blocks of the same colour in the column are removed,188

starting from the top and continuing downwards, until a different colour block is found189

at row l+1, or the bottom of the column is reached. When processing the action, eight190

new actions are generated, corresponding to all combinations of the integer parameters c191

and l. Consider the resulting action generated with parameter values (c=0, l=1). The192

corresponding precondition includes an array access to blocks[2][0], which is out of bounds193

and is thus treated as undefined. The compilation step then handles this as follows:194
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(l = 1) ∨ (¬(blocks[l+1][c] = p) ∧ ¬(blocks[l+1][c] = empty))195

⇒ (1 = 1) ∨ (¬(blocks[2][0] = p) ∧ ¬(blocks[2][0] = empty))196

⇒ True ∨ (¬ ⊥ ∧¬ ⊥)197

⇒ True ∨ (⊥ ∧ ⊥)198

⇒ True∨ ⊥199

⇒ True200

In this case, we are checking whether either l is the last row, or the block below l201

is of a different colour and not empty. For this specific instantiation, l refers to the last202

row, so the first disjunct holds. Since the overall precondition is a disjunction, the second203

disjunct, which contains the undefined access, does not need to be evaluated. Thanks to204

our operator-aware semantics, the undefined expression is safely ignored. As a result, the205

entire condition evaluates to True, and the action instance is preserved, which is the desired206

behaviour.207

Let us now consider a situation where we mistakenly specified the integer parameter as208

l = IntType(0, rows). This would allow the generation of action instances with l = 2,209

which exceeds the valid row indices and may lead to out-of-bounds accesses.210

(l = 1) ∨ (¬(blocks[l+1][c] = p) ∧ ¬(blocks[l+1][c] = N))211

⇒ (2 = 1) ∨ (¬(blocks[3][0] = p) ∧ ¬(blocks[3][0] = N))212

⇒ False ∨ (¬ ⊥ ∧¬ ⊥)213

⇒ False ∨ (⊥ ∧ ⊥)214

⇒ False∨ ⊥215

⇒ False216

Our compilation approach detects that the action instance will never be applicable, as its217

precondition evaluates to False. As a result, the action is safely discarded.218

Example 2: In this example from the Rush Hour domain (Figure 5), a precondition of the219

action move_car_right, shown in Listing 3, checks that the selected cell is not empty and220

thus it contains a vehicle that can be moved.221

Figure 5 Example of a Rush Hour puzzle instance. The red car
must be moved to the exit on the right side of the 6 × 6 grid by sliding
vehicles that can only move along their orientation and cannot cross
over other vehicles.

Listing 3 Rush Hour: undefined precondition.
222

rows = 6223

cols = 6224

Vehicle = UserType (" Vehicle ")225

empty = Object (" empty ", Vehicle )226

CVIT 2016
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at = Fluent ("at", ArrayType (rows , ArrayType (cols , Vehicle )),227

undefined_positions =[(0 ,0) , (5 ,0])228

mcr = InstantaneousAction (" move_car_right ", r= IntType (0,rows -1) , c= IntType (0,cols -1))229

# there is a vehicle in this position230

mcr. add_precondition (Not( Equals (at[r][c], empty )))231232

For the instantiation (r=0, c=0), the position corresponds to a wall and is explicitly233

marked as undefined, which means that no action can happen there. Our approach detects the234

access to an undefined position and eliminates the corresponding action during compilation.235

¬(at[r][c] = empty) ⇒ ¬(at[0][0] = empty) ⇒ ¬ ⊥⇒⊥236

Example 3: In this example from the Sokoban domain (Listing 4), the action move uses237

several implications to ensure that the target cell in the intended direction is empty. For238

each direction (right, left, up, down), a precondition states that if the movement is in a given239

direction, then the adjacent cell in that direction must be empty.240

Listing 4 Sokoban: undefined precondition.
241

Pattern = UserType (" Pattern ")242

P = Object ("P", Pattern ) # Player243

B = Object ("B", Pattern ) # Box244

empty = Object (" empty ", Pattern )245

Direction = UserType (" Direction ")246

right = Object (" right ", Direction )247

left = Object ("left", Direction )248

up = Object ("up", Direction )249

down = Object ("down", Direction )250

251

rows = 3252

cols = 3253

grid = Fluent ("grid", ArrayType (rows , ArrayType (cols , Pattern )))254

255

move = InstantaneousAction ("move", d=Direction , r= IntType (0,rows -1) , c= IntType (0,cols -1))256

move. add_precondition ( Implies ( Equals (d, right ), Equals (grid[r][c+1] , empty )))257

move. add_precondition ( Implies ( Equals (d, left), Equals (grid[r][c -1] , empty )))258

move. add_precondition ( Implies ( Equals (d, up), Equals (grid[r -1][c], empty )))259

move. add_precondition ( Implies ( Equals (d, down), Equals (grid[r+1][c], empty )))260261

