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Abstract11

We study the p-dispersion problem with distance constraints (pDD), which is a variant of the12

well-known p-dispersion problem. In a pDD, we seek to locate a set of facilities in an area, so as to13

maximize the minimum distance between any two facilities, subject to the satisfaction of constraints14

that specify the minimum allowed distances between facilities. Two CP models for the pDD have15

recently been proposed. The first explicitly models the objective function and links it to the decision16

variables, allowing any standard CP solver to solve a pDD through Branch&Bound. However, as17

the size of the problem grows, this model becomes increasingly inefficient due to memory and cpu18

time issues. The second CP model is a simple one that does not explicitly model the objective19

function, and therefore, does not link it to the decision variables, meaning that propagation power20

is diminished and Branch&Bound is not applicable. This model essentially treats the pDD as a21

satisfaction problem where all solutions are seeked, simply recording the best solution found within22

the allowed time limit. Despite its simplicity, if this model is implemented efficiently, it is able23

to handle instances of larger sizes, with the downside being that often, only solutions that are24

far from the optimal are discovered. In this paper we first present a detailed examination of the25

two CP models on problems of varying size, analyzing their pros and cons. Then, we demonstrate26

how a rather forgotten CSP technique, standard backjumping, coupled with a simple and rather27

unconventional propagation method, can be used to compensate for the weak propagation in the28

simple model, allowing a solver to mimic Branch&Bound, and to reach much improved solutions.29
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1 Introduction33

Maximum diversity problems arise in many practical settings, from facility location to34

telecommunications and social networking analysis [7, 13, 3]. The most famous such problem35

is the maxmin p-dispersion problem, initially introduced by Shier as early as 1977 [18]. In36

this problem, which is NP-hard on general networks for any given p, we are given a set of37

candidate locations P = {1, 2, . . . , n} for p facilities and an n × n matrix D[i, j], i, j ∈ P with38

distances between candidate locations i and j. The goal is to select p items from P to locate39

the facilities such that the minimum distance between any pair of facilities is maximized.40

In practice, p-dispersion usually becomes relevant whenever the close proximity of a set41

of facilities is dangerous or for other reasons undesirable. This is typically the case when42

the facilities to be located are (ob)noxious, e.g. power plants, prisons, dump sites, etc., but43

similar principals also apply in other location scenarios. For example, dispersing military44
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installations makes it harder for an adversary to neutralize all of them at once, whereas45

franchises of the same company may be spaced apart to limit direct competition.46

The first integer linear programming (ILP) formulation for this problem was put forward47

by Kuby [10], while Erkut [6] developed the first dedicated algorithm for solving it. More48

recently, ILP-based strategies developed by Sayyady & Fathi [17] and Sayah & Irnich [16]49

have been shown to efficiently address large-scale instances.50

A variant of the p-dispersion problem, which has begun to receive renewed attention, is51

the p-dispersion problem with distance constraints (pDD). In this problem, in addition to the52

objective of p-dispersion, there exist distance constraints between the facilities. Moon and53

Chaudhry were the first to systematically study location problems with distance constraints54

and coined the term p-dispersion [12]. While they recognized the pDD as a practical challenge55

in real-world scenarios, they did not propose any solutions. Later, Dai et al. revisited this56

issue within the broader context of circle (i.e. facility) dispersion in non-convex polygons [4].57

Recently, ILP and CP models were proposed for the pDD [14, 9]. These models can be58

written into a format suitable for any standard MIP or CP solver, allowing for the pDD to59

be solved to optimality through Branch&Bound. However, experimental results indicated60

that the size of the ILP and CP models grows rapidly with the number of facilities and61

potential location points, primarily due to the introduction of numerous auxiliary variables62

and/or constraints required to model the distance constraints. This often leads to memory63

exhaustion and system crash.64

Hence, a heuristic CP approach, which utilizes a very simple model and a greedy heuristic65

to prune branches within a dedicated CP solver, was also proposed, and was shown to66

significantly outperform the exact approaches on hard instances [14, 9]. The simple CP67

model includes only p decision variables, each representing a facility with a domain containing68

all potential location points. Distance constraints are enforced through an arc consistency69

propagation algorithm, while the objective function is not explicitly captured. This model70

essentially views the pDD as a satisfaction problem, meaning that a solver that employs it71

will simply search for all solutions and keep the best it can find within the allowed time.72

