Integer Linear Programming Techniques for
Enhancing Branch and Bound MaxSAT Solvers

Jialu Zhang =
Laboratoire MIS UR 4290, Université de Picardie Jules Verne, Amiens, France

Chu-Min Li &
Laboratoire MIS UR 4290, Université de Picardie Jules Verne, Amiens, France

Sami Cherif =
Laboratoire MIS UR 4290, Université de Picardie Jules Verne, Amiens, France

Shuolin Li &
Aix Marseille Univ, Université de Toulon, CNRS, LIS, Marseille, France

Zhifei Zheng =
Laboratoire MIS UR 4290, Université de Picardie Jules Verne, Amiens, France

—— Abstract

The Maximum Satisfiability (MaxSAT) problem is a major optimization challenge with numerous
practical applications, including scheduling, hardware and software debugging, and explainable
artificial intelligence. MaxSAT can be solved using SAT-based methods, Branch and Bound (BnB),
Integer Linear Programming (ILP), and heuristic algorithms. In recent years, several hybrid
algorithms have been proposed. Notably, in recent MaxSAT evaluations, most MaxSAT solvers
have incorporated ILP solvers as part of their portfolios. This paper investigates the impact of
ILP techniques on BnB MaxSAT solvers, particularly ILP preprocessing techniques and various
portfolio strategies. Experimental results demonstrate that ILP techniques enable WMaxCDCL-
OpenWhbo1200 and MaxCDCL-OpenWbo300, the best two solvers in the unweighted track of the
MaxSAT evaluation 2024, to solve 27 and 30 additional instances, respectively. Furthermore,
although state-of-the-art MaxSAT solvers heavily rely on an ILP solver in their portfolios, our
proposed approach uses ILP preprocessing techniques to reduce this dependency. Allocating only a
short runtime to the ILP solver within a portfolio that includes (W)MaxCDCL, as proposed in our
approach, is sufficient to achieve strong results.

2012 ACM Subject Classification Theory of computation — Constraint and logic programming

Keywords and phrases Maximum Satisfiability, Branch and Bound, Integer Linear Programming,
Preprocessing.

Digital Object Identifier 10.4230/LIPIcs.ModRef.2025.23

1 Introduction

Maximum Satisfiability (MaxSAT) is a natural optimization extension of the Propositional
Satisfiability problem (SAT) [12]. While SAT consists of determining an assignment that
satisfies the clausal constraints in a given formula under Conjunctive Normal Form (CNF), the
goal in MaxSAT shifts to finding a solution satisfying the maximum number of clauses in the
formula. MaxSAT is harder to solve than SAT in both theory and practice, because solving
a SAT instance only requires finding a solution, whereas MaxSAT requires finding a solution
and proving its optimality, which is more challenging [8, 28]. Many real-world optimization
problems can be formulated as MaxSAT instances, including scheduling [15, 17, 43], hardware
and software debugging [42, 40], explainable artificial intelligence [22, 23], among many others.

Algorithms for solving MaxSAT can be broadly classified into exact algorithms and
heuristic algorithms. Exact algorithms, such as SAT-based, Branch and Bound (BnB), and
Integer Linear Programming (ILP), find the optimal solution and prove its optimality. In

ialu ang, u-Min Li, Sami erif, uolin Li an ifei eng;
© Jialu Zh Chu-Min Li, S Cherif, Shuolin L d Zhifei Zh
37 licensed under Creative Commons License CC-BY 4.0

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:jialu.zhang@u-picardie.fr
https://orcid.org/0009-0009-6184-4649
mailto:chu-min.li@u-picardie.fr
https://orcid.org/0000-0002-6886-8434
mailto:sami.cherif@u-picardie.fr
https://orcid.org/0000-0003-4646-9982
mailto:shuolin.li@lis-lab.fr
https://orcid.org/0000-0002-5600-0777
mailto:zhifei.zheng@u-picardie.fr
https://orcid.org/0000-0003-4061-7518
https://doi.org/10.4230/LIPIcs.ModRef.2025.23
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2

ILP Techniques for Enhancing BnB MaxSAT Solvers

contrast, heuristic algorithms, including local search and simulated annealing, can also be
competitive, but they do not guarantee optimality [28, 32]. It is known that ILP solvers, while
they perform well on certain families of instances, are not competitive for most industrial
and random instances [5]. Therefore, the common practice observed in recent MaxSAT
evaluations', particularly for the most efficient solvers, is to combine ILP solvers in a
portfolio with other types of solvers to solve MaxSAT instances. For example, in the MaxSAT
evaluation 2024 [10], the total time limit to solve an instance is 3600s; EvalMaxSAT [7] first
runs the ILP solver SCIP [3] for 400s and then itself for 3200s; UWrMaxSat [39] runs SCIP
and itself alternatively each with a possibly different time limit, and compares its upper
and lower bounds with SCIP to improve them. As such, in all these portfolio MaxSAT
solvers that leverage ILP, the ILP solver is typically used independently within the portfolio,
requiring careful heuristic tuning, such as setting specific time limits.

In this paper, we propose a more integrated approach to enhance BnB MaxSAT solvers
with ILP techniques. The process starts by reading the CNF formula and converting it into
an integer linear programming problem. The ILP solver is then used to simplify the problem,
after which the simplified integer linear constraints are re-encoded into CNF. Finally, the
simplified MaxSAT instance is solved using a light portfolio of ILP and MaxSAT solvers.
Our approach leverages ILP techniques by incorporating ILP preprocessing into the solving
pipeline and combining ILP and BnB MaxSAT solvers through a light portfolio strategy.
Experimental results demonstrate that this strategy allows state-of-the-art BnB MaxSAT
solvers to solve more instances than the traditional portfolio approach.

The remainder of this paper is organized as follows. Section 2 introduces the MaxSAT
problem, the BnB MaxSAT algorithms, and ILP techniques. Section 3 details the methodology
for integrating an ILP solver into the MaxSAT solving pipeline. Section 4 presents our
experimental results. Finally, Section 5 concludes the paper and outlines directions for future
work.

