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Abstract5

Model reformulation is a mandatory activity to get the most out of the constraint solvers used.6

When it is a manual process, the problem of correctness arises, especially when the model is used in7

a critical system. The B-method, used for more than 30 years to prove critical software, offers a8

notion of refinement to prove the correctness of an implementation with respect to a specification.9

We propose that this notion of refinement be used to justify the correctness of a reformulation of a10

constraints model. The new notion of equivalence of models seems less restrictive than the existing11

notions, but still adequate in the context of constraint satisfaction. This not the case in the context12

of constrained optimization, and the notion will have to be refined.13
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1 Context and motivation20

When the eight queens problem (place them on a chessboard so that no two queens threaten21

each other) is modeled as a Constraint Satisfaction Problem (CSP), solutions may be22

represented in many ways (names come from [15]):23

queen-based a set of eight positions (pairs of coordinates),24

square-based an 8x8 boolean array,25

column-based (resp. row-based) an array of eight row (resp. column) indexes,26

. . .27

Maybe the first representation will be the most readable in a high-level language like Minizinc28

[16] or Essence [6] , maybe the 2nd will be the most efficient in an SMT solver like Z3 [13],29

and maybe the 3rd will be the most efficient in a CP solver like CP-SAT [8].30

A change of representation between two ‘equivalent’ models is called a reformulation, and31

it is either manual of automated: when Minizinc generates a CP-SAT model, it reformulates32

because CP-SAT doesn’t know the set concept. This automated reformulation is generally33

correct (but each new version of MiniZinc contains bug fixes), but the same cannot be said34

of a manual translation from Minizinc to Z3 or between CP-SAT and Z3.35

Constraint solvers will soon be used in safety-critical functions, and at that point the36

problem of correctness will arise. In a future certification process, a Minizinc or Essence37

model will be considered as a specification, and one of the questions will be: is this CP-SAT38

or Z3 model equivalent, in a formal sense, to its specification?39

This paper owes its existence to [14], which recognizes this problem, recognizes that it is40

not addressed today, explains why it is not obvious, and outlines a solution based on logic41

and model theory. Technically this approach is the most natural, and promising. But we42

would like to share another point of view, which is to say that instead of seeing constraints43

as a logic problem, we can see them as the specification of a dedicated solver ; and in this44
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23:2 Mutual B refinements as a justification for constraints model reformulations

case, software formal methods give a natural definition of what a correct reformulation is,45

and how to verify it.46

Our contribution consists in proposing a non-standard use of the B-method [1, 19]: to47

justify the ‘equivalence’ of two constraint models, we virtually translate them into two B48

models, and we ask that they refine each other (in the software sense). On the other hand,49

we do not claim to have a practical method: even simple models, like the n-queens, give rise50

to difficult proofs, but we will outline a way forward in the conclusion.51

The next section reviews two concepts related to model reformulation: the reducibility52

of [18] and the channeling of [4]. These two concepts are the technical inspiration for this53

paper, as they have almost identical counterparts in the field of software refinement. Then,54

we provide a crash course on the refinement concept [21] of the B-method, with a focus on55

the particular use we make of it. And finally, we present the translation of constraint models56

into B models and explain what the mutual refinement means in the context of constraint57

satisfaction. This leads us to identify a limitation of our approach in the constrained58

optimization context.59

2 Reducibility and channeling60

The connections between model reformulation and software refinement were suggested by61

two CP concepts: the reducibility of [18] and the channeling of [4].62

2.1 Equivalence via Reducibility63

Usually, two constraint models over the same variables are considered ‘equivalent’ when64

they have the same solutions. Logically speaking, a solution is a model (of the constraints;65

warning: the word ‘model’ is overloaded in this paragraph) and so we can also say that the66

underlying concept is the logical equivalence of the constraints in first-order logic. This is67

consistent with the notion of “redundant constraints”, of which the literature is full, always68

understood as logical implication.69

But when the variables differ, no standard mathematical or computer science notion70

comes close to it, and the problem is absolutely not obvious. In 1989, Rossi, Petrie and Dhar71