Consider the instantiation move(d=right, r=1, c=2). In a 3×3 grid, the cell grid[1][3]262

is out of bounds. The precondition is evaluated as follows:263

(d = right) → (grid[1][3] = E) ⇒ (d = right) →⊥⇒ ¬(d = right)∨ ⊥264

⇒ ¬(d = right)265

The implication becomes a negated condition: the action can only be applied if the266

direction is not right, allowing the action to be used in other directions.267

Example implies right argument?268

Cases 2 and 3: Left-hand and Right-hand Sides of an Effect269

When an effect involves undefined expressions, either because the fluent being assigned is270

invalid (left-hand side) or because the value being assigned is undefined (right-hand side),271

the action is discarded. Such assignments may lead to incorrect states, so the corresponding272

action instances are safely removed during compilation to ensure model correctness.273
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Example 4: Let us revisit the action shoot_col(c, l) from Listing 2 in the Plotting274

domain. This action sets all positions in column c, from row 0 to l, to empty, using a275

universal quantifier over a range variable b:276

Listing 5 Plotting: left-hand side of an effect undefined.
277

b = RangeVariable ("b", 0, l)278

sc. add_effect ( blocks [b][c], empty , forall =[b])279280

For the instance (c=0, l=2) in the 2 × 3 grid, this results in the following effects:281

blocks[0][0]:=empty, blocks[1][0]:=empty, blocks[2][0]:=empty.282

Since this effect is unconditional and blocks[2][0] side is undefined, our compilation283

approach discards the entire action instance as expected?.284

Example 5: We now consider a new domain: Pancake Sorting (see Figure 6, where the285

stack of pancakes is represented using an integer array. The model uses a range variable b to286

capture the pairs of symmetric index involved in the flip.287

Figure 6 Example of a Pancake instance of size 5
where the action flip(3) is applied. The main action
flips the top f + 1 pancakes, reversing their order. For
the action flip(f), the corresponding positions (b) and
(f − b) are swapped for all x ∈ 0 . . . f .

Listing 6 Pancake: undefined left-hand and right-hand side of effects.
288

n = 5289

pancake = Fluent (" pancake ", ArrayType (n, IntType (0, 4)))290

flip = InstantaneousAction ("flip", f= IntType (1, n))291

f = flip. parameter ("f")292

b = RangeVariable ("b", 0, f)293

flip. add_effect ( pancake [b], pancake [f - b], forall =[b])294295

For the instance flip(5), the effect pancake[b] := pancake[f - b] expands to:296

pancake[0] := pancake[5], pancake[1] := pancake[4],297

pancake[2] := pancake[3], ..., pancake[5] := pancake[0]298

Since pancake[5] is out of bounds and appears in an unconditional effect, the action is299

discarded during compilation.300

Case 4: Conditional Effect Condition301

The condition of the effect cannot be evaluated and the effect will never happen, but the rest302

of the action may still be valid in other contexts.303

Example 6: In this example from the Puzznic domain (see Figure 7) shown in Listing 8,304

the action matching applies a conditional effect to each cell in a 3 × 3 grid. The effect sets a305

cell to F (free) if it is not already free and at least one of its four adjacent neighbours has306

the same pattern.307

When this is expanded using universal quantification over all grid positions, some resulting308

conditions may involve undefined positions, either because they lie outside the array bounds309

or are explicitly marked as walls.310
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Figure 7 Example of a Puzznic puzzle instance. The player must
move blocks within a grid so that identical blocks touch and disappear,
following gravity constraints. Solving each level requires planning a
sequence of moves to avoid blocking necessary paths or isolating tiles.