2 Preliminaries

2.1 Maximum Satisfiability

Given a set of Boolean variables, a literal [is either a variable = or its negation —x. A clause
¢ is a disjunction of literals and can be represented as a set of literals. A formula F' in
Conjunctive Normal Form (CNF) is a conjunction of clauses, which is also represented as
a set of clauses. A variable x is assigned if it takes a value in {True, False} (i.e., {1,0}).
A literal x (—x) is assigned to True (False) if variable x is assigned True, and to False
(T'rue) otherwise. A clause c is satisfied if at least one of its literals is assigned to True. A
formula F' is satisfied if all its clauses are satisfied. The SAT problem consists of finding an
assignment that satisfies a given CNF formula F [12].

MaxSAT is an optimization extension of SAT (more natural than MinSAT, another
optimization extension of SAT [30]), encompassing both Partial MaxSAT and Weighted
Partial MaxSAT [8, 28]. Partial MaxSAT divides clauses into a subset of hard clauses H
and a subset of soft clauses S, i.e., F = H U S, and the goal is to find an assignment that
satisfies all hard clauses in H while maximizing the number of satisfied soft clauses in S.
In Weighted Partial MaxSAT, a soft clause ¢ € S can be falsified with an integer penalty
we, also called the weight of c. The objective for Weighted Partial MaxSAT is thus to find

! https://maxsat-evaluations.github.io/

Zhang, Li, Cherif, Li, and Zheng

an optimal assignment that maximizes the sum of weights of satisfied soft clauses while
satisfying all the hard clauses. Partial MaxSAT is a particular case of Weighted Partial
MaxSAT with w, = 1 for every soft clause c.

A MaxSAT problem can be naturally converted into an ILP problem. Equations (1)-(4)
give an ILP model for the weighted partial MaxSAT problem F = H U S, where H ()
is the set of hard (soft) clauses, and V is the set of Boolean decision variables in F. A
binary variable y, is introduced for each Boolean variable x in V| and a binary variable
2. is introduced for each soft clause ¢ in S. A hard (soft) clause ¢ is written as H, V H
(S; Vv SF), where H (H[) is a disjunction of negative (positive) literals. Equation (2)
ensures that every hard clause is satisfied, and Equation (3) entails that if a soft clause ¢ is
satisfied, then its weight w,. can contribute to the objective function.

Objective: Maximize ch “ Ze (1)
ces
Subject to: Z Yo + Z (1—yy)>1, VYeeH (2)
zeHT z€H,
< Yyt > (I—y), VeeSs (3)
zeST z€ST
yr €{0,1}, Ve eV; 2.€{0,1}, VceS (4)

2.2 Branch and Bound for MaxSAT

Branch and Bound (BnB) MaxSAT algorithms explore the solution space by incrementally
building a binary search tree. During the search, a BnB algorithm continually updates the
upper bound (UB), which reflects the cost of the best solution found, and the lower bound
(LB), which estimates the minimum achievable cost [14]. If the current branch’s LB exceeds
the UB, it indicates that no better solution can be found with the current assignment. The
algorithm then backtracks to an unexplored branch to continue the search. Solvers such as
MaxSatz [29], MiniMaxSAT [20], AHMAXSAT [2], and MaxCDCL [32] are based on BnB
MaxSAT algorithms.

The MaxSAT-resolution [36] rule is widely used in BnB MaxSAT solvers to prevent the
repeated detection of the same conflicts. Obtaining a tighter lower bound (LB) is also crucial
for these solvers. For example, the MaxCDCL solver performs a look-ahead procedure [21]
to estimate a more accurate LB for the current branch. Preprocessing techniques are also
broadly used in these solvers to reduce the number of variables and clauses, such as bounded
variable elimination (BVE), failed literal detection, unit propagation, and self-subsuming
resolution [6, 13]. Clause vivification [31] can also be used as preprocessing or inprocessing
to simplify hard clauses. These techniques are often based on resolution, which differs
significantly from the preprocessing techniques in ILP solvers.

2.3 Integer Linear Programming

The Integer Linear Programming solving process can be divided into a preprocessing stage
and a solving stage. In the preprocessing stage, the original instance is transformed into an
equivalent one that is potentially easier to solve. Then, in the solving stage, the solution
space of the transformed instance is explored. Different techniques are applied in each stage.

In the preprocessing stage, techniques such as variable fixing, variable aggregation,
redundant constraint elimination, and other advanced inference mechanisms [41] play a

23:3

ModRef 2025

23:4

ILP Techniques for Enhancing BnB MaxSAT Solvers

key role in speeding up problem-solving. The variable fixing technique employs a probing
algorithm that temporarily assigns a binary variable to 0 or 1 and then propagates the
resulting implications [3]. Variable aggregation exploits equations and constraint relationships
within the model, as well as cluster or symmetry detection algorithms, to merge multiple
variables into a single one. Meanwhile, redundant constraint elimination checks the bounds
of each constraint, removes constraints that are proved to be satisfied by all variable values
satisfying other constraints, or detects constraints implying infeasibility of the problem [4].

In the solving stage, the primary methods used are Branch and Bound [9] and Cutting
Planes [34] algorithms. The Branch and Bound algorithm systematically explores the ILP
solution space, pruning branches that cannot yield optimal solutions. In contrast, the
Cutting Planes algorithm iteratively addresses the linear programming relaxation of the ILP
by incrementally adding linear constraints to tighten the feasible region until all decision
variables satisfy integrality. Duality principles [25] is a technique to enhance both: in Branch
and Bound, dual bounds help prune suboptimal branches, while in Cutting Planes, dual
solutions guide the formulation of effective constraints. There are also auxiliary techniques,
such as restarts, branching node selection heuristics, and others, that help improve solving
efficiency [3].

3 Methodology

In this section, we propose a three-stage methodology to integrate an ILP solver into the
MaxSAT solving pipeline.