[18] make a fundamental contribution to fill this gap with the concept of ‘reducibility’. Given72

two CSPs P1 and P2, the definition of ‘P1 is reducible to P2’ is complex, but the idea is that73

every solution of P1 must be obtained by a “syntactic transformation” of a solution of P2. In74

this reducibility concept, two properties are worth noting, because our proposal does not75

satisfy them:76

1. every solution of P1 is obtained, none is lost;77

2. the transformation is “syntactic”, the goal is to avoid to simply solve P1, with the solutions78

of P2 playing not part.79

2.2 Redundant modeling via channeling constraints80

It has long been known that adding redundant constraints is worth trying to speed up81

constraint propagation. In 1996, Cheng, Lee and Wu [4] go further and propose the concepts82

of redundant modeling via channeling constraints:83

“Intuitively speaking, our method amounts to implementing more than one model of84

a given problem and somehow connect the model implementations. . . . In order for the85

different models to cooperate during constraint-solving, the network must be connected so86

that pruning can be propagated among the networks in a multi-directional manner. One87
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way to achieve a multi-directional connection is to use constraints to express the relationship88

among variables in different models. We call such constraints, which are not part of the89

original problem specification and exist only as an artifact of network connection, channeling90

constraints.”91

In [3] (revised and extended version of [4]), the n-queens problem is used as a case study,92

with two representations: the row-based one (xi = j denotes that the queen of row i is in93

column j) and the column-based one (yi = j denotes that the queen of column i is in row94

j). With the channeling constraints xi = j ⇐⇒ yj = i they observe that the95

channeling is so strong that96

“ Under this formulation, constraints in model one (or two) can be regarded as redundant97

constraints of the channeling constraints plus constraints in model two (or one). Such a98

relationship does not necessarily hold true in general as programmers may choose to connect99

only certain subsets of variables or values. ”100

Perhaps inspired by this remark, [10] give a new use of channeling constraints: model101

induction. First, they give a formal definition of a representation (they use the term102

‘viewpoint’, first proposed by [7]). If the channeling constraints between two viewpoints V1103

and V2 are strong enough to define a total and injective function from V1 to V2, constraints104

on V1 can be transformed into constraints on V2. They illustrate this with the transformation105

of the row-based model of the 4-queens into a square-based model (4x4 array of booleans)106

via the set of channeling constraints xi = j ⇐⇒ zij = 1.107

High-level constraint languages like Essence and MiniZinc allow representations using108

abstract datatypes like sets. So these models must be refined in order to be solved by CP or109

SMT solvers. Usually, there are several ways to refine an abstract datatype, and [6] propose110

to automatically do redundant modelling from an Essence specification: the generation of a111

low-level model gives rise to ‘representations annotations’ which describe how the refinements112

have transformed the variables. When you generate redundant models, these annotations113

allow channeling constraints to be automatically generated. The exact algorithm is given in114

[12].115

3 Refinement in the B-method116

When a safety-critical function is based on software, this software must be compliant with117

safety requirements, which take the form of a natural language specification, from which test118

sets are manually derived. But in some cases (typically in the railway industry), compliance119

is not based on tests, but on proofs. To do this, the natural language specification is manually120

translated into a formal specification, and when a corresponding design is (usually manually)121

completed, Proof Obligations (POs) are automatically generated. We illustrate this with a122

toy example, and we take the opportunity to present just what is needed of the B syntax.123

We will proceed in three steps: we begin with a basic version, which corresponds to what124

was achievable in the 70s, called ‘Hoare logic’ [20]. This basic version was unable to prove125

real software, and the necessary evolutions were finalized in the 80s. It turns out that two of126

these necessary evolutions are just what is needed in our constraint modelling context, they127

will be the subject of the two last subsections.128

3.1 Hoare logic (with B syntax)129

130
MACHINE toy131

VARIABLES xx132

INVARIANT xx : NATURAL1133

CVIT 2016



23:4 Mutual B refinements as a justification for constraints model reformulations

INITIALISATION xx:(xx=1 or xx=2 or xx =3)134

OPERATIONS135

xx_ <-- read =136

xx_ := xx137

END138139

The listing above is named a machine (similar to a class in an Object Oriented language),140

but this name is misleading, because there is almost nothing executable about it: it is just a141

specification. It is made of142

1. a list of variables, called the state of the machine; here it is just the single variable xx143