The absence of an explicit objective function means that Branch&Bound is not applicable,73

and therefore, the solver may discover solutions that are better, equal, or worse than the74

current best one, while search progresses. Despite its simplicity, this approach was shown to75

be necessary when dealing with instances with large numbers of p and |P |, because of the76

low memory requirements.77

In this paper, we focus on CP models for the exact solving of the pDD. We describe the78

main “optimization” CP model, with two options for the distance constraints, as well as79

the simple “satisfaction” one. We first experiment with pDDs of small size, demonstrating80

that, as expected, the optimization model reaches much better solutions than the satisfaction81

one within 1 hour of cpu time, with both models being implemented in state-of-the-art82

solvers such as OR-Tools and CP Optimizer. We also give results from our custom solver83

implemented from scratch. We then experimentally demonstrate that standard CP solvers84

with either the optimization or the satisfaction model are unable to handle large pDDs85

because of the overwhelming memory requirements. We identify the formulation of the86

distance constraints as the main problem, and show that a simple implementation of these87

constraints, that bypasses CP modeling constructs such as the Element constraint, does not88

face any memory problems, even for very large pDD instances.89

As our final, and main contribution, we utilize a simple observation regarding the maxmin90

objective of p-dispersion to significantly improve the performance of a solver that uses the91

satisfaction model for the pDD. Specifically, as noted by Shier [18] and further elaborated92
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by Kuby [10], given a location of the p facilities with cost d, it is not possible to improve93

it, unless at least one of the two facilities that are located at distance d is relocated. In94

the context of a CP approach, where variables corresponding to facilities are assigned in a95

depth-first manner, once a solution with cost d is discovered, it cannot be improved unless the96

solver backtracks to the level where one of the variables determining the cost was assigned.97

These variables may have been assigned way up the search tree, meaning that standard98

chronological backtracking will result in fruitless exploration of a (possibly exponentially99

sized) portion of the search space.100

To amend this, we propose a simple backjumping scheme that backtracks to the deepest101

among the two variables determining the cost, as soon as a solution that improves the102

objective is discovered. This scheme, which we call Solution Based Backjumping (SBJ),103

becomes (slightly) more complex in case there is more than one pair of variables that104

determine the cost. But even if SBJ is used, a CP solver that utilizes the satisfaction model105

still suffers from a serious drawback: It does not guarantee that any newly discovered solution106

is better than all previously found ones. This is because this model results in weaker pruning107

compared to the optimization CP model. To amend this, we propose a simple, slightly108

unconventional, propagation technique, which we call max-min pruning, and prove that109

through its use only improving solutions can be discovered. The combination of SBJ and110

max-min pruning allows for a CP solver that uses the satisfaction model to efficiently mimic111

Branch&Bound search without explicitly modeling the objective function.112

Experimental results demonstrate that SBJ and max-min pruning have a quite significant113

effect on instances that only contain a few variables (10-20), and can have an astounding114

effect on larger instances that are out of reach for standard CP solvers. Using the proposed115

techniques, the solver is able to obtain solutions of profoundly improved cost, mainly because116

on large instances, lengthy backjumps are achieved, skipping the exploration of very large117

portions of the search space.118

2 Background119

In this section, we define the problem and give the necessary notation.120

2.1 Problem definition and notation121

In a p-dispersion problem with distance constraints (pDD), p facilities in a set of facilities122

F are to be placed on p nodes (points) of a weighted network G [12]. Hence, we have a123

discrete/network location problem. We assume that the set of nodes (candidate facility sites)124

P is known. Between each pair of facilities fi and fj there is a binary distance constraint125

specifying that the distance between the points where the facilities fi and fj are to be located126

must be greater than dij , where dij is a constant. Notice that dij may vary from constraint127

to constraint, as we deal with the case of heterogeneous facilities, following the work of128

[14, 9].129

The distance between two points can be given by the Euclidean distance, e.g. for the130

location of hazardous facilities, or by the shortest path in a street network, e.g. for the131

location of franchises, or by any other suitable metric. As is common in the literature, we132

assume that the pairwise distances between all candidate facility location sites are given in a133

2-D distance matrix D (i.e. D[i, j] is the distance between points i and j). The goal in a134

pDD is to locate the p facilities so that the minimum distance between any two facilities is135

maximized (a maxmin objective), subject to the satisfaction of all the distance constraints.136

137
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Further notation. In the sections below, we use the following notation:138

objbest: At any point during search, this denotes the best objective value found so far.139

A: A complete assignment A = ⟨x1 = v1, . . . , xp = vp⟩, with A[xi] denoting the projection140

of A on xi (i.e. the value that xi takes in the assignment).141

Apr: A partial assignment Apr = ⟨x1 = v1, . . . , xn = vn⟩, n < p.142

objA: Objective value of a complete assignment A that satisfies all constraints (a solution).143

Xc(A): A set containing pairs of variables that dictate the cost of a solution A. That is,144

for any pair (xi,xj) ∈ Xc, D[xi, xj ] = objA. We call such pairs and variables “culprit”.145

xcr: The current variable under consideration during search.146

depth(xi): Given a complete assignment A, depth(xi) is the depth in the search tree147

where xi was assigned.148

X−
x : The set of all variables xi such that depth(xi) < depth(x), where xi, x ∈ X.149