3.1 Integrating ILP techniques into MaxSAT solving

Our three-stage methodology can be described as follows:

1. Preprocessing Stage: Given a MaxSAT instance (originInst), an ILP model (originM odel)

is constructed based on Equations (1) to (4). Preprocessing techniques are then applied
to originModel using an ILP solver, yielding a hopefully simplified model (simpM odel).
The simpModel is subsequently encoded into a simplified MaxSAT instance (simplInst),
while the mapping between variables in originInst and simplInst is recorded in varM ap.

2. Solving Stage: At this stage, a portfolio solver is employed to solve either the sim-
plified instance simplInst or the original instance originInst. If simpInst is "smaller"
than origininst, i.e., if simpInst contains fewer variables and fewer hard clauses than
originInst, the portfolio first calls an ILP solver within a limited time to solve simplInst;
if no optimal solution is obtained, a BnB MaxSAT solver is then called. Otherwise,
originInst is solved by the portfolio solver. The definition of “smaller” is debatable and
deserves future study, as reducing the number of variables and clauses in a MaxSAT
instance does not necessarily improve the solving efficiency.

3. Reconstruction Stage: At this optional stage, the algorithm constructs an optimal
solution originSol for originInst with simpSol and var Map. This stage happens only
when simplnst is "smaller" than originInst.

Our methodology, illustrated in Figure 1, integrates both ILP preprocessing and solving
techniques into the MaxSAT solving pipeline. During the preprocessing stage, the ILP
preprocessing techniques are employed to simplify the MaxSAT instance. Subsequently, in
the solving stage, the ILP solving techniques are used alongside MaxSAT solving techniques
in a portfolio approach. Note that the ILP solver avoids performing any preprocessing during
the solving stage to prevent redundant computation.

Zhang, Li, Cherif, Li, and Zheng

Input Solve origininst by

a portfolio solver
Solve s:n7plnst by simpSol
a portfolio solver

simplnst
smaller than
origininst?

[Convert to ILP model]

originModel

[Preprocess by an ILP solver]

simpModel

- 1
Encode simplified model
| p —

No Reconstruct

the originSol originSol

Output

—

varMap

1. Preprocessing Stage 2. Solving Stage 3. Reconstruction Stage

Figure 1 A three-stage methodology to integrate an ILP solver into the MaxSAT solving pipeline.

The key aspect in our methodology is to convert simpModel into simpInst. We first
check the variables and constraints in simpModel and then try to encode them to MaxSAT.
The encoding involves mapping variables from simpM odel to simpInst, encoding constraints
as hard clauses, and representing the objective function as soft clauses. The details are
described in the following subsections.

After preprocessing by an ILP solver, the original ILP model (originM odel) is transformed
into simpModel, in which we distinguish three types of binary decision variables: fixed,
aggregated, and free. A fixed variable in simpModel means that it is assigned a fixed
value because the other value is proven to falsify at least one constraint in originM odel.
Algorithm 1 records the values of the fixed variables in var M ap (line 4) for the reconstruction
of originSol.

3.2 Variable Encoding

A variable y, in simpModel is referred to as aggregated when there is a relation of the form
Yr = Co + Z?’zl ¢; - y; in simpModel. This entails that the value of y, depends on other
variables y; for i = 1,...,n. In the case of a simple aggregation, i.e., n =1, ¢g = 0,cl =1
andn =1, ¢g =1,cl = —1, we have y, = y; and y, = 1 — y3, respectively. Algorithm 1 thus
traverses the aggregation chain and creates a unique new Boolean variable to represent all
variables in the chain by preserving their relations (lines 8-10). For example, consider three
variables in simpModel with the aggregation relationships (y1 = 1 —y2) and (y2 = y3). In
this case, only one new Boolean variable v; is created in stmplInst to represent y;, y2 and ys,
by implementing the mapping {y; — —wv1,y2 — v1,y3 — v1} when transforming simpM odel
to simplInst, which preserves (y; = 1 —y2) and (y2 = y3). Together with variable fixing, this
operation often significantly reduces the number of variables in simplInst w.r.t. originInst,
as will be showcased empirically in Section 4. In the general case, Algorithm 1 encodes the
aggregation constraint as a Pseudo-Boolean formula —y, + Z?zl ¢; +Y; = —co and translates
it into hard clauses in simpInst (lines 12-13).

A variable y, is referred to as free if it is neither fixed nor aggregated. Algorithm 1
creates a new Boolean variable in simpInst for each free variable in simpModel (line 6).

23:5

ModRef 2025

23:6 ILP Techniques for Enhancing BnB MaxSAT Solvers

Algorithm 1 Encoding Variables

Require: originlnst, simpModel, var M ap
1: for each variable x in originInst do

2: Yz < corresponding variable of x in simpM odel

3: if y, is a fixed variable in simpModel then

4: varMap[z] < the fixed value of y, in simpModel

5: else if y, is a free variable in simpM odel then

6: varMap[z] < new Boolean variable in simpInst

7: else if y, is a simple aggregated variable in simpModel then

8: Y, < final variable in the aggregation chain //y, should be a free variable
9: create varMap[z] if it was not created

10: varMap|x] < varMap(z) or —varMap(z) according to the aggregation
11: else if y, is a multiple aggregated variable in simpM odel then

12: varMap|x] < create a new Boolean variable in simpInst

13: Encode the aggregation constraint with a Pseudo-Boolean encoding

14: end if

15: end for

3.3 Constraint Encoding

We use the SCIP solver [3] to preprocess originModel as it is an open-source mixed-integer
programming solver broadly used in MaxSAT evaluations. The obtained simpM odel usually
contains various types of constraints, as listed in Table 1. Logical OR and Logical AND
constraints are directly encoded into CNF. Setppc and Linear constraints are encoded into
CNF using the methods for At-most-one and Pseudo-Boolean constraints in the PBLib library
[38], respectively. We use the default configuration in PBLib, allowing it to automatically
select the most suitable encoding (such as Binary Decision Diagrams (BDD) [1], Adder
Networks [19], among others) based on the properties of the constraints. The unsupported
constraint type is orbitope, which arises from orbitopal fixing [24], a symmetry-breaking tech-
nique commonly used in ILP preprocessing. If simpModel contains the orbitope constraint,
the preprocessing is stopped, and the original MaxSAT instance is returned to the solver. In
our experiment, we found that about 8% of instances contain the orbitope constraint, and we
will incorporate this constraint into our methodology in the future.

