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Abstract12

The Multiple Constant Multiplication (MCM) problem arises in many applications such as, for13

example, digital signal processing. Given a set T of target constants, the goal of MCM is to find the14

most efficient way for multiplying an input number with each constant in T , where multiplications15

are realized through bit-shifts and additions, and where intermediate results may be shared to16

produce different target constants. Different metrics may be considered for evaluating the cost of a17

solution, and a classical objective function is to minimize the number of adders. State-of-the-art18

methods, based on Integer Linear Programming (ILP), suffer from numerous performance and19

scalability bottlenecks. In this work, we propose for the first time a Constraint Programming (CP)20

model for minimizing the number of adders for the MCM.21

Compared to the state-of-the-art ILP approach, CP does not suffer from the curse of linearization,22

hence permits significantly simpler formulations of the mathematical model. In order to evaluate our23

CP model, we focus on a widely used benchmark extracted from a collection of digital filter designs24

and compare ourselves with state-of-the-art ILP and SAT models. We show that our CP approach25

is less efficient on some easy instances, but more efficient on hard instances. We also introduce a26

pseudo-polynomial time algorithm which is able to solve some instances, and show that using this27

algorithm during a preprocessing step improves the solution process.28
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Keywords and phrases Constraint Programming, Multiple Constant Multiplication, Hardware30

Optimization31

Digital Object Identifier 10.4230/LIPIcs...32

1 Introduction33

1.1 Motivation34

Electronic devices with embedded computations are everywhere: in hearing-aids, smart-35

watches, cars, or drones, for example. The strict resource and power constraints call for highly36

optimized implementations. Instead of using standard data formats and generic arithmetic37

units, hardware designers often use code generators to implement individual or compound38

operators tailored to the application’s requirements.39

In this context, a common type of arithmetic operator is Multiplication by Multiple40

Constants (MCM), where an integer number is multiplied by several target constants known41

at the design time. The idea is that by exploiting the a priori knowledge of the constants,42

one can avoid costly generic multiplier circuits and design a custom optimized computational43

implementation for a given target constant set. MCM is used in digital signal processing for44
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linear digital filter evaluation [1,13,19,22,26], Discrete Transforms (Discrete Cosine Transform,45

Fast Fourier Transform) [15,32], as well as for inference of Deep Neural Networks [10,17].46

Multiplications by constants are commonly done using additions/subtractions and bit-47

shifts: shifting a number X by k bits on the left (or the right) is equivalent to multiplying X48

by 2k (or 2−k). This is called a shift-and-add approach. Shifts are basically wiring that is49

free in hardware, hence designers usually only minimize the number of additions/subtractions50

(which we simply refer to as adders). This is a good high-level metric of the final hardware51

cost, though other low-level ones that count logic gates exist.52

Let us first illustrate our problem on a single constant multiplication (SCM) problem.53

Consider the multiplication of an integer variable X by 93, written as 1011101 in binary.54

Hence, 93X = 26X + 24X + 23X + 22X + X and a naive implementation of a shift-and-add55

approach for 93X is:56

80X = 26X + 24X; 88X = 80X + 23X; 92X = 88X + 22X; 93X = 92X + X57

However, this idea does not take into account the possibility of making subtractions58

instead of additions. Thanks to the Canonical Signed Digit representation of a number [18,31],59

we obtain that 93X = 27X − 25X − 22X + X so a second implementation of a shift-and-add60

approach for 93X is:61

96X = 27X − 25X; 92X = 96X − 22X; 93X = 92X + X62

Unfortunately, neither of these approaches are guaranteed to minimize the number of63

additions. Indeed, the optimal implementation is:64

31X = 25X −X; 93X = 21(31X) + 31X65

You can notice that previous approaches went wrong because they forced every addition to66

have X as one of the inputs, therefore forbidding additions between two previously computed67

multiplications.68

In MCM, several constants must be multiplied by the same input X. For example,69

consider the target set of constants {7, 19, 31}.70

A naive implementation of the MCM could consist in optimizing each constant individually:71

7X = 23X −X72

15X = 24X −X; 19X = 15X + 22X73

31X = 25X −X74

However, optimizing each multiplication separately does not ensure that the total number75

of additions is minimized, since intermediate terms can actually be shared. Indeed, the76

optimal shift-and-add implementation for this target set is:77

7X = 23X −X; 31X = 25X −X; 19X = 2−1(7X + 31X) (1)78

Note that here we used a right-shift to divide the even value 38X by 2 to obtain 19X.79