X+
x : The set of all variables xi such that depth(xi) > depth(x), where xi, x ∈ X. During150

search, any unassigned variable is considered as having greater depth than xcr.151

max-min pruning. In a CSP, constraint propagation only removes values from domains152

when it is deemed that they are inconsistent, i.e. they cannot participate in any solution.153

This is typically achieved by applying some local consistency property, such as arc (domain)154

consistency or bounds consistency. However, in a Constraint Satisfaction and Optimization155

Problem (CSOP), consistent values can also be removed during search, if it is deemed that156

they cannot participate in any solution that is better than the incumbent solution (i.e. the157

best one discovered so far). We now formalize this, in the context of a pDD, by introducing158

the notion of max-min consistency.159

▶ Definition 1 (max-min consistency). A value vi ∈ Dom(xi), xi ∈ X, is max-min consistent160

iff ∀xj ∈ X, i ̸= j, ∃vj ∈ Dom(xj), s.t. D[vi, vj ] > objbest. In this case, vj is a max-min161

support of vi. A variable xi is max-min consistent iff ∀vi ∈ Dom(xi), vi is max-min consistent.162

A value vi that has no max-min support in a domain Dom(xj) is max-min inconsistent and163

can be removed from Dom(xi). Practically, this means that given the assignment of vi to164

xi there is no way to assign xj with a value from its domain so as to improve the value of165

objbest (the distance between xi and xj will always be less or equal to objbest). Hence, vi can166

be removed. We refer to the test of whether two values vi ∈ Dom(xi), vj ∈ Dom(xj) satisfy167

the condition D[vi, vj ] > objbest as a max-min consistency check.168

3 CP Models for the pDD169

We now present the CP models for the pDD. We first give two variants of a satisfaction170

(CSP) model and then the corresponding optimization (CSOP) ones. The two variants differ171

in the way they model the distance constraints. The first one uses the Element constraint172

to model them, while the second uses the Table constraint. Both of these types of global173

constraints are offered by all state-of-the-art CP solvers.174

We make use of the following additional notation:175

X = {x0, x1, . . . , xp−1}, where p = |X| = |F |, is the set of decision variables representing176

the facilities. The domain of each variable xi ∈ X, denoted Dom(xi), is the set of possible177

locations, i.e., ∀xi ∈ X : Dom(xi) = P .178

Y = {yij | 0 ≤ i < j < p} is a set of auxiliary variables where each yij takes as value the179

distance between facilities/variables xi and xj .180
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T = {Tij | 0 ≤ i < j < p} is the set of allowed tuples for the distance constraints between181

alls pairs of variables. Each Tij , corresponding to a distance constraint between xi and182

xj , contains pairs of assignments such that for any (v1, v2) ∈ tij , with v1, v2 ∈ P , we have183

D[v1, v2] > dij .184

3.1 Modeling the pDD as a CSP185

The two satisfaction models for the pDD problem are as follows:186

3.1.1 Modeling with Element constraints187

Alldifferent(X) (1)188

yij = Element(D, [xi, xj ]) ∀yij ∈ Y, 0 ≤ i < j < p (2)189

yij > dij ∀yij ∈ Y, 0 ≤ i < j < p (3)190

(4)191

This model contains p decision variables, p(p−1)
2 auxiliary variables, p(p−1)

2 Element and192

p(p−1)
2 unary “greater-than” constraints. The Element constraint is used to access the distance193

matrix D using the values of variables xi and xj as indices. The use of the AllDifferent194

constraint on all decision variables is not mandatory, since the distance constraints already195

propagate the fact that facilities should be placed at different locations, as they all have196

bounds (i.e. dij) greater than zero. We include them in this model and the ones that follow,197

although experimental results have demonstrated that they only have a slight impact on run198

times.199

3.1.2 Modeling with Table constraints200

Alldifferent(X) (5)201

Table(Tij , [xi, xj ]) 0 ≤ i < j < p (6)202

(7)203

This model contains p decision variables and p(p−1)
2 Table constraints. Each distance204

constraint is captured as a Table constraint. This option may seem wasteful in terms of205

memory, but hopefully it can take advantage of efficient Table constraint implementations206

within solvers.207

3.2 Modeling the pDD as a CSOP208

The models that capture the pDD as the optimization problem that it really is, are as follows:209

3.2.1 Modeling with Element constraints210

Alldifferent(X) (8)211

yij = Element(D, [xi, xj ]) ∀yij ∈ Y, 0 ≤ i < j < p (9)212

yij > dij ∀yij ∈ Y, 0 ≤ i < j < p (10)213

z = min(Y ) (11)214

maximize(z) (12)215
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This model contains p decision variables, p(p−1)
2 + 1 auxiliary variables, p(p−1)