(‘xx’ because B requires that variable names have at least 2 characters);144

2. an invariant property on these variables; the minimal property is the type of each variable,145

here we are a bit more demanding: NATURAL1 is the subset of the INTEGERs greater than146

or equal to 1;147

3. an initialisation which must establish the invariant; we comment on this just after;148

4. a list of operations with read/write access to these variables, which must preserve the149

invariant; here we can only read the state xx into the output parameter xx_.150

The interesting part is the initialisation (with an ‘s’, because the development of the B151

method started in the Oxford Programming Research Group in the second half of the 80s):152

153
xx :(xx=1 or xx=2 or xx =3)154155

It literally means:156

write in xx a value such that the property ‘xx=1 or xx=2 or xx=3’ is true.157

This substitution (the B word for ‘instruction’ or ‘state update’) is non-deterministic, which158

means that after ‘execution’, several states are possible. Be careful, it has nothing to do159

with randomness (if we look for an analogy, it is more like execution on a Non-Deterministic160

Turing Machine), it’s just that at this level of specification, we don’t want to choose, and161

we leave the choice to a future refinement. It is called the such that substitution, and more162

generally, the syntax163

164
variable_list :( constraint_on_this_variable_list )165166

specifies that the variables in variable_list have to be substituted with values such that167

the Boolean formula constraint_..._list is satisfied.168

But in a software context, the goal is to obtain software, and this machine is not software:169

it is too abstract and it needs to be refined with only deterministic substitutions. A correct170

and deterministic refinement is171

172
REFINEMENT toy_i REFINES toy173

VARIABLES xx174

INITIALISATION xx := 1 /** deterministic substitution **/175

/** operation ’read ’ is implicitely repeated as such; **/176

/** it was already deterministic **/177

END178179

The interesting part is again the initialisation, which now is deterministic (only 1 possible180

execution):181

182
xx := 1183184

asks that the new value of xx be 1. This refinement is correct because the corresponding PO185

(Proof Obligation) is true:186



J.-L. Dufour 23:5

∀x ∈ Z, x = 1 ⇒ x ∈ {1, 2, 3}187

This PO has been generated according to Hoare logic, the great ancestor of the B method.188

In our context, Hoare logic has two problematic limitations, but, fortunately, they have since189

been overcome:190

1. the specification and the associated code talk about the same variable xx, it is not possible191

to change the representation of the objects,192

2. the refinement is deterministic: it is not possible to have intermediate refinements that193

would retain some of the non-determinism.194

3.2 Non-deterministic refinements195

Sometimes, the algorithmic gap between a machine and a refinement is significant and leads196

to complex proofs. Then it is interesting to design an intermediate refinement. In our toy197

example, an intermediate refinement may be:198

199
xx :(xx=1 or xx =2)200201

It is non-deterministic, but less than the former specification and more than the former code.202

It is written:203

xx :(xx=1 or xx=2 or xx=3) ⊑ xx :(xx=1 or xx=2) ⊑ xx := 1204

where S ⊑ T reads “the substitution S is refined by the substitution T”.205

Refinement is a partial order on substitutions, so we can immediately define equivalence206

of substitutions. It makes no sense in the software context, but it will be a key point in our207

context of constraint reformulation. For example, we have both208

xx :(xx=1 or xx=2 or xx=3) ⊑ xx :(1<=xx & xx<=3)209

and210

xx :(1<=xx & xx<=3) ⊑ xx :(xx=1 or xx=2 or xx=3),211

which means that these two substitutions are equivalent (in the software sense): they212

reformulate each other (again, in the software sense).213

A little more syntax: when the set of legal new values for a variable is explicitly known214

(i.e. in extension), instead of asking x : (x = k1 or x = k2 or . . . or x = kn) we can ask215

x :: {k1, k2, . . . , kn}. This is the ‘belongs to’ substitution. To be complete (without adding216

to the confusion, I hope), I add that we must be careful not to confuse the substitution217

x :: {1, 2, 3} (a modification of x) with the predicate x : {1, 2, 3} (a property of x).218