Table 1 Encodings of different constraints in simpM odel.

Constraint Formula Encoding
Logical OR Z:;l ;i >1 (x1 Va2 V... V)
Logical AND H;l Ti =1y (yV-z1V...V-=x,) A /\?Zl(ﬁy V)
Setppc packing Z;;l <1 At-most-one
oy . n
Setppc partitioning Yomwi=1 at-most-one A(z1Vz2 V...V x,)
Linear lhs < Z?Zl w; - x; < rhs Pseudo-Boolean

The objective function of simpModel is f(ls) = Mazimize) .4 w, - z,, where S is the

’ / . .
set of soft clauses, 2, is the decision variable in simpModel, and w, is the corresponding

Zhang, Li, Cherif, Li, and Zheng

coefficient. We encode f(/ $) into soft clauses using the following method: if a coefficient w; of

a decision variable z; is positive, then z; is added as a soft clause with weight w;, otherwise,
—z, is added with weight —w.

4 Experimental Results

4.1 Test Environment

We use state-of-the-art ILP and BnB MaxSAT solvers in our experiments. Specifically, we
employ the best-known open-source ILP solver, SCIP [3] (version 9.1.1)2. For the BnB
MaxSAT solvers, we select and download WMaxCDCL-OpenWho1200 [33] and MaxCDCL-
OpenWbo300 [27], the two leading open-source MaxSAT solvers from the MaxSAT evaluation
2024 in the unweighted category®. WMaxCDCL-OpenWho1200 (MaxCDCL-OpenWbo300)
runs OpenWho [35] for 1200s (300s) followed by WMaxCDCL (MaxCDCL) for 2400s (3300s)
to solve an instance. Note that MaxCDCL-OpenWbo300 supports only unweighted Max-
SAT instances, while SCIP and WMaxCDCL-OpenWbo1200 support both weighted and
unweighted instances.

The benchmark MaxSAT instances are sourced from the unweighted and weighted
categories of MaxSAT evaluations from 2019 to 2024 (MS19-MS24 and WMS19-WMS24,
respectively). To avoid counting the duplicated instances twice, we removed from (W)MSk for
k > 19 the instances also occurring in previous years from 2019. The unweighted (weighted)
instances come from 74 (63) instance families. Each instance family represents a specific
optimization problem encoded into MaxSAT, from different fields related to combinatorial
optimization and AI, making the tests and our observations more comprehensive and credible.

The computations are performed on a machine equipped with an AMD EPYC 7502
Processor (2.5 GHz) and a Linux system. As in the MaxSAT evaluations, each solver is
allocated one CPU, a time limit of 3600 seconds, and 31GB of RAM to solve an instance.

4.2 ILP vs. MaxSAT BnB

We first evaluate the performance gap between the ILP solver and the BnB MaxSAT solvers
to motivate our approach. As shown in Table 2, the performance of the ILP solver SCIP is
significantly worse compared to the two BnB MaxSAT solvers WMaxCDCL-OpenWbo1200
(WMO) and MaxCDCL-OpenWbo300 (MO). SCIP solved only 954 instances in the un-
weighted category, whereas WMO and MO solved 1660 and 1650 instances, respectively,
substantially outperforming SCIP. This performance gap also persists in the weighted cat-
egory.

From the above evaluation, we make the following observation. On one hand, the
SAT /MaxSAT community has made an intensive effort for several decades to improve BnB
MaxSAT solvers, so that these solvers reach a high level of maturity, but it is increasingly
challenging to achieve further performance improvements using pure MaxSAT /SAT techniques.
On the other hand, the ILP solver still demonstrates certain advantages over the BnB MaxSAT
solvers in solving specific instances. The rows labeled SCIP \ (W)MO in Table 2 represent
instances solved by SCIP but not by (W)MO. In the unweighted category, SCIP solved 68
instances that MO failed to solve and 60 instances that WMO failed to solve. In the weighted

2 https://www.scipopt.org
3 https://maxsat-evaluations.github.io/2024/results/exact /unweighted.html

23:7

ModRef 2025

23:8 ILP Techniques for Enhancing BnB MaxSAT Solvers

Table 2 The number of instances solved by the ILP and BnB MaxSAT solvers within 3600s.
SCIP\(W)MO denote instances solved by SCIP but not by MaxCDCL-OpenWbo300 (WMaxCDCL-

OpenWbo1200).
Unweighted category MS19 MS20 MS21 MS22 MS23 MS24 Sum
#Instances 599 401 448 254 260 247 2209
SCIP 235 203 208 102 118 88 954
MO 441 315 344 186 177 197 1660
WMO 446 306 339 183 177 199 1650
SCIP\ MO 26 12 11 5 9 5 68
SCIP\WMO 21 13 10 4 8 4 60
Weighted category ~ WMS19 WMS20 WMS21 WMS22 WMS23 WMS24 Sum
F#Instances 586 433 491 291 218 204 2223
SCIP 228 239 238 122 117 101 1045
WMO 391 337 397 210 154 147 1636
SCIP\WMO 10 10 7 3 10 0 40

category, although fewer in number, there are still 40 such instances. This motivates us
to transfer some of the ILP solver’s capabilities to BnB MaxSAT solvers, thereby enabling
them to handle these particular instances without deteriorating their performance for other
instances.