2 Element216

and p(p−1)
2 unary “greater-than” constraints, plus the constraint z = min(Y ) forcing the217

auxiliary variable z to be equal to the minimum distance among all pairs of variables, and218

the objective function that maximizes the value of z.219

3.2.2 Modeling with Table constraints220

Alldifferent(X) (13)221

yij = Element(D, [xi, xj ]) ∀yij ∈ Y, 0 ≤ i < j < p (14)222

Table(Tij , [xi, xj ]) 0 ≤ i < j < p (15)223

z = min(Y ) (16)224

maximize(z) (17)225

This model contains p decision variables, p(p−1)
2 + 1 auxiliary variables, p(p−1)

2 Element226

and p(p−1)
2 Table constraints, and the constraint z = min(Y ) plus the objective function. In227

this case the Element constraints are necessary in order to link the objective variable z to228

the decision variables.229

Although these problems are relatively easy to model, the resulting formulations introduce230

a large number of auxiliary variables and constraints, with complexity on the order of O(p2).231

As the number of facilities increases into the hundreds and the number of potential location232

points—determining domain sizes and the size of Table/Element constraints—reaches into233

the thousands, solvers often run out of memory due to the large size of the model. This234

limitation becomes particularly problematic when attempting to handle large-scale instances,235

as will be clearly illustrated in the experimental section.236

3.3 A custom implementation237

We have also implemented a custom lightweight solver for the pDD, in order to investigate the238

modeling and algorithmic options in more detail. This solver is basically a straightforward239

MAC implementation using the first satisfaction model. The difference is that a custom240

implementation does not require the use of generic CP constructs/global constraints like the241

Element constraint to access the distance matrix D. We simply use the values of the assigned242

variables as indices to matrix D, given that we have direct access to the solver’s internal243

data structures. Hence, instead of an Element constraint and an auxiliary variable yij , for244

each pair of variables (xi, xj), there is a distance constraint cxixj : D[xi, xj ] > dij , specifying245

that the distance between the points where xi and xj are located must be greater than dij .246

As the objective function is not explicitly given in the model, we simply store its value247

(i.e. the minimum distance between any two facilities in the best solution found so far) and248

compute the cost of any new solution found so as to determine if this cost is better than the249

current value of the objective. If so, then the value of the objective is updated.250

To leverage such a simplified model in a generic CP solver, which is something that we251

are currently working on, access to the solver’s source code is necessary. This will allow252

direct indexing into the distance matrix D using the current variable assignments, avoiding253

the need for Element or Table constraints and/or auxiliary variables.254

We now briefly describe how propagation in our solver works, to set the stage for the255

enhancements detailed below. The propagation technique used by this solver during search256

is depicted by Function Propagate (Algorithm 1). It applies arc consistency on the distance257

constraints. The algorithm uses a queue to insert and then process variables that have their258
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domain filtered. It is called when a change occurs in the domain of the current variable xcr259

(e.g. through a value assignment), initializing the queue with this variable. Thereafter, when260

a variable xi is removed from the queue, then for each unassigned variable xj constrained261

with xi, and each value vj ∈ Dom(xj), it checks if there exists a value vi in Dom(xi) s.t. the262

two values satisfy the distance constraint between xj and xi (arc consistency check). If no263

such vi exists then vj is deleted from Dom(xj), and variable xj is inserted in the queue to264

propagate the deletion.265

As we demonstrate with an example below, the pruning achieved in this way, is weak266

because there is no explicit objective function in the model. Hence, an update in the value267

of objbest is not propagated to the decision variables in X. As a result, a solver that uses268

this model may discover solutions with worse or equal cost to objbest, as search progresses.269

In contrast, the optimization models given above explicitly include the objective function270

and link it to the decision variables through auxiliary variables and constraints. Hence, any271

update to objbest will be “fully” propagated.272

Algorithm 1 Propagate(X, Dom, C, xcr)
1: support ← true;
2: Q← {xcr};
3: while Q ̸= ∅ do
4: Select and remove xi;
5: for xj where cxj xi ∈ C, xj ∈ X+

xcr
do

6: for vj ∈ Dom(xj) do
7: support ← false;
8: for vi ∈ Dom(xi) do
9: if D[vj , vi] > dij then

10: support ← true; break;
11: if not support then
12: Dom(xj)← Dom(xj) \ {vj};
13: if Dom(xj) = ∅ then
14: return false;
15: if values have been removed from Dom(xj) then
16: Q← Q ∪ {xj};
17: return true;

4 Experiments with CP Models273

The evaluation of the models focuses on memory consumption, CPU time overhead, and274

solution quality. In our experiments, we considered all models presented in Section 3.275