Given a set of target constants, the MCM Problem aims at finding a shift-and-add80

implementation that produces every target constant and minimizes a given metric.81

There are a lot of MCM non-exclusive variations relying on different metrics used as82

objective functions to minimize [2, 3, 12, 23]. In this paper, we will focus on the simplest83

metric: minimizing the number of adders [11, 25]. Although it does not perfectly reflect the84

actual implemented hardware cost, this high-level metric is a good proxy for a cost function.85
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It is generally accepted that MCM is an NP-hard problem from [6]. Historically, first86

papers to address the MCM problem were using heuristics, most of the time based on greedy87

algorithms [3,4,8, 24]. Then Integer Linear Programming (ILP) models were implemented,88

first by tabulating all possible factors that may occur in an optimal solution in preprocessing89

computations [3, 16,20]. However, the size of these number tables grows exponentially with90

the word-length of target constants, then leading to models requiring highly demanding91

calculations.92

More general new ILP models approached the MCM problem by initializing a lower93

bound k to the number of target constants, and by iteratively solving the decision problem94

"Can the MCM be solved with exactly k adders?" until reaching the smallest k for which the95

answer is yes [21]. This is called an "outer loop process". Instead of solving a sequence of96

decision problems, authors of [11,21] introduced a model that directly minimizes the number97

of adders (while initializing k to an upper bound computed with a good heuristic). Due98

to the linearization necessity implied by the use of ILP models, these methods suffer from99

a lack of expressiveness, which translates into really complicated models and also undergo100

numerical instabilities when the target constants become large.101

In the recent paper [9] was proposed a SAT model solving the MCM problem using102

an outer loop process. Finally, in [5] were introduced SAT models minimizing the number103

of full/half adders, another lower-level metric, to solve the Single Constant Multiplication104

Problem. Nevertheless, in this paper, we propose for the first time an approach for the MCM105

problem from the perspective of Constraint Programming.106

1.2 Overview of the paper107

In Section 2, we go deeper into some existing models and properties of the MCM problem.108

In Section 3, we introduce our CP model. In Section 4, we experimentally evaluate our CP109

model and show that it outperforms the ILP approach of [11] and is competitive with the SAT110

approach of [9]. In Section 5, we consider a simpler decision problem, that aims at deciding111

whether their exists a solution when the number of adders is fixed to the number of constant112

targets. We introduce a pseudo-polynomial time algorithm for this problem, and show that113

half of the benchmark instances can be solved with this algorithm because the answer is yes.114

We also show that using this algorithm during a preprocessing step significantly improves115

the solution process.116

2 Problem statement and properties117

The first input of an MCM instance is the set T of target constants. Intermediate values118

used to produce these target constants are called fundamentals. Constants that are not used119

to produce other constants are called free constants. For example, in Eq. 1 target constants120

are 7, 19, and 31. While 19 is a free constant, 7 and 31 are not free as they are used to121

produce 19.122

The second input of an MCM instance is the word-length, i.e., the number of bits w used123

to encode fundamentals. In this paper, we fix w = maxj∈J1,|T |K⌈log2(Tj)⌉.124

We also assume, based on experimentation, that intermediate values of fundamentals can125

be represented with w + 1 bits. Indeed, optimal solutions can often pass by a fundamental126

that is larger than the largest target constant. For example, in Eq. 1, the target set127

is representable with 5 bits but the last adder requires 6 to represent the fundamental128

7 + 31 = 38 > 31 = 25 − 1.129

© Théo Cantaloube, Xiao Peng, Christine Solnon and Anastasia Volokova;
licensed under Creative Commons License CC-BY 4.0

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


2.1 Adder modeling130

For each adder a, we note ca,l, ca,r, and ca the left operand, the right operand, and the131

result. As each operand is shifted before being added, a first possibility is to use two shift132

variables for representing the number of bit-shifts that must be performed on the left and133

right operands, respectively. As shifts may either be to the left (to multiply by positive134

powers of 2) or to the right (to multiply by negative powers of 2, i.e. divide), these variables135

are assigned to positive values when the shift is to the left, and to negative values when it is136

to the right.137

We can reduce the domain of shift variables by considering a theorem of [8] according to138

which we can impose that either the shift on the left operand is positive and there is no shift139

on the right operand, or both shifts are negative and equal, so that they can be applied after140