For this purpose, we further investigate the instances where the ILP solver outperforms
the BnB MaxSAT solvers and categorize these instances by their respective families. Table 3
lists the three most significant instance families in each category: optic [18], extension-
enforcement [37], and logic-synthesis for the unweighted category; judgment-aggregation
[16], min-width [11], and set-covering [26] for the weighted category. A portfolio strategy
could help BnB MaxSAT solvers handle more instances in the logic-synthesis, optic, and
set-covering families, as SCIP solves these particular cases with relatively low computational

Table 3 The top three instance families ranked by the number of instances in SCIP\ (W)MO.
Tavg denotes the average CPU time (in seconds) required by SCIP to solve the instances in
SCIP\ (W)MO.

Unweighted family optic extension-enforcement logic-synthesis
#Instances 49 39 17
SCIP 37 34 16
MO 19 23 9
WMO 22 28 10
SCIP\ MO (Tauvg) 22 (126.28s) 15 (1019.62s) 7 (2.18s)
SCIP\ WMO (Tauvg) 19 (144.67s) 10 (1331.83s) 6 (2.41s)

Weighted family judgment-aggregation min-width set-covering
#Instances 15 53 35
SCIP 15 17 33
WMO 5 12 27
SCIP\ WMO (Tavg) 10 (367.02s) 9 (568.30s) 6 (111.46s)

Zhang, Li, Cherif, Li, and Zheng

cost. However, creating effective portfolios for the extension-enforcement, min-width, and
judgment-aggregation families is challenging, as SCIP requires considerable computation time
to solve these instances. Determining optimal time limits for each solver in the portfolio
requires careful consideration, because giving more time to SCIP in a portfolio means reducing
the time of (W)MO for other instances for which SCIP is not efficient.

4.3 Evaluation of the Methodology

The proposed methodology is evaluated using the MO and WMO baseline solvers. We
evaluate two portfolio strategies, ILP preprocessing, and the combination of preprocessing
and portfolio. For the two portfolio strategies: (W)MO+S4 and (W)MO+S1, we first run
SCIP for 400 seconds and 100 seconds, followed by (W)MO for 3200 seconds and 3500 seconds,
respectively. For the ILP preprocessing: (W)MO+simp solver first uses SCIP to preprocess
the original instance, then uses the (W)MO solver to solve the simplified instance. For the
combination of preprocessing and portfolio: (W)MO+simp+S4 and (W)MO+simp+S1, first
preprocess the original instance, then solve the simplified instance with their corresponding
portfolio solvers.

Table 4 presents the detailed test results, and Figure 2 illustrates the relationship between
the number of solved instances and CPU time for selected solvers. First, we observe that the
portfolio solvers (W)MO+S4 solve fewer instances compared to (W)MO+S1, indicating that
increasing the runtime allocated to SCIP in the portfolio strategy can produce negative side ef-
fects. Second, we find that applying only SCIP preprocessing techniques helps MO and WMO
solve 16 and 15 additional instances, respectively, underscoring the importance of ILP pre-
processing. This effect is particularly pronounced for weighted instances, where WMO+simp
solves more instances than either WMO+S4 or WMO+S1. Third, (W)MO+simp+S1 and
(W)MO+simp+8S4 solve more instances than their respective counterparts, (W)MO+S1

Table 4 Number of instances solved by (W)MO with different strategies based on our methodology.
Inc denotes the additional instances solved compared to the corresponding (W)MO baseline solver.

Unweighted category ~ MS19 MS20 MS21 MS22 MS23 MS24 Sum(Inc)
MO+54 453 319 345 186 179 200 1682(+22)
MO+S1 454 319 347 186 178 200 1684(+24)

MO+simp 451 314 348 187 178 198 1676(+16)
MO+simp+S4 457 317 344 185 180 200 1683(+23)
MO+simp+S1 459 318 348 186 180 199 1690(+30)

WMO+54 452 307 339 181 178 201 1658(+8)

WMO+S1 455 308 342 182 178 200 1665(+15)

WMO+simp 456 307 341 184 178 199 1665(+15)
WMO+simp+S4 460 309 339 183 179 200 1670(+20)
WMO+simp+S1 462 310 343 184 178 200 1677(+27)
Weighted category ~ WMS19 WMS20 WMS21 WMS22 WMS23 WMS24 Sum(Inc)
WMO-+84 395 335 396 211 154 146 1637(+1)
WMO+S1 395 336 397 210 154 146 1638(+2)
WMO +simp 392 341 399 209 154 147 1642(+6)
WMO+simp+S4 394 339 399 210 154 146 1642(+6)
WMO+simp+S1 393 342 399 210 154 147 1645(+9)

23:9

ModRef 2025

23:10

ILP Techniques for Enhancing BnB MaxSAT Solvers

35009 ... MO
30001 MO-simp
—— MO-S1
__25001 —— MO-simp-51
wv
[4
£ 2000
i~
> 1500
o
O
1000 -
500 4
o T
1200 1300 1400 1500 1600 1700
Solved instances
(a) Unweighted category, based on MO solver
35001 .. WMO
3000 WMO-simp
——=- WMO-S1
25001 —— WMO-simp-S1
0
o 2000
£
=
- 1500
[a
(@]
1000 -
500
o
1200 1300 1400 1500 1600
Solved instances
(b) Unweighted category, based on WMO solver
3500 WMO
3000 { WMO-simp
——- WMO-S1
25001 —— WMO-simp-S1
w
[
E 2000
=]
= 1500
(=]}
10001
500 |

1500 1600

1200 1300 1400
Solved instances

(c) Weighted category, based on WMO solver

Figure 2 Number of solved instances vs. CPU time

and (W)MO+S4. This suggests that combining ILP preprocessing with a portfolio strategy
outperforms the classic portfolio approach, with the best configuration enabling MO to solve
30 additional instances and WMO to solve 27 additional instances.