Listing 7 Puzznic: undefined conditional effect condition.
311

rows = 3312

cols 3313

Pattern = UserType (" Pattern ")314

empty = Object (" empty ", Pattern )315

at = Fluent ("at", ArrayType (3, ArrayType (3, Pattern )), undefined_positions =[(1 ,1) ,(2 ,2) ])316

317

matching = InstantaneousAction (" matching ")318

i = RangeVariable ("i", 0, rows -1)319

j = RangeVariable ("j", 0, cols -1)320

matching . add_effect (at[i][j], empty ,321

condition =And(Not( Equals (at[i][j], empty )),322

Or( Equals (at[i+1][j], at[i][j]) , Equals (at[i -1][j], at[i][j]) ,323

Equals (at[i][j+1] , at[i][j]) , Equals (at[i][j -1] , at[i][j]))),324

forall =[i,j])325326

For instance, in the effect at[1][0] := F, the condition includes checks on at[1][1]327

(a wall) and at[1][-1] (out of range). These are treated as undefined, and because it is a328

disjunction, the condition is simplified accordingly and the effect is kept.329

¬(at[1][0] = F) ∧ ((at[2][0] = at[1][0]) ∨ (at[0][0] = at[1][0])∨330

(at[1][1] = at[1][0]) ∨ (at[1][-1] = at[1][0]))331

⇒ ¬(at[1][0] = F) ∧ ((at[2][0] = at[1][0]) ∨ (at[0][0] = at[1][0])∨ ⊥ ∨ ⊥)332

⇒ ¬(at[1][0] = F) ∧ ((at[2][0] = at[1][0]) ∨ (at[0][0] = at[1][0]))333

334

Now consider the effect at[1][1] := F, where the target position is a wall and explicitly335

marked as undefined. In this case, the condition itself refers entirely to undefined terms.336

¬(at[1][1] = F) ∧ ((at[2][1] = at[1][1]) ∨ (at[0][1] = at[1][1])∨337

(at[1][2] = at[1][1]) ∨ (at[1][0] = at[1][1]))338

⇒ ¬ ⊥ ∧(⊥ ∨ ⊥ ∨ ⊥ ∨ ⊥)339

⇒⊥ ∧ ⊥340

⇒⊥341

Since the entire condition is undefined, the effect is removed-even if the left-hand side is342

also undefined. The action is retained, as it may still apply to other valid positions.343

Example 7: Revisiting the shoot_column action from Listing 2, this action includes a344

conditional effect that assigns a new value to hand if there is a next block below. If the345

bottom of the column has been reached, the effect does not apply and the hand colour does346

not change.347

For the instantiation (c=0, l=1) in that same grid, the effect becomes:348
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Listing 8 Plotting: undefined conditional effect condition.
349

shoot_column . add_effect (hand , blocks [l+1][c], condition =LT(l, lr))350351

Our compilation approach first evaluates the condition:352

1 < 1 ⇒ False353

Although blocks[2][0] is undefined (out of bounds), it does not cause an error because354

the condition is False. As a result, the effect is safely discarded, while the action remains355

valid and kept.356

4 Related Work357

A related line of work in the field of Constraint Programming explores how to treat expressions358

that involve undefined values [4] presents three alternative strategies to handle undefined359

subexpressions in logical formulas. The first two approaches are three-valued: they support360

an explicit undefined value (⊥), and define how it propagates through the different operators.361

This is similar to our permissive mode, where undefined expressions are also propagated.362

However, their system handles undefinedness at constraint solving time, whereas we need to363

resolve it during compilation. Since we do not know the evaluation of the fluents at that364

point, we must define a fixed behaviour based only on the structure of the expression.365

The third approach replaces undefined expressions with False. Although this may be366

convenient in certain contexts, it can lead to unintended behaviour in others. Some of the367

examples discussed previously show how this strategy may incorrectly allow an action to be368

applied, simply because an undefined condition is treated as False.369

In the Plotting example shown in Listing 2, for the first instantation shown, (c=0, l=1),370

the entire condition evaluates to True, and the action is correctly kept. In this particular371

case, blindly treating undefined values as False produces the correct result by coincidence.372

(l = 1) ∨ (¬(blocks[l+1][c] = p) ∧ ¬(blocks[l+1][c] = empty))373

⇒ (1 = 1) ∨ (¬(blocks[2][0] = p) ∧ ¬(blocks[2][0] = empty))374

⇒ True ∨ (¬False ∧ ¬False)375

⇒ True ∨ (True ∧ True)376

⇒ True ∨ True377

⇒ True378

However, for the next instantiation (c=0, l=2), the same treatment leads to accepting379

an action instance that should be discarded, since it relies on accessing an out-of-bound cell.380

This contradicts the intended semantics in planning, where all preconditions must be safely381

evaluable.382
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(l = 1) ∨ (¬(blocks[l+1][c] = p) ∧ ¬(blocks[l+1][c] = N))383