4.1 Benchmarks276

Following [14, 9], we experimented with instances generated in two different ways. The first277

uses the benchmark library MDPLIB 2.0 [11] as basis to create pDDs, while in the second we278

seek to locate facilities on a grid. Experiments were performed on a machine with an Intel279

Xeon Gold 6230 with 20 CPU cores at 2.10 GHz and 28 GB of main memory. The system280

features an L1 cache of 1,281 KB, an L2 cache of 20 MB, and an L3 cache of 27.5 MB. The281

experiments were carried out on an Ubuntu-based operating system, with a time limit of282

3,600 seconds for all reported experiments.283

The MDPLIB collects a large number of p-dispersion benchmark instances divided into284

various classes. As in [14], we used some of these instances as basis, to produce pDDs285

of varying size. We generated 10 instances for each class by randomly adding distance286

constraints between facilities, using an interval of [0, max/t], where max is the maximum287
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distance between any two points and t is the level of tightness for the constraints. In order288

to produce feasible pDDs (especially with high values of p) we have set t = 8. We have tried289

pDDs with 100-2000 candidate facility locations and 10-200 facilities.290

Again following [14], we also generated pDDs using the grid generation model, which takes291

the following parameters: n, p, |P |, t. We first randomly select |P | among the n× n nodes292

of a grid to place the potential facility locations and fill the matrix D with the Manhattan293

distances between them. For each distance constraint D[xi, xj ] > dij between facilities xi294

and xj , dij is randomly set to an integer number in the interval [0, max/t], with t = 8.295

4.2 Experimental results296

Tables 1, 2 and 3 demonstrate the performance of the custom CP solver (CPc) and the297

solvers CP-SAT OR-Tools and CP Optimizer using the models described in Section 3. In298

Table 2 we give the results obtained using the two satisfaction models 3.1.2 and 3.2.1 (e.g.299

ORts1 and ORts2, respectively). The geometric mean of the best objective value obtained300

for all 10 instances of a class, is denoted in columns objb while the corresponding geometric301

mean of cpu time (in seconds) taken for a solver to reach that solution is given in tb columns.302

If a solver was unable to find a solution on some instances of a class, we calculate the mean303

over instances where at least one solution was discovered. We denote the number of such304

instances using a subscript. In case a solver did not find any solution in all instances of a305

class, we leave columns obj and tb blank. Finally, columns mem give approximations of306

the memory consumption for each solver in each class. We denote the case of a system crash307

due to memory exhaustion with X in the mem columns. The same holds for Table 1, where308

results from our solver are given, and Table 3, where we give results obtained using the two309

optimization models (e.g. ORto1 and ORto2, respectively) with OR-Tools and CP Optimizer.310

We do not report total CPU times because all solvers reached the cut off limit of 1 hour in311

all instances.312

Table 1 Evaluating CPc in small MDPLIB and grid pDDs.
Class CPc

(|P |,p) objb tb mem
MDG

a1 (100,10) 4.26 636 2MB
a1 (100,20) 1.57 871 2MB

GKD
d1 (100,10) 32.91 1,809 2MB
d1 (250,10) 29.68 168 3MB

GRID
g1 (10,80,30) 1.23 0 2MB
g2 (20,150,50) 1 0 2MB

There are some observations that can be made by looking at the results in the tables.313

First of all, as was of course expected, the optimization models reached solutions of better314

quality compared to the satisfaction ones. Looking at Tables 1 and 2, results are mixed315

regarding solution quality and cpu times. OR-Tools fared better with the second model316

(Table constraints) in solution quality, cpu time and memory consumption, whereas CP317

Optimizer fared better with the first model (Element constraints) in terms of solution quality.318

Note that in class d1 (250,10) OR-Tools (with the first model) reached the time limit during319

presolve and was not able to locate any solution in all instances of the class. Our solver320
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Table 2 Solving satisfaction models in small MDPLIB and grid pDDs.
Class ORts1 ORts2 CPopts1 CPopts2

(|P |,p) objb tb mem objb tb mem objb tb mem objb tb mem
MDG

a1 (100,10) 2.75 1,359 2GB 4.06 487 300MB 3.79 1,157 30MB 2.49 35 210MB
a1 (100,20) 0,939 2,339 5GB 1.92 886 160MB 1.42 862 55MB 1.69 695 715MB

GKD
d1 (100,10) 23.87 1,832 2GB 33.26 1,099 300MB 31.83 355 30MB 25.15 142 210MB
d1 (250,10) - - 7GB 29.91 624 350MB 28.35 1,128 120MB 18.17 94 1GB