3.3 Data refinement219

Often, expressing a high-level specification using low-level data structures makes that spe-220

cification difficult to understand. Databases are typical examples: if we want to manage221

people’s ages, at the highest level it is best to manipulate a partial function from names222

to ages, at a medium level dictionaries, at a lower level hash-tables and at the lowest level223

arrays.224

Data refinement in B depends on the observability of this data (via the operations,225

because states are private), and one of the best examples is given in the B-Book [1] §11.2.5:226
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MACHINE Little_Example_1
VARIABLES yy
INVARIANT yy : FIN( NATURAL1 )
INITIALISATION yy := {}
OPERATIONS

enter(nn) =
PRE nn : NATURAL1 THEN

yy := yy \/ {nn}
END

;
mm <-- maximum =

PRE yy /= {} THEN
mm := max (yy)

END
END

MACHINE Little_Example_2
VARIABLES zz
INVARIANT zz : NATURAL
INITIALISATION zz := 0
OPERATIONS

enter(nn) =
PRE nn : NATURAL1 THEN

zz := max( {zz ,nn} )
END

;
mm <-- maximum =

PRE zz /= 0 THEN
mm := zz

END
END

227

These two machines are nano-databases, where you can enter positive numbers, but once228

they are entered you can no more access them individually: you can just ask for their maximum.229

Their states are very different: the left one uses a (FINite) set, whereas the right one uses a230

single integer. But surprisingly, from the point of view of an external user (remember: the231

state is private, so the user can only call enter and maximum), they are EQUIVALENT !232

The difference in the amount of information between the two states is impressive, but233

we can do even better: replace the set of integers with a sequence of integers, so that we234

will memorize the entire filling history. And again they will be equivalent. In a software235

context, we will only be interested in a refinement of the left machine by the right one,236

because we must go from mathematical structures to memory structures. But in a constraint237

reformulation context, both directions will prove interesting, so here is the refinement of the238

right one by the left one:239

240
REFINEMENT Little_Example_2_r REFINES Little_Example_2241

242

EXTENDS Little_Example_1 /* basically , textual inclusion */243

/* like a # include "..." in C */244

INVARIANT zz = max(yy \/{0}) /**** the LINKING invariant ****/245

246

END247248

The interesting part is the INVARIANT clause, which contains the property zz = max(yy∪{0}).249

This expresses the consistency link between the states of the two machines, hence its name:250

the LINKING invariant (also called the gluing invariant).251

4 Reformulation via refinement252

As already mentioned, we change our point of view on constraint modeling: instead of seeing253

constraints as a logic formula looking for a logic model (a solution), we see them as the254

specification of a dedicated solver looking for the code of this solver.255

Our constraint model will take a very generic form, which begins with a single variable256

‘vv’ belonging to a certain set ‘SET’. This is by no means restrictive: for example, if SET257

is N2 (NATURAL*NATURAL in B) then vv will be a pair of natural numbers, and if SET is258

NZ (INTEGER-->NATURAL in B), then vv will be a function from integers to naturals. Our259

constraints are represented by a particular subset of SET, called ‘SOL’ (the SOLutions of the260
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problem). Continuing with our first example, SOL may be the ‘Pythagorean doubles’ (the261

pairs (x, y) such that x2 + y2 is a square), and in the second example, we could look for262

increasing functions. But we’re not going to do that, and let SOL be as generic as possible,263

to get the most general refinement notion.264

Given this context, the most important point of this paper is the simple observation that265

the specification of the solver dedicated to SOL is the following substitution:266

267
IF SOL /= {} /* IF SOL is not the empty set */268

THEN sat := TRUE || vv :: SOL /* THEN a SOLution exists */269

ELSE sat := FALSE || vv :: SET /* ELSE no SOLution */270

END271272

The additional variable sat indicates whether vv is just a random element of SET (when273

SOL is empty) or if vv really is a SOLution. The || symbol means that the left substitution274

(on sat) and the right one (on vv) are to be performed ‘simultaneously’ (not relevant in our275

context).276

This substitution must appear in a machine, and there are two possibilities: in the277

initialisation, or in an operation. In the initialisation, the variables sat and vv must be in278

the state: we call this the stateful style. In an operation, a state is no longer mandatory,279

because sat and vv can be the output variables: we call this the stateless style.280