Table 5 shows the impact of our methodology on specific instance families, as discussed in
Section 4.2. For the unweighted category: (W)MO+S1 solves more instances than (W)MO
within the optic and logic-synthesis families, although this advantage does not extend to the
extension-enforcement family. (W)MO+simp improves the performance of (W)MO across
all three families; however, the improvement in the optic and logic-synthesis families is less
pronounced than with (W)MO+S1. (W)MO+simp+S1 combines the advantages of ILP
preprocessing and portfolio techniques, thereby achieving the greatest improvement among
all these solvers. For the weighted category, the impact on individual families is less relevant

Zhang, Li, Cherif, Li, and Zheng

Table 5 The number of solved instances on specific families. Inc denotes the additional instances
solved compared to the corresponding MO or WMO solver.

Unweighted family optic extension-enforcement logic-synthesis
MO+S1 (Inc) 34 (+15) 23 (0) 16 (+7)
MO+simp (Inc) 25 (+6) 27 (+4) 13 (+4)
MO+simp+S1 (Inc) 35 (+16) 27 (+4) 16 (+7)
WMO+S1 (Inc) 35 (4+13) 27 (-1) 16 (46)
WMO-+simp (Inc) 26 (+4) 36 (+8) 12 (+2)
WMO+simp+S1 (Inc) 36 (+14) 36 (+8) 16 (46)
Weighted family judgment-aggregation min-width set-covering
WMO+S1 (Inc) 5(0) 12(0) 27(0)
WMO+simp (Inc) 5(0) 14(2) 27(0)
WMO+simp+S1 (Inc) 5(0) 15(3) 27(0)

as SCIP initially managed to solve fewer instances independently, but our methodology does
not have any negative impact on these families and even manages to achieve better results
on min-width.

To analyze the impact of ILP preprocessing, we divide the MaxSAT benchmark instances
into three categories: Smaller, Bigger, and Failed. An instance is placed in Smaller or Bigger
only if a simplified instance, simplInst, is successfully generated. If simpInst contains both
fewer variables and fewer hard clauses than the original instance originInst, the instance is
classified as Smaller; otherwise, it is classified as Bigger. An instance is marked as Failed
when stmpModel contains the orbitope constraint, which is not yet supported. Extremely
large instances with more than 200,000 variables or 1,000,000 clauses are skipped during
preprocessing and are not included in the data. Table 6 summarizes the statistics for the three
instance groups. We observe that the SCIP preprocessing time is negligible compared to the
total allocated time of 3600s (less than 1%), and the percentage of fixed (FizedV arsRate) or
aggregated (AggregatedVarsRate) over all variables in originModel is significant. Further-
more, the percentage of simple aggregation variables (simple AggregationRatio, see lines 8-10
of Algorithm 1) over all aggregated variables is very high (99% for the "Smaller" instances).

Table 6 Statistics of three groups of instances w.r.t. the SCIP preprocessing.

Unweighted category Weighted category
States Smaller Bigger Failed Smaller Bigger Failed
#Instances 1085 436 182 980 508 201
PreprocessingT'ime 15.36s 30.0s 6.20s 14.26s 19.65s 24.86s
FizedVarsRate 18.66% 3.64% 22.81% 19.61% 16.30% 43.48%
AggregatedV arsRate 26.92% 21.52% 30.56% 27.68% 18.36% 29.67%
simpleAggregationRatio 99.49% 79.54% - 99.22% 96.64% -

23:11

ModRef 2025

23:12

ILP Techniques for Enhancing BnB MaxSAT Solvers

5 Conclusion

This paper investigates the impact of ILP techniques to improve MaxSAT solving. We
show that ILP solvers are generally less efficient for MaxSAT than the leading solvers in
the exact tracks of the MaxSAT Evaluations. Nevertheless, integrating ILP techniques into
WMaxCDCL-OpenWbo1200 and MaxCDCL-OpenWbo300—the winners of the unweighted
track of the MaxSAT evaluation 2024—for preprocessing and solving with a short 100s time
limit enables us to solve 27 and 30 additional instances, respectively. These results are
significant because MaxSAT solving has achieved a high level of maturity, and winning a
track typically requires solving only a handful of additional instances (often just three) more
than the runner-up. Our results also suggest that ILP preprocessing techniques are effective
at reducing the number of variables in most instances. This reduction likely explains why
they enable the solver to tackle more instances.

Future work will focus on two main aspects. First, to improve our methodology, we
will add support for the currently unsupported constraint type, explore additional encoding
algorithms, and fine-tune our heuristic parameters. Second, our approach has not yet fully
leveraged the potential of ILP techniques. We plan to conduct further investigations into
these techniques to enable ILP to outperform branch and bound MaxSAT solvers on specific
instance families. We will then incorporate the most effective preprocessing and solving
strategies into these solvers to improve their efficiency.

—— References

1 Ignasi Abio, Robert Nieuwenhuis, Albert Oliveras, and Enric Rodriguez-Carbonell. Bdds for
pseudo-boolean constraints — revisited. In Laurent Sakallah, Karem A.and Simon, editor,
Theory and Applications of Satisfiability Testing - SAT 2011, pages 61-75, Berlin, Heidelberg,
2011. Springer Berlin Heidelberg.

2 André Abramé and Djamal Habet. Ahmaxsat: Description and evaluation of a branch and
bound max-sat solver. Journal on Satisfiability, Boolean Modeling and Computation, 9, 12
2015. doi:10.3233/SAT190104.

3 Tobias Achterberg. SCIP: solving constraint integer programs. Mathematical Programming
Computation, 1(1):1-41, July 2009. doi:10.1007/s12532-008-0001-1.

4 Tobias Achterberg, Robert Bixby, Zonghao Gu, Edward Rothberg, and Dieter Weninger.
Presolve reductions in mixed integer programming. INFORMS Journal on Computing, 32, 11
2019. doi:10.1287/ijoc.2018.0857.

5 Carlos Ansétegui and Joel Gabas. Solving (weighted) partial maxsat with ILP. In Integration
of AI and OR Techniques in Constraint Programming, 2013.