GRID
g1 (10,80,30) 1 665 9GB 1.07 13 350MB 1 5 99MB 1 1 76MB
g2 (20,150,50) - - X 1 26 2GB 1 29 1.5GB 1 8 610MB

Table 3 Solving optimization models for MDPLIB and grid pDDs.
Class ORto1 ORto2 CPopto1 CPopto2

(|P |,p) objb tb mem objb tb mem objb tb mem objb tb mem
MDG

a1 (100,10) 4.41 1,003 2GB 4.66 328 2GB 4.68 63 40MB 4.68 117 245MB
a1 (100,20) 0.84 2,777 6GB 1.72 1,432 8GB 1.78 2,185 85MB 1.91 732 810MB

GKD
d1 (100,10) 33.03 1,370 2GB 34.03 1,297 2GB 34.06 219 47MB 34.06 144 245MB
d1 (250,10) - - 7GB - - 10GB 36.09 1,736 156MB 36.51 1,204 1.3GB

GRID
g1 (10,80,30) - - X - - X 2 119 115MB 2 50 200MB
g2 (20,150,50) - - X - - X 3 58 845MB 3 66 1.5GB

was competitive in terms of solution quality and cpu times, and crucially, it used negligible321

amounts of memory compared to the other two solvers.322

The results in Table 3 demonstrate that CP Optimizer is clearly a better option than323

OR-Tools, as the former obtained better solutions in all classes, and was able to handle the324

grid classes where the latter failed due to memory exhaustion. Regarding the two models in325

the case of CP Optimizer, there are no significant differences in terms of solution quality,326

but as was rather expected, the model with the Table constraints consumed a significantly327

larger amount of memory. The memory requirements of OR-Tools and CP Optimizer do328

not differ significantly between the two corresponding tables, indicating that the distance329

constraints are the main bottleneck memory-wise.330

5 SBJ and max-min pruning331

In this section, we show how the limitations of the satisfaction model for the pDD can be332

overcome through classical CP techniques such as backjumping and dedicated constraint333

propagation. The combination of our methods allows the solver to mimic Branch&Bound334

despite the absence of an explicit objective function, and thus to handle large instances335

efficiently with minimal memory consumption while still producing solutions of high quality.336

We first give a running example of a pDD and then we describe SBJ and max-min pruning337

in detail.338
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5.1 A running example of a pDD339

▶ Example 1. Let us consider a small pDD instance with p = |X| = 4 and |P | = 6, where340

the four facilities are to be placed in the network shown in Figure 1b. Let x1, . . . , x4 be341

the variables in X and Dom(xi) = P = {a, b, c, d, e, f}, 1 ≤ i ≤ 4. The distances between342

any two points in P are given in the 2-D matrix D of Figure 1a. Let a distance constraint343

D[xi, xj ] > 1 exist between any two variables xi and xj , ∀xi, xj ∈ X, i < j. Given the344

distances in matrix D, it is clear that all distance constraints are satisfied for any pair of345

distinct points. For simplicity, assume that lexicographic variable/value ordering is used.346

a b c d e f

a

b

c

d

e

f

0 3 3 4 5 4

0 4 6 5 2

0 4 4 4

0 5 4

0 5

0

(a) Distance matrix D

a

b

c d

e

f

(b) Network instance

Figure 1 Left. Distance matrix D. Right. An example network G for the small pDD instance.

Let us see how the custom CP Solver described in Section 3.3 operates. Variable x1347

will be assigned value a, and the propagation of the distance constraints will remove a348

from the domains of all other variables. Similarly for the assignment of b to x2, and so349

on until the solver finds the first solution A1 = ⟨x1 = a, x2 = b, x3 = c, x4 = d⟩ having350

objA1 = D[A[x1], A[x2]] = D[A[x1], A[x3]] = 3. Hence, Xc(A1) = {{x1, x2}, {x1, x3}}. After351

finding the first solution, the solver will try the remaining values for x4 (e and f), reaching352

alternative solutions, but without being able to improve objbest, which remains 3. It is353

clear that unless at least one of the variables in both culprit pairs in Xc(A1) changes value,354

objbest cannot be improved. However, the solver, being a chronological backtracker, will then355

backtrack to x3, trying x3 = d.356

When the solver eventually backtracks to x2, it will try the assignment x2 = c, creating357

the partial assignment Apr = ⟨x1 = a, x2 = c⟩. The propagation of the distance constraints358

will remove c from the domains of the future variables. The domains are Dom(x2) = {c},359

Dom(x3) = Dom(x4) = {b, d, e, f}.360

However, values b and c do not have a max-min support in Dom(x1) = {a}, as D[a, b] =361