the addition. Then we obtain [11]:141

ca = 2−sr
a [(−1)σa,l2sl

aca,l + (−1)σa,r ca,r] (2)142

where sl
a is the left shift applied to the left input, sr

a is the right shift applied to the sum of143

the left and right inputs, and σa,l and σa,r are signs of the left and right inputs. Eq. 2 is144

equivalent to:145

2sr
aca = (−1)σa,l2sl

aca,l + (−1)σa,r ca,r (3)146

Note that sl
a, sr

a ∈ N instead of Z. These notations are summed up in Fig. 1.147

+

ca,l

sl
a

σa,l

ca,r

σa,r

ca

−sr
a

Figure 1 Optimized modeling of adders

▶ Example 2.1. Let us consider the shift-and-add solution Eq. 1. For the adder producing148

7 = 23 − 1 we have ca = 7, ca,l = ca,r = 1, sl
a = 3, sr

a = 0, σa,l = 0 and σa,r = 1. For the149

adder producing 19 = 2−1(31 + 7), we have ca = 19, ca,l = 7, ca,r = 31, sl
a = 0, sr

a = 1,150

σa,l = σa,r = 0.151

2.2 Properties of optimal solutions152

Here is a basic property of optimal adders:153

▶ Property 1. In optimal implementations, every free constant is a target constant.154

Proof. A free constant is not used to produce other constants. If it is not a target constant,155

then we can remove it from the circuit. But the implementation is supposed to be optimal,156

so this is a contradiction. ◀157

Keep in mind that the converse is false: a target constant may be used to compute other158

target constants (for example, in Eq. 1, 7 and 31 are not free constants).159

Also, if we denote MCM-Adders(T, w) the minimal number of adders required to produce160

the target constants set T on w bits, we have:161
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▶ Property 2. MCM-Adders(T, w) ≥ |T |162

Proof. This is simply because we need an adder output producing each target constant. ◀163

2.3 Preprocessing of target constants164

The target constant set T is preprocessed before launching the solving process, as proposed165

in [8]. First, we replace every target constant by its absolute value, as the sign may be166

adjusted later. Second, we divide every target constant by 2 until it becomes odd, as a shift167

can be applied to retrieve the original even-valued constant. Finally, we remove 1 from the168

resulting set of target constants, as it can be obtained for free from the initial input. More169

formally, T is replaced with {odd(|Tj |), Tj ∈ T} \ {1} where the operator odd is defined as:170

odd(x) = x

max
n≥0

(gcd(x, 2n))171

As a consequence, every preprocessed target constant is odd and greater than 1.172

3 Constraint Programming model173

In this section, we first introduce a CP model for the decision problem where the number of174

adders is given. Then, we show how to use this model to solve the optimization problem.175

3.1 Fixed Number of adders Decision Problem176

In this section, we assume that the number of adders is fixed to N .177

Variables178

For each adder a ∈ J1, NK, we introduce variables to represent its operands and output:179

ca ∈ J1, 2w − 1K is the output constant;180

ca,l ∈ J1, 2w − 1K and ca,r ∈ J1, 2w − 1K are the left and right inputs.181

We also introduce a variable c0 which models the initial input and which is constrained to182

be equal to 1.183

Variables ca, ca,l, and ca,r are related with sign values (σa,l and σa,r) and shift values (sl
a184

and sr
a) as defined in Eq. 3. Instead of introducing sign and shift variables, as done in ILP185

models, we gather them in ka, ka,l, and ka,r variables, which are further gathered in cnsh
a ,186

csh,sg
a,l and csh,sg

a,r variables as displayed below:187

2sr
a︸︷︷︸

ka

ca︸ ︷︷ ︸
cnsh

a

= (−1)σa,l2sl
a︸ ︷︷ ︸

ka,l

ca,l

︸ ︷︷ ︸
csh,sg

a,l

+ (−1)σa,r︸ ︷︷ ︸
ka,r

ca,r

︸ ︷︷ ︸
csh,sg

a,r

(4)188

Hence, for each adder a ∈ J1, NK, we introduce the following variables to store intermediate189

results:190

ka ∈ {2s | s ∈ J0, wK};191

ka,l ∈ {−2s, 2s | s ∈ J0, wK};192

ka,r ∈ {−1, 1};193

cnsh
a ∈ J0, 2w+1K;194

csh,sg
a,l ∈ J−2w+1, 2w+1K and csh,sg

a,r ∈ J−2w + 1, 2w − 1K.195
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C1: ∀ a ∈ J1, NK, ka × ca = cnsh
a