⇒ (2 = 1) ∨ (¬(blocks[3][0] = p) ∧ ¬(blocks[3][0] = N))384

⇒ False ∨ (¬False ∧ ¬False)385

⇒ False ∨ (True ∧ True)386

⇒ False ∨ True387

⇒ True388

A similar situation occurs in the Rush Hour example shown in Listing 3. The undefined ex-389

pression is replaced with False, and the negation turns it into True, causing the precondition390

to be incorrectly satisfied and the action incorrectly retained.391

¬(at[r][c] = none) ⇒ ¬(at[0][0] = none) ⇒ ¬False ⇒ True392

We now revisit the third example from the Sokoban domain (Listing 4), which uses393

implications in the precondition. The third strategy handles this by replacing the right-hand394

side of the implication with False, which works correctly in this context, as we also do.395

However, if the implication were nested inside other expressions—such as a negation or396

disjunction—this approach could lead to incorrect results. Blindly replacing undefined values397

with False may cause invalid actions to be mistakenly preserved.398

5 Discussion399

In all the problems that we have modelled so far, our approach behaves as expected: the400

generated actions match the intent of the user, and the compilation deals with undefined401

accesses in a predictable way. However, certain modelling patterns reveal limitations of the402

current semantics, especially when quantifiers interact with undefined values.403

Let us consider an example (see Listing 5) that highlights this issue. Suppose that we404

have an array of integers of size 5 (indices from 0 to 4) where a[1] is undefined, all valid405

cells are initially set to 0. We define an action that increments the value at index c, but only406

if all previous values are less than or equal to a[c]. We can write this precondition using a407

forall quantifier.408

409
array = Fluent (" array ", ArrayType (5, IntType (0 ,4)), undefined_positions =[(1) ])410

increment = InstantaneousAction (" increment ", c= IntType (0 ,4))411

c = increment . parameter ("c")412

i = RangeVariable ("i", 0, c -1)413

increment . add_precondition ( Forall (LE( array [i], array [c]) , i))414415

If we try to apply the action at c = 3, the quantifier is compiled into a conjunction. Since416

one of the terms is undefined, the whole precondition becomes undefined and the action is417

discarded:418

forall i ∈ 0..2. a[i] <= a[3]419

⇒ (a[0] ≤ a[3]) ∧ (a[1] ≤ a[3]) ∧ (a[2] ≤ a[3])420

⇒ (a[0] ≤ a[3]) ∧ ⊥ ∧ (a[2] ≤ a[3])421

⇒ ⊥422
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If we instead rewrite the same condition using a logically equivalent formulation based on423

a negated exists, the behaviour changes:424

not (exists i ∈ 0..2. a[i] > a[3])425

⇒ ¬
(
(a[0] > a[3]) ∨ (a[1] > a[3]) ∨ (a[2] > a[3])

)
426

⇒ ¬
(
(a[0] > a[3]) ∨ ⊥ ∨ (a[2] > a[3])

)
427

⇒ ¬
(
(a[0] > a[3]) ∨ (a[2] > a[3])

)
428

429

In this case, the quantifier expands into a disjunction. The undefined term is simply430

ignored, and the result depends only on the remaining defined comparisons. The two431

formulations are logically equivalent if all values are defined, but behave differently when432

some positions are undefined.433

In fact, if we look at how similar issues are handled in other declarative modelling434

paradigms like constraint programming—particularly in MiniZinc—we find the same problem.435

In MiniZinc, when an array access is out of bounds, the expression is evaluated as False,436

which can lead to inconsistent behaviour. Consider the two formulations in Listing 9, which437

are logically equivalent but behave differently.438

Listing 9 Logically equivalent formulations behave differently when handling out-of-bounds access
in MiniZinc.

439

1 array [1..5] of var int: a;440

2441

3 % UNSAT due to i=5 being out -of - bounds442

4 constraint forall (i in 1..5)(a[i] > a[i+1]);443

5444

6 % SAT445

7 constraint forall (i in 1..5)(not(a[i] <= a[i+1]));446
447

Although one could think of removing undefined expressions in quantifiers as the default448

right choice, we have shown that this could lead to invalid plans (see Listing 6).449

We believe that this limitation could be addressed by allowing quantifiers over integer450

RangeVariables to include an optional annotation indicating whether undefined elements451

should be ignored. This would give more control to the modeller and make the behaviour of452

quantifiers more flexible, aligning better with what users expect when modelling problems453

that involve inaccessible positions.454
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