D[a, c] = 3. Consequently, they are max-min inconsistent and should be removed. The solver362

fails to detect these inconsistencies since there is no propagation of the updated objective363

bound. Therefore, the solver will inevitably explore unfruitful paths that lead to equal or364

worse solutions. Specifically, it will proceed by trying x3 = b, creating Apr = ⟨x1 = a, x2 =365

c, x3 = b⟩, and b will be removed from Dom(x4). This will lead to the discovery of the366

following solutions that fail to improve the value of objbest: ⟨x1 = a, x2 = c, x3 = b, x4 = d⟩367

and ⟨x1 = a, x2 = c, x3 = b, x4 = e⟩, both having cost 3. A new improved solution368

will be found only after the solver backtracks again to x2, assigning x2 with d, leading to369

⟨x1 = a, x2 = d, x3 = e, x4 = f⟩ with objbest now becoming 4.370

It is clear that the custom CP solver suffers from two shortcomings: (1) it unnecessarily371

explores some parts of the search space after finding solutions because it does not identify372
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and exploit culprit pairs to backtrack non-chronologically, and (2) it fails to effectively prune373

domains once objbest is updated, as it does not apply max-min consistency. We now detail374

how these shortcomings can be addressed.375

5.2 Solution-based backjumping376

To address the first inefficiency stated above, we propose a backjumping technique [8, 15, 5]377

that we refer to as Solution-Based Backjumping-SBJ1, taking advantage of the maxmin378

optimization criterion in pDDs. This technique is applied as soon as a new solution is379

discovered. Let us first detail the steps of this method and demonstrate how it affects search,380

using Example 1.381

After a solution A has been discovered, a solver that uses SBJ will follow four steps:382

1. Create the culprit set Xc(A).383

2. For each culprit pair xc = {xi, xj} ∈ Xc(A), identify the “deepest” variable (e.g. if384

depth(xi) > depth(xj) then xi is the deepest). Add all such variables to a set Xd.385

3. Among all xd ∈ Xd, select the “shallowest” variable. That is, the one with minimum386

depth among the variables in Xd. This variable, denoted as xbj , is the one where the387

backjump occurs.388

4. Force search to non-chronologically backtrack to depth(xbj).389

Before moving on with Example 1, let us clarify Steps 2 and 3, which, as we prove below,390

guarantee that SBJ will not miss improving solutions after a backjump. Consider the simple391

case where after the discovery of the first solution, there is only one culprit pair {x1, x2}392

in Xc, with depth(x1) < depth(x2), having the assignment x1 = v1, x2 = v2. As {x1, x2}393

is the culprit pair, D[v1, v2] = objbest. If we backjump to x1 and undo the assignment394

x1 = v1, we may miss better solutions, as there may exist a value v′
2 ∈ Dom(x2) such that395

D[v1, v′
2] > objbest. To avoid this, we must backjump to x2 instead of x1, i.e. to the deepest396

variable in the pair. In the general case, there may be many culprit pairs that determine397

the cost of a solution. Suppose that Xc = {{x1, x2}, {x1, x3}} (with variables assigned in398

lexicographic order), where D[v1, v2] = D[v1, v3] = objbest. In this case, the value of objbest399

can be improved only if the assignment of at least one of the variables in each culprit pair400

is undone. As mentioned, to avoid losing improving solutions, the deepest variable must401

be chosen from each pair, resulting in the set Xd = {x2, x3}. According to Step 3, we then402

perform a backjump to the shallowest variable in Xd, which is xbj = x2. This is because in403

general, backjumping to one of the other variables in Xd risks leaving one or more culprit404

pairs unaffected (i.e. with their assignments intact). For example, selecting x3 as the variable405

to backjump to would leave the assignment of the culprit pair {x1, x2} ∈ Xc unchanged,406

thereby preventing any further improvement to objbest.407

Now consider again Example 1. After discovering the first solution A1 = ⟨x1 =408

a, x2 = b, x3 = c, x4 = d⟩, the solver will find all culprit pairs and form the set Xc(A1) =409

{{x1, x2}, {x1, x3}} (Step 1). Then, it will create set Xd = {x2, x3} by selecting the deepest410

variable from each pair in Xc(A1) (Step 2) and it will set xbj = x2 (Step 3) because x2 is the411

shallowest variable in Xd. Thus, the solver will perform a backjump to x2 and will skip all412

remaining nodes in the sub-tree rooted at ⟨x1 = a, x2 = b⟩. Therefore, it will not unnecessarily413

discover solutions ⟨x1 = a, x2 = b, x3 = c, x4 = e⟩ and ⟨x1 = a, x2 = b, x3 = c, x4 = f⟩ that414

are no better than A1.415

1 Not to be confused with Solution Directed Backjumping for Quantified CSPs or QBF [1, 19].
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We now prove that SBJ is sound, in the sense that it does not miss any solution that416

improves the value of the objective as search progresses.417

▶ Property 1. After SBJ has been applied when a solution A has been found, no solution418