C2: ∀ a ∈ J1, NK, ka,l × ca,l = csh,sg
a,l and ka,r × ca,r = csh,sg

a,r

C3: ∀ a ∈ J1, NK, csh,sg
a,l + csh,sg

a,r = cnsh
a

C4: ∀ a ∈ J1, NK, ka,l > 0 or ka,r > 0
C5: ∀ a ∈ J1, NK, ka + ka,l ̸= 2 and ka + ka,l ̸= 0
C6: T ⊆ {ca | a ∈ J1, NK}
C7: c0 = 1
C8: ∀ a ∈ J1, N − 1K, {a′ ∈ Jk + 1, NK | inda′,l = a ∨ inda′,r = a} = ∅ =⇒ ca ∈ T

C9: ∀ a ∈ J1, NK, ca,l = cinda,l
and ca,r = cinda,r

C10: allDifferent((ca)a∈J0,NK)
C11: ∀ a ∈ J1, NK, ca ≡ 1[2]

Figure 2 Constraints for the Decision problem, when the number of adders is fixed to N

Finally, for each adder a ∈ J1, NK, we introduce variables for linking the left and right196

inputs of a with the output of another adder. To ensure that there is no cycle in this197

dependency relation, the domain of these variables only contains values smaller than a:198

inda,l ∈ J0, a− 1K and inda,r ∈ J0, a− 1K199

Constraints200

Constraints are listed in Fig. 2.201

Constraints C1 to C3 are straightforward consequences of Eq. 4.202

As fundamentals cannot have negative values, we know that ka,l and ka,r cannot be both203

negative. This is expressed by Constraint C4.204

As stated in Section 2.1, whenever there is no right shift, i.e., ka = 1, then there is a left205

shift, i.e., ka,l /∈ {−1, 1}. This is ensured by Constraint C5.206

To be a valid MCM implementation for the given target set T , adders must produce every207

target constant. This is realized by Constraint C6.208

Constraint C7 initializes the origin input.209

According to the Property P. 1, free constants are target constants. First member of the210

implication of Constraint C8 is equivalent to: "If adder a produces a free constant..." and211

second member is equivalent to "...then it is a target constant.".212

Constraint C9 links the left and right inputs of each adder a with the output of adders213

inda,l and inda,r, respectively.214

Finally, constraints C10 and C11 ensure that the generated values are all different and215

odd, respectively.216

Search strategy217

Random exploration of the search space in the MCM problem rarely produces valid or218

meaningful solutions. Fixing the fundamental of the second adder before the first adder219

generally results in failure. In contrast, constructing the adder graph incrementally, by220

adding one adder at a time in a well-defined order, is more likely to yield a valid solution.221

Thus, we impose a Lower Bound First strategy, and the variable ordering heuristic is detailed222

in Fig. 3.223
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inda,i

inda+1,i

ca ca,i ka,i ka

ka−1

Figure 3 Branching priority for Constraint Programming modeling

3.2 Minimization Problem224

To solve the MCM minimization problem, we solve a sequence of decision problems: we225

initialize N to |T |, and then we iteratively solve the model defined in Section 3.1 and226

increment N until we find a solution.227

4 Experimental Evaluation228

Our CP model has been implemented in Java with Choco-solver [30]. Experiments were229

conducted on a machine equipped with an Intel® Xeon® Gold 6444Y processor (16 cores,230

32 threads, 45 MB L3 cache) with 256 GB RAM, running on an x86_64 architecture with231

support for AVX-512 and related vector instruction sets. We call this approach CP – Choco.232

In addition to CP – Choco, we propose one more model using Minizinc [28]. As we heard233

how efficient SAT solvers (directly written in SAT) were for the MCM problem resolution,234

we used Minizinc with CP models in front-end, PicatSAT [33] in middle-end (to translate235

CP into SAT) and KisSAT in back-end. We denote as CP – PicatSAT our CP model with236

this approach.237

The code written for these models is available as open source1.238

The benchmark we have worked on is extracted from a collection of linear digital filters [27]239

that can be implemented with the MCM problem. It has been widely used in the literature240

and for the ILP-based approaches in particular [11,21, 24]. It contains 83 instances with |T |241

ranging from 1 to 51 constants and w from 4 to 19 bits.242

In Fig. 4(a), we compare our CP-based approach with the ILP approach of [11] and the243