Having or not having a state is a fundamental difference, but there is another important281

difference: you cannot pass a parameter to an initialisation, while it is a natural thing for an282

operation. More often that not, constraint models are parameterized (typically the n of the283

n-queens, the graph in path-finding, . . . ) so if one day the proposal is implemented, the284

second style will be used. But we will present both styles, because they give the same formal285

definition of a reformulation: a sign of the robustness of our proposal.286

4.1 A simplified case: problems with solutions287

Sometimes we know that there is a solution (e.g. n-queens with n ≥ 4): formally, SOL /= {}.288

We will begin with this special case, for which the specification of a solver reduces to289

vv :: SOL.290

Let’s begin with the stateful translation. It means that the solution is in the state, and291

the specification of this solution is in the invariant. The first CSP, CSP1 (for example the292

raw-based 4-queens), is translated into:293

294
MACHINE csp1_st /* stateful version of CSP1 */295

SETS SET1296

CONSTANTS SOL1 /* SOL1 is a non -empty */297

PROPERTIES SOL1 <: SET1 & SOL1 /= {} /* subset of SET1 */298

VARIABLES sol1299

INVARIANT sol1 : SOL1300

INITIALISATION301

sol1 :: SOL1302

OPERATIONS303

sol1_ <-- read1 = BEGIN304

sol1_ := sol1 /* reading of the state */305

END306

END307308

When a user of this machine calls the operation read1, he obtains a solution of the problem309

(a member of SOL1). The second CSP, CSP2 (for example the square-based 4-queens), is310

translated into the same machine where all the occurrences of ‘1’ are replaced by ‘2’.311

CVIT 2016
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We now want to formalize the fact that CSP2 is a reformulation of CSP1: we will follow312

(a part of) the reducibility idea of [18] and try to transform solutions of CSP2 into solutions313

of CSP1. For this, in our framework the most natural thing to do is to build a refinement of314

csp1_st based on csp2_st. It implies to state a linking invariant between the two states (a315

channeling constraint according to [4]): we name it LINK21, a subset of SET2*SET1 (in our316

4-queens example, the set of consistent pairs (square-representation, row-representation)).317

Let’s try this refinement:318

319
REFINEMENT csp1_st_r REFINES csp1_st320

INCLUDES csp2_st /* in particular its state sol2 ,321

already initialised in SOL2 */322

CONSTANTS LINK21323

PROPERTIES LINK21 : SET2 * SET1 /* the typing is mandatory */324

/**** other properties will have to be added ****/325

VARIABLES sol1326

INVARIANT (sol2 ,sol1 ): LINK21327

INITIALISATION328

sol1 :: LINK21 [{ sol2 }] /* a sol1 ’compatible ’ with sol2 */329

OPERATIONS330

sol1_ <-- read1 = BEGIN331

sol1_ := sol1332

END333

END334335

First, let’s explain the semantics. Remember that csp1_st is a black box SOL1 solver. Here,336

csp1_st_r is a grey box built on two successive black sub-boxes:337

1. csp2_st is included, so we have in the state a variable sol2 initialized in SOL2;338

2. then we have a complement of initialisation, sol1 :: LINK21[{sol2}], which means:339

give me one of the sol1’s which satisfy (sol2,sol1) : LINK21.340

Of course this refinement is not provable, because nothing proves that this sol1 belongs341

to SOL1: we have not characterized enough LINK21. To do this, we just have to con-342

sider the unproved proof obligations (see the annex): they are the weakest properties343

to add to obtain a correct refinement. The refinement becomes provable when the line344

/**** other properties will have to be added ****/ is replaced by the two proper-345

ties:346

347
& SOL2 <: dom( LINK21 )348

/* every element of SOL2 is in the domain of LINK21 */349

& LINK21 [SOL2] <: SOL1350

/* SOL2 elts are associated only with SOL1 elts */351352

This necessary and sufficient characterization of LINK21 will remain valid in the next section,353

where more general problems are considered.354

The stateless traduction of CSP1 is the following355

356
MACHINE csp1_op357

SETS SET1358

CONSTANTS SOL1359

PROPERTIES SOL1 <: SET1 & SOL1 /= {}360

OPERATIONS361

sol1 <-- solve1 = BEGIN sol1 :: SOL1 END362

END363364

and the (complete) refinement is365
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366
REFINEMENT csp1_op_r REFINES csp1_op367