6 Josep Argelich, Chu Min Li, and Felip Manya. A preprocessor for max-sat solvers. In Hans
Kleine Biining and Xishun Zhao, editors, Theory and Applications of Satisfiability Testing —
SAT 2008, pages 15—20, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

7 Florent Avellaneda. Evalmaxsat 2024. MaxSAT Evaluation 2024 Solver and Benchmark
Descriptions, page 8, 2024.

8 Fahiem Bacchus, Matti Jarvisalo, and Ruben Martins. Mazimum Satisfiability, pages 929 —
991. Frontiers in Artificial Intelligence and Applications. IOS PRESS, Netherlands, 2 edition,
2021. doi:10.3233/FAIA201008.

9 E. M. L. Beale and R. E. Small. Mixed integer programming by a branch and bound technique.
In W. Kalench, editor, Proceedings of the IFIP Congress, volume 2, pages 450—451, London,
1965. Macmillan.

10 Jeremias Berg, Matti Jarvisalo, Ruben Martins, Andreas Niskanen, and Tobias Paxian, editors.
MazSAT Evaluation 2024: Solver and Benchmark Descriptions. Department of Computer

https://doi.org/10.3233/SAT190104
https://doi.org/10.1007/s12532-008-0001-1
https://doi.org/10.1287/ijoc.2018.0857
https://doi.org/10.3233/FAIA201008

Zhang, Li, Cherif, Li, and Zheng

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Science Series of Publications B. Department of Computer Science, University of Helsinki,
Finland, 2024.

Jeremias Berg, Emilia Oikarinen, Matti Jarvisalo, and Kai Puolaméki. Maxsat benchmarks
from the minimum-width confidence band problem. MaxSAT Evaluation 2017 Solver and
Benchmark Descriptions, page 38, 2017.

A. Biere, M. Heule, and H. van Maaren. Handbook of Satisfiability: Second Edition. Frontiers
in Artificial Intelligence and Applications. IOS Press, 2021.

Armin Biere, Matti Jarvisalo, and Benjamin Kiesl. Preprocessing in SAT Solving, pages 391 —
435. Frontiers in Artificial Intelligence and Applications. IOS PRESS, Netherlands, 2 edition,
2021. doi:10.3233/FAIA200992.

Mohamed Sami Cherif, Djamal Habet, and André Abramé. Understanding the power of
max-sat resolution through up-resilience. Artificial Intelligence, 289:103397, 2020. doi:
10.1016/j.artint.2020.103397.

Sami Cherif, Heythem Sattoutah, Chu-Min Li, Corinne Lucet, and Laure Brisoux Devendeville.
Minimizing working-group conflicts in conference session scheduling through maximum satis-
fiability (short paper). In Paul Shaw, editor, 30th International Conference on Principles and
Practice of Constraint Programming, CP 2024, September 2-6, 2024, Girona, Spain, volume
307 of LIPIcs, pages 34:1-34:11. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2024.
do0i:10.4230/LIPICS.CP.2024.34.

Ari Conati, Andreas Niskanen, and Matti Jarvisalo. Maxsat encodings for judgment aggregation.
MaxSAT Evaluation 2028 Solver and Benchmark Descriptions, page 33, 2023.

Emir Demirovi¢ and Nysret Musliu. Maxsat-based large neighborhood search for high school
timetabling. Computers & Operations Research, 78:172-180, 2017. doi:10.1016/j.cor.2016.
08.004.

Riidiger Ehlers. Approximately propagation complete and approximately conflict propagat-
ing sat encoding computation maxsat benchmarks. MazSAT FEvaluation 2018 Solver and
Benchmark Descriptions, page 38, 2018.

Niklas Eén and Niklas Sorensson. Translating pseudo-boolean constraints into sat. Journal on
Satisfiability, Boolean Modelling and Computation, 2(1-4):1-26, 2006. doi:10.3233/SAT190014.
Federico Heras, Javier Larrosa, and Albert Oliveras. Minimaxsat: A new weighted max-sat
solver. In Jodo Marques-Silva and Karem A. Sakallah, editors, Theory and Applications of
Satisfiability Testing — SAT 2007, pages 41-55, Berlin, Heidelberg, 2007. Springer Berlin
Heidelberg.

Marijn J.H. Heule and Hans van Maaren. Chapter 5: Look-ahead based SAT solvers, pages
183-212. Frontiers in Artificial Intelligence and Applications. IOS Press BV, 2021. Publisher
Copyright: © 2021 The authors and IOS Press. All rights reserved. doi:10.3233/FAIA200987.
Hao Hu, Marie-José Huguet, and Mohamed Siala. Optimizing Binary Decision Diagrams with
MaxSAT for Classification. In 36th AAAI Conference on Artificial Intelligence, Vancouver,
Canada, February 2022.

Alexey Ignatiev and Joao Marques-Silva. Xai-mindset2: Explainable ai with maxsat. MazSAT
Evaluation 2018: Solver and Benchmark Descriptions, page 43, 2018.

Volker Kaibel, Matthias Peinhardt, and Marc E. Pfetsch. Orbitopal fixing. Discrete Optimiza-
tion, 8(4):595-610, 2011. doi:10.1016/j.disopt.2011.07.001.

Nikos Komodakis and Jean-Christophe Pesquet. Playing with duality: An overview of recent
primal? dual approaches for solving large-scale optimization problems. IEEFE Signal Processing
Magazine, 32(6):31-54, 2015. doi:10.1109/MSP.2014.2377273.

Zhendong Lei and Shaowei Cai. Solving set cover and dominating set via maximum satisfiability.
Proceedings of the AAAI Conference on Artificial Intelligence, 34:1569-1576, 04 2020. doi:
10.1609/aaai.v34i02.5517.

Chu Min Li, Shuolin Li, Jordi Coll, Djamal Habet, Felip Manya, and Kun He. Maxcdcl in
maxsat evaluation 2024. MazSAT FEvaluation 2024 Solver and Benchmark Descriptions, pages
15-16, 2024.