SAT approach of [9] on a per instance basis. ILP – [11] and SAT – [9] are faster on "easy"244

instances, solved in less than 1s by both approaches. However, our approaches are faster on245

harder instances. While, in a run time limit of 3600s, CP – Choco and CP – PicatSAT are246

respectively able to solve 73 and 75 out of 83 instances, ILP – [11] and SAT – [9] respectively247

solved 61 and 74 out of 83 instances. To give more details, whenever CP – Choco or CP –248

PicatSAT resulted with a Time-Out, ILP – [11] resulted with a Time-out and whenever CP249

– PicatSAT resulted with a Time-Out, SAT – [9] resulted with a Time-out. When looking250

at Fig. 4(b), that displays the evolution of the cumulative percentage of solved instances251

with respect to time, we note that ILP – [11] and SAT – [9] are more successful than CP –252

Choco and CP – PicatSAT when the time limit is smaller than 0.1s, whereas SAT – [9], CP –253

Choco and CP – PicatSAT is more successful than ILP – [11] for longer time limits.254

In addition, we can see how much better suited CP – Choco is to the combinatorial255

1 https://gitlab.inria.fr/emeraude/mcm-cp
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Figure 4 Comparative analysis of ILP and CP resolution times.
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aspects of the MCM problem than ILP – [11] by comparing the number of variables in the256

respective models. ILP – [11] uses 2 + N(10 + |T |+ 2w + (N + 1)/2) variables whereas CP –257

Choco uses 11N variables. We can notice that unlike ILP – [11], there is no dependence on258

the number of target constants or on the word-length and the dependence on N is linear.259

5 Preprocessing step260

In this section, we study the decision problem that aims at deciding whether there exists a261

solution with |T | adders. We show that this problem may be solved in pseudo-polynomial262

time, and that the solution process is improved when solving this problem in a preprocessing263

step.264

Let us first formally define this decision problem:265

Problem: T-OPT266

Input: Target constant set T and word-length w267

Question: Do we have MCM-Adders(T, w) = |T |?268

Before delving into the algorithm, we first need to show how to efficiently determine if269

z can be produced with x and y and inputs (we denote this as can(x, y, z)). We could do270

can(x, y, z) = (z ∈ Aw(x, y)) where Aw(x, y) represents the set of fundamentals written on w271

bits "reachable" from inputs x and y but computing Aw(x, y) is not optimal (the table is too272

large and it takes too much time to generate). Instead, we can use the operator odd and do:273

can(x, y, z) =

∃ (σ1, σ2) ∈ {0, 1}2 \ (1, 1)

∣∣∣∣∣∣∣
z = odd((−1)σ1x + (−1)σ2y)

or (−1)σ1x = odd(z − (−1)σ2y)
or (−1)σ2y = odd(z − (−1)σ1x)

274

▶ Example 5.1. Let us use the operator can on T = {7, 19, 31} (cf Eq. 1). can(1, 1, 7) = true275

because 1 × 23 − 1 = 7 so odd(7 + 1) = 1. can(1, 1, 31) = true because 1 × 25 − 1 = 31 so276

odd(31 + 1) = 1. can(7, 31, 19) = true because 2−1 × (7 + 31) = 19 so odd(7 + 31) = 19.277

The time complexity for computing can is logarithmic in the number of bits because of278

the operator odd [7, chapter 10].279

▶ Theorem 5.2. T-OPT can be solved in pseudo-polynomial time O(log(w)× |T |3).280

Proof. The pseudo-polynomial algorithm is displayed in Alg. 1. We define the depth of281

an adder as the length of the longest path from the initial input 1, as illustrated in Fig. 5.282

The idea is to process depth by depth and build R, the set of reached target constants,283

while Q is the queue of target constants waiting to be processed. We start from 1 and284

we compute can(1, 1, Tj), ∀Tj ∈ T . We can repeat the process until we have found all285

target constants, as illustrated in Fig 5. The algorithm will necessarily terminate because286

|T | = MCM-Adders(T, w). The while and for loops on lines 3, 5 and 6 of Alg. 1 run at most287

|T | times. Hence, the time complexity of Alg. 1 is O(log(w)× |T |3). ◀288

A straightforward consequence of Th. 5.2 is that any instance (T, w) such that MCM-289

Adders(T, w) = |T | may be solved in pseudo-polynomial time. Hence, we propose to run290