INCLUDES csp2_op368

CONSTANTS LINK21369

PROPERTIES LINK21 <: SET2*SET1370

& SOL2 <: dom( LINK21 )371

& LINK21 [SOL2] <: SOL1372

OPERATIONS373

sol1 <-- solve1 = VAR sol2 IN374

sol2 <-- solve2 ;375

sol1 :: LINK21 [{ sol2 }]376

END377

END378379

The sequence “solve SOL2, then translate towards SOL1” is more explicit. The character-380

ization of LINK21 is performed in the same way (i.e. via the proof obligations) and is the381

same.382

4.2 The general case: problems may be unsolvable383

The stateful style needs to express the specification of the problem both in the initialisation384

and in the invariant (because the initialisation establishes the invariant). Let’s recall this385

substitution:386
387

IF SOL /= {} /* IF SOL is not the empty set */388

THEN sat := TRUE || vv :: SOL /* THEN a SOLution exists */389

ELSE sat := FALSE || vv :: SET /* ELSE no SOLution */390

END391392

It can be rewritten as a ‘such that’ substitution:393
394

sat ,vv :( ( SOL /= {} => (sat = TRUE & vv : SOL) )395

& ( SOL = {} => (sat = FALSE & vv : SET) ) )396397

and the predicate inside will be the invariant. The translation of CSP1 is:398
399

MACHINE csp1_st400

SETS SET1401

CONSTANTS SOL1402

PROPERTIES SOL1 <: SET1403

VARIABLES sat1 , sol1404

INVARIANT sat1 : BOOL & sol1: SET1405

& ( SOL1 /= {} => (sat1 = TRUE & sol1 : SOL1) )406

& ( SOL1 = {} => (sat1 = FALSE ) )407

INITIALISATION408

IF SOL1 /= {}409

THEN sat1 := TRUE || sol1 :: SOL1410

ELSE sat1 := FALSE || sol1 :: SET1411

END412

OPERATIONS413

sat1_ ,sol1_ <-- read1 = BEGIN414

sat1_ := sat1 || sol1_ := sol1415

END416

END417418

We will omit the refinement csp1_st_r and show the refinement only in the stateless419

case, because the stateless translation is simpler:420
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421
MACHINE csp1_op422

SETS SET1423

CONSTANTS SET1424

PROPERTIES SOL1 <: SET1425

OPERATIONS426

sat1 ,sol1 <-- solve1 = BEGIN427

IF SOL1 /= {}428

THEN sat1 := TRUE || sol1 :: SOL1429

ELSE sat1 := FALSE || sol1 :: SET1430

END431

END432

END433434

The refinement of CSP1 via CSP2 is proved via exactly the same linking relation LINK21,435

we need only a supplementary condition on SOL1 and SOL2: their equi-satisfiability.436

437
REFINEMENT csp1_op_r REFINES csp1_op438

INCLUDES csp2_op439

CONSTANTS LINK21440

PROPERTIES LINK21 <: SET2 * SET1441

& SOL2 <: dom( LINK21 )442

& LINK21 [SOL2] <: SOL1443

& (( SOL2 = {}) => (SOL1 = {})) /* equi -sat 1/2 : needed */444

ASSERTIONS (( SOL1 = {}) => (SOL2 = {})) /* equi -sat 2/2 : implied */445

OPERATIONS446

sat1 ,sol1 <-- solve1 = VAR sol2 IN447

sat1 ,sol2 <-- solve2 ;448

IF sat1 = TRUE449

THEN sol1 :: LINK21 [{ sol2 }]450

ELSE sol1 :: SET1451

END452

END453

END454455

Again, the meaning is that to solve CSP1, you first solve CSP2, and then you transform456

the CSP2 solution into a CSP1 solution with the LINK21 relation (which would be refined457

into a function if we did the software refinement all the way). For example, if SOL1 is the458

set of even numbers, and SOL2 is the set of odd numbers, LINK21(v2,v1) could be simply:459