with better cost than A will be missed during the search process.419

Proof. (By contradiction) Assume that SBJ is applied after finding a solution A1 with cost420

objA1 , jumping back to variable xbj . Right after backjumping and before unassigning xbj ,421

the algorithm restores the domains of all variables xj ∈ X+
xbj

while keeping the assignments422

of the variables in X−
xbj

intact.423

Suppose that there exists a solution A2 such that objA2 > objA1 that is missed due to424

backjumping. Such a solution A2 will have the following property:425

(A1[xi] = A2[xi],∀xi ∈ X−
xbj
∪ {xbj}) ∧ (∃xj ∈ X+

xbj
s.t. A1[xj ] ̸= A2[xj ]) (18)426

meaning that A1 and A2 share the same assignments for the variables in X−
xbj
∪ {xbj},427

and differ in at least one assignment for the variables that were restored after backjumping.428

However, xbj is guaranteed to be part of a culprit pair with a variable xi ∈ X−
xbj

, as xbj ∈ Xd,429

and Xd includes the deepest variables of each culprit pair. Thus, due to Eq.18, it follows that430

objA2 ≤ objA1 , contradicting the assumption that objA2 > objA1 . As a result, it is proved431

SBJ does not miss any solution with a better cost than A1. ◀432

5.3 Applying max-min consistency433

A property that CP solvers have when solving a pDD with an optimization model is434

incrementality with respect to the cost of the discovered solutions. That is, any solution435

discovered during search is guaranteed to be better than all previously discovered ones.436

This is a standard property of CP solvers that is typically achieved by linking the objective437

function to the decision variables through auxiliary variables/constraints, allowing for any438

update to the objective’s value to be propagated to the decision variables. As Example 1439

demonstrates, our CP solver (or any other solver that uses a satisfaction model) does not440

have this property. We will now show that the property of solution incrementality can be441

achieved in a satisfaction model through the application of max-min consistency.442

First, we show that there is a very simple, slightly unconventional, way to apply max-min443

consistency and guarantee that all max-min inconsistent values will be removed. Specifically,444

we claim that this can be done if the propagation mechanism invoked at each node (after the445

first solution has been found) does the following : 1) adds all variables xi ∈ X to the queue446

in line 2 of Function Propagate (Algorithm 1). That is, we replace line 2 (Q← {xcr}) with:447

Q← {xi | xi ∈ X}.448

and 2) this modified propagation method is called right after a backjump occurs and before449

trying the next value for xbj . We call the modified propagation method Propagate_maxmin.450

To illustrate how this works, let us consider again Example 1, after the solver backjumps451

to x2. Function Propagate_maxmin gets called and all variables are inserted in Q. At452

some point, x1 will be extracted and variables xj ∈ X+
x2
∪ {x2} will be revised. Therefore,453

checks D[Apr[x1], v2] > objbest,∀v2 ∈ Dom(x2) will detect the inconsistency between values454

a and c, and remove c from Dom(x2). Furthermore, as propagation goes on, all values455

vj ∈ Dom(xj),∀xj ∈ X+
xbj

will be checked for max-min consistency with Apr[x1], leaving the456

domains Dom(x3) = Dom(x4) = {d, e, f}.457
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After propagation terminates, a new value for x2 will be selected, that is x2 = d, which458

indeed is max-min consistent with x1 = a. Propagation will remove d from Dom(x3) and459

Dom(x4) (due to distance constraints) and there will be no further removals, since values e460

and f are max-min consistent. This will lead to the discovery of a new improved solution461

⟨x1 = a, x2 = d, x3 = e, x4 = f⟩ with objbest = 4, having skipped all the intermediate462

solutions with equal or worse cost compared to the first one.463

Also, notice that any removal of a value v from Dom(xj) at some point during propagation,464

will lead to the insertion of xj to Q (lines 15-16, Algorithm 1), so that the deletion will465

be propagated. This guarantees that any values that become max-min inconsistent during466

propagation because they lose all their max-min supports, will be also deleted.467

We now give our main theoretical result, proving that if max-min pruning is applied, the468

solver can mimic the effects of Branch&Bound in the satisfaction model.469

▶ Property 2. The application of Function Propagate_maxmin at each node after the first470

solution has been discovered, guarantees that any solution discovered thereafter will improve471

the value of objbest.472

Proof. (by contradiction) Assume that after a solution A with objA > objbest has been473

found, and before a solution with better cost than objA has been discovered, the solver finds474

another solution A′ with objA′ ≤ objA. Let xbj be the variable where the solver backjumps475

after discovering solution A, and (xi, xj) be the culprit pair for objA′ , with A′[xi] = vi and476

A′[xj ] = vj , i.e. objA′ = D[vi, vj ] (the proof can easily be generalized to the