Alg. 1 in a preprocessing step. If the algorithm returns true, then prec is a solution and the291

instance is solved; otherwise we can set the lower bound on the number of adders to |T |+ 1,292

and then solve the instance with CP. We call these new approaches CP T-OPT – Choco and293

CP T-OPT – PicatSAT.294
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Algorithm 1 Pseudo-polynomial implementation of MCM on T-OPT instances

Input: Target constant set T and word-length w

Output: (A, prec) such that A is the answer for T-OPT(T, w) and if A=true, then
prec is a predecessor function corresponding to an MCM implementation

1 function MCM-Adderspseudo−poly(T )
2 Let R = {1} and W = {1} be sets of constants
3 while W ̸= ∅ do
4 Pop x from W

5 forall z ∈ T \R do
6 forall y ∈ R \W do
7 if can(x, y, z) then
8 prec(z)← (x, y)
9 R← R ∪ {z}

10 W ←W ∪ {z}
11 Break

12 if R = T then
13 return (True, prec)

14 return (False, ∅)

1

7

9

23

11

depth 0 depth 1 depth 2

Figure 5 Illustration of Alg. 1 on the toy instance (T = {1, 7, 9, 11, 23}, w = 5). We have
can(1, 1, 7) = can(1, 1, 9) = true because 7 = 23 − 1 and 9 = 23 + 1. Hence, at the end of the
first iteration of the while loop, we have R = {1, 7, 9} and W = {7, 9}. We have can(7, 9, 11) =
can(7, 9, 23) = true because 11 = 2 × 9 − 7 and 23 = 2 × 7 + 9. Hence, at the end of the second
iteration of the while loop, we have R = {1, 7, 9, 11, 23} and W = {23, 11}. Then R = T so the
algorithm will return prec = {7← (1, 1), 9← (1, 1), 11← (7, 9), 23← (7, 9)}

When running Alg. 1 on our benchmark, we noticed that the answer was true for 44 out295

of the 83 MCM instances. In Fig. 6(a) and (b), we compare CP T-OPT – Choco with CP –296

Choco and CP T-OPT – PicatSAT with CP – PicatSAT. It shows us that the preprocessing297

step allows us to significantly reduce the solution time for many instances, those for which298

MCM-Adders(T, w) = |T |, whereas solving times are not significantly changed for the other299

instances (as the running time of Algo. 1 is largely negligible compared to the running time300

of CP). When looking at Fig. 6(c), that displays the evolution of the cumulative percentage301

of solved instances with respect to time, we note that CP T-OPT – Choco and CP T-OPT302

– PicatSAT are always better than ILP – [11] and SAT – [9]. CP T-OPT – PicatSAT is303

now able to solve 79 out of 83 instances of the benchmark. This improvement is a direct304

consequence of the preprocessing step: by avoiding unnecessary resolution of the decision305
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problem when the number of adders equals the number of target constants, more time306

remains available to solve harder instances before reaching the timeout.307
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Figure 6 Comparative analysis of ILP – [11], SAT – [9], CP T-OPT – Choco and CP T-OPT –
PicatSAT resolution times.

6 Conclusion and perspectives308

In this paper, we introduced a new Constraint Programming model to solve the Multiple309

Constant Multiplication problem. We demonstrated that it outperforms previous ILP-based310

approaches and is very competitive in comparison to SAT models. We have also shown311

that half of the usual benchmark MCM instances do not require modeling and optimization312

paradigms but only a pseudo-polynomial algorithm.313

Further works will focus on the improvement of the scalability with respect to the word-314

length (with w > 20 bits). Moreover, it seems that the demonstration of NP-hardness of315

the MCM problem from [6] is not correct because it assumes that the MCM problem is the316

same as the Ensemble Computation problem proven NP-hard in [14], which is false. Thus,317

a proper demonstration of the NP-hardness of the MCM problem would be useful.318
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We also plan to extend our model so that it directly solves the minimization problem,319

instead of solving a sequence of decision problems with fixed numbers of adders. The key320

point is to model the fact that some adders are not used. This should allow us to improve321

performance of CP.322

Finally, we plan to approach the MCM problem through the prism of fixed topology and323

decision problems. The idea is that fixing the topology of the shift-and-add implementation324

(the adder nodes and the arcs) facilitates the search for the corresponding shifts, signs and325

fundamentals. Hence, we plan to enumerate every graph topology up to a reasonable size326

to facilitate the optimization. In order to eliminate symmetries we plan to investigate the327

interest of using canonical codes based on Breadth-First Search, as proposed in [29].328
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