23:13

ModRef 2025

https://doi.org/10.3233/FAIA200992
https://doi.org/10.1016/j.artint.2020.103397
https://doi.org/10.1016/j.artint.2020.103397
https://doi.org/10.4230/LIPICS.CP.2024.34
https://doi.org/10.1016/j.cor.2016.08.004
https://doi.org/10.1016/j.cor.2016.08.004
https://doi.org/10.3233/SAT190014
https://doi.org/10.3233/FAIA200987
https://doi.org/10.1016/j.disopt.2011.07.001
https://doi.org/10.1109/MSP.2014.2377273
https://doi.org/10.1609/aaai.v34i02.5517
https://doi.org/10.1609/aaai.v34i02.5517

23:14

ILP Techniques for Enhancing BnB MaxSAT Solvers

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

Chu Min Li and Felip Manya. Chapter 23. MaxSAT, Hard and Soft Constraints. In Handbook
of Satisfiability, Frontiers in Artificial Intelligence and Applications. IOS Press, February 2021.
doi:10.3233/FAIA201007.

Chu Min Li, Felip Manyéa, and Jordi Planes. New inference rules for Max-SAT. Journal of
Artificial Intelligence Research, 30:321-359, 2007.

Chu-Min Li, Felip Manya, Zhe Quan, and Zhu Zhu. Exact minsat solving. In International
Conference on Theory and Applications of Satisfiability Testing (SAT-2010), pages 363-368,
2010.

Chu-Min Li, Fan Xiao, Mao Luo, Felip Manya, Zhipeng Lii, and Yu Li. Clause vivification by
unit propagation in CDCL SAT solvers. Artificial Intelligence, 279:103197, 2020.

Chu-Min Li, Zhenxing Xu, Jordi Coll, Felip Manya, Djamal Habet, and Kun He. Combining
Clause Learning and Branch and Bound for MaxSAT. LIPIcs, Volume 210, CP 2021, 210:38:1—
38:18, 2021. doi:10.4230/LIPICS.CP.2021.38.

Shuolin Li, Chu Min Li, Jordi Coll, Djamal Habet, Felip Manya, and Kun He. Wmaxcdcl in
maxsat evaluation 2024. MazSAT Evaluation 2024 Solver and Benchmark Descriptions, pages
17-18, 2024.

Hugues Marchand, Alexander Martin, Robert Weismantel, and Laurence Wolsey. Cutting
planes in integer and mixed integer programming. Discrete Applied Mathematics, 123(1):397—
446, 2002. doi:10.1016/S0166-218X(01)00348-1.

Ruben Martins, Vasco Manquinho, and Inés Lynce. Open-wbo: A modular maxsat solver,. In
Carsten Sinz and Uwe Egly, editors, Theory and Applications of Satisfiability Testing — SAT
2014, pages 438-445, Cham, 2014. Springer International Publishing.

Maria Luisa Bonet and Jordi Levy and Felip Manya. Resolution for max-sat. Artificial
Intelligence, 171(8):606-618, 2007. doi:10.1016/j.artint.2007.03.001.

Andreas Niskanen, Johannes P. Wallner, and Matti Jarvisalo. Discrete optimization problems
in dynamics of abstract argumentation: Maxsat benchmarks. MaxSAT Evaluation 2017 Solver
and Benchmark Descriptions, pages 23-24, 2017.

Tobias Philipp and Peter Steinke. Pblib — a library for encoding pseudo-boolean constraints
into cnf. In Marijn Heule and Sean Weaver, editors, Theory and Applications of Satisfiability
Testing — SAT 2015, pages 9-16, Cham, 2015. Springer International Publishing.

Marek Piotréw. Uwrmaxsat entering the maxsat evaluation 2024. MaxSAT Evaluation 2024
Solver and Benchmark Descriptions, pages 2728, 2024.

Sean Safarpour, Hratch Mangassarian, Andreas Veneris, Mark H. Liffiton, and Karem A.
Sakallah. Improved design debugging using maximum satisfiability. In Formal Methods in
Computer Aided Design (FMCAD’07), pages 13-19, 2007. doi:10.1109/FAMCAD.2007.26.
M. W. P. Savelsbergh. Preprocessing and Probing Techniques for Mixed Integer Programming
Problems. ORSA Journal on Computing, 6(4):445-454, November 1994. doi:10.1287/ijoc.
6.4.445.

Yibin Chen and Sean Safarpour and Joao Marques-Silva and Andreas G. Veneris. Automated
design debugging with maximum satisfiability. IEEE Transactions on Computer-Aided Design
of Integrated Clircuits and Systems, 29:1804-1817, 2010.

Zhifei Zheng, Sami Cherif, and Rui Sa Shibasaki. Optimizing power peaks in simple assembly
line balancing through maximum satisfiability. In 36th IEEE International Conference on
Tools with Artificial Intelligence, ICTAI 2024, Herndon, VA, USA, October 28-30, 2024, pages
363-370. IEEE, 2024. doi:10.1109/ICTAI62512.2024.00060.

https://doi.org/10.3233/FAIA201007
https://doi.org/10.4230/LIPICS.CP.2021.38
https://doi.org/10.1016/S0166-218X(01)00348-1
https://doi.org/10.1016/j.artint.2007.03.001
https://doi.org/10.1109/FAMCAD.2007.26
https://doi.org/10.1287/ijoc.6.4.445
https://doi.org/10.1287/ijoc.6.4.445
https://doi.org/10.1109/ICTAI62512.2024.00060

	1 Introduction
	2 Preliminaries
	2.1 Maximum Satisfiability
	2.2 Branch and Bound for MaxSAT
	2.3 Integer Linear Programming

	3 Methodology
	3.1 Integrating ILP techniques into MaxSAT solving
	3.2 Variable Encoding
	3.3 Constraint Encoding

	4 Experimental Results
	4.1 Test Environment
	4.2 ILP vs. MaxSAT BnB
	4.3 Evaluation of the Methodology

	5 Conclusion

