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Abstract
The classic algorithm for SAT solving, DPLL, runs in exponential time. The algorithm is entirely

deterministic, except for choices about which variable to branch on and whether to try true or
false first. This choice can be made deterministically using heuristics, but often randomness is
employed. For the algorithm to find a solution in reasonable time, it must make only a small number
of choices, although (thanks to backtracking) some of these may be wrong. By modelling the choices
as nondeterminism, we obtain a declarative C SAT solver, executable using a SAT solver.

The declarative C SAT solver works using a bounded model checker to encode the problem
of solving a SAT instance as a larger SAT instance, then using an existing SAT solver to resolve
the nondeterminism. This is much less efficient than applying the existing SAT solver directly to
the SAT instance of interest. However, by reframing SAT solving as an optimisation problem of
minimising the amount of nondeterminism required, we can get an empirical measure of the hardness
of an easy SAT instance, called a backdoor, which is more informative than syntactic measures such
as number of variables or clauses.
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1 Pure Nondeterminism

NP problems, such as SAT, are characterised by the existence of polynomial-time verifiable
certificates for their solutions. In the case of SAT, the certificate is an assignment of
true/false to Boolean variables in the SAT instance. Bounded model-checking encodes a
run of a potentially nondeterministic imperative program into a SAT instance, where the
certificate gives a path through the program to a point of interest (such as assertion violation).
The declarative C paradigm [7, 8] exploits this equivalence to repurpose C as a declarative
language for constraint programming.

It is straightforward to encode the problem of solving a SAT instance as a declarative C
program. For example, we can encode the CNF (x1 ∨ ¬x3) ∧ (x2 ∨ x3 ∨ ¬x1) as follows:

Listing 1 A SAT instance in declarative C.
int main () {

uint8_t x1 , x2 , x3;
__VERIFIER_assume (x1 <= 1 && x2 <= 1 && x3 <= 1);
__VERIFIER_assume (x1 || !x3);
__VERIFIER_assume (x2 || x3 || !x1);
__VERIFIER_error ();

}

If we pass the program to a bounded model-checker such as CBMC [3], it will encode
the problem of finding an execution that leads to the error as a larger SAT instance, then
solve it with a SAT solver. It will translate the solution back into a counterexample trace,
yielding a solution to the original SAT instance.

While it is amusing to solve a small SAT instance by turning it into a large SAT instance
and applying an existing SAT solver, we gain no real insight by doing so. The “circuit”
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encoded by the large SAT instance includes the same inputs as the original SAT instance,
but bloated with auxiliary circuitry to encode the run of the C program. Nonetheless,
this is exactly how the XCSP3 solver Exchequer [6] behaves when presented with a SAT
instance encoded as an XCSP3 problem. While the performance is bad compared with
applying the SAT solver directly to the original small SAT instance, it may still beat other
constraint-solving approaches [1].

2 Nondeterministic DPLL

The classic SAT-solving algorithm is a variant of DPLL [2], which combines pure literal
elimination, unit propagation and backtracking search. The backtracking search is invoked
only when pure literal elimination and unit propagation can make no further progress. It
picks a variable and guesses whether it should be true or false; if it is wrong, it tries the
other option on backtracking. With good heuristics for picking a variable and guessing its
value, DPLL can solve many SAT instances quickly.

What happens if we interpret a DPLL implementation as a declarative C program?
Rather than picking a variable using heuristics or randomness, we can make the choice
nondeterministic. There is no longer any need for backtracking in the C program, as the
SAT solver will choose the correct value if one exists. However, to make the loop unrolling
performed by the bounded model-checker tractable, we do need to bound the number of
iterations of the algorithm.

As in the purely nondeterministic case, the resulting SAT instance is larger, and solving it
with a SAT solver is less efficient than applying a solver directly to the original SAT instance.
However, now the true nondeterminism in the larger instance is limited to just variable/value
choice in the (no longer backtracking) search; the rest of the instance is quickly forced to
consistency with the deterministic parts of the C program.

Many SAT instances become “easy”, in the sense that they can be solved quickly using just
pure literal elimination and unit propagation, once a small number of variable assignments
have been guessed correctly. These assignments constitute a backdoor [10, 9, 4]. The size of
a SAT instance’s backdoor is a better metric of its hardness than purely syntactic measures,
such as number of variables or clauses. Unfortunately, computing it is at least as hard as
solving the instance. However, by treating solution of our declarative implementation of
DPLL as an optimisation problem, where we aim to minimise the number of nondeterministic
choices, we obtain a method of finding SAT backdoors using a SAT solver, albeit an inefficient
one.

3 The UNSAT Case

Solutions to NP problems, such as SAT, are characterised by the existence of polynomial-time
verifiable certificates. However, for co-NP problems, such as UNSAT, this is not the case
(unless NP = co-NP). Yet SAT solvers can also produce certificates for unsatisfiability. What
happens if we treat an UNSAT certificate verifier as a declarative program? We obtain
a method for finding UNSAT certificates (a co-NP problem) using a SAT solver (which
solves NP problems). But under the assumption that NP 6= co-NP, and observing that
UNSAT certificates can be extremely large [5], this method will be neither complete nor
efficient. Nonetheless, this provides another example of the succinctness and flexibility of the
declarative C paradigm.
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