v2 = v1 + 1 (ultimately refinable into the substitution v1 := v2 − 1)460

▶ Theorem 1. csp1_op_r (resp. csp1_st_r) refines csp1_op (resp. csp1_st) if and only461

if the following two conditions are met:462

equi-satisfiability SOL1 = ∅ ⇐⇒ SOL2 = ∅463

transformer there is a relation LINK21 ⊆ SET2 ∗ SET1 satisfying

SOL2 ⊆ dom(LINK21) ∧ LINK21[SOL2] ⊆ SOL1

Proof. See the appendix for the stateless version. ◀464

We propose to consider that two models are equivalent when they reformulate each other,465

which means that we must be able to create two relations LINK21 and LINK12 satisfying the466

constraints above.467
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4.3 Surprising corollaries, and relevance of the proposal468

An easy corollary is that, when SOL1 and SOL2 are empty (i.e. CSP1 and CSP2 are both469

unsatisfiable), the empty LINK21 satisfies the conditions of the theorem, so CSP1 and CSP2470

reformulate each other.471

A more surprising corollary is that, when SOL1 and SOL2 are not empty (i.e. CSP1 and472

CSP2 are both satisfiable), again CSP1 and CSP2 reformulate each other. Choose any sol1473

in SOL1, the following LINK21 satisfies the conditions of the theorem:474

{ (sol2, sol1) | sol2 : SOL2 }475

In a way, LINK21 incorporates a CSP1 solver, and this is exactly what [18] have avoided476

by requiring their transformation to be functional, surjective (onto) and “syntactic”. The477

first two conditions (functional and/or surjective) are easily incorporated in our framework,478

because they are mathematical. But the third cannot even be stated in the B language.479

Fortunately, it is naturally taken into account by software engineering coding rules.480

From a theoretical point of view, the conditions of theorem 1 have to be completed by481

surjectivity, because saying that every (satisfiable) problem reformulates every (satisfiable)482

problem is not very interesting. But from an engineering point of view, surjectivity is too483

strong a constraint, because sometimes, interesting reformulations loose solutions (in an484

optimization context, the important point is not to loose good solutions). So in a certification485

context, we will keep theorem 1 as it is, with a ‘coding rules’ like supplement.486

5 Related works487

The practical link between software formal methods and CP is the use of constraint solvers488

to animate abstract specifications (which are usually non-deterministic: it is not possible to489

simulate them).490

The other link is the comparable expressiveness of the languages: the Z-notation and the491

B-method (the former is the predecessor of the specification part of the latter) are referenced492

or at least mentioned in [5, 6], and [17] goes further and claims that the Z-notation can be493

used as a high-level constraint modelling language.494

Software refinement is rarely mentioned, a notable exception is [9] who propose to use it495

to transform specifications into lower-level models suitable for efficient solving.496

There is also a notable link between the automatic traduction of high-level models497

(Essence, Minizinc) towards CP solvers and automatic software refinement [2, 11].498

6 Conclusion and way forward499

The proposed notion of reformulation needs to be reworked in an academic context, but500

seems adequate in an engineering context, with two weaknesses however.501

The first weakness is the non-preservation of the set of solutions. We don’t see this as a502

problem in a constraint satisfaction context, but it is clearly not suited for a constrained503

optimisation context: how can you ensure that an optimum is preserved if potential solutions504

are no more considered?505

The second weakness is the difficulty of proofs even on simple cases. Here the solu-506

tion seems closer: the concept of ‘representations annotations’ [6] [12] may be the key to507

automatically generate the linking invariant and tactics for guiding the proofs of the proof508

obligations.509
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A Proofs562

On the left, a screenshot of Atelier-B with the 5 unproved proof obligations which appear563

when LINK21 is not characterized and SOL1-SOL2 are not equi-satisfiable. On the right, a564

translation in standard mathematics.565

566

s2 ∈ SOL2

⇒
s2 ∈ dom(LINK21)

SOL2 ̸= ∅ ∧ SOL1 ̸= ∅
⇒

LINK21[SOL2] ⊆ SOL1

SOL2 ̸= ∅
⇒

SOL1 ̸= ∅

SOL2 = ∅
⇒

SOL1 = ∅

s2 ∈ SOL2

⇒
s2 ∈ dom(LINK21)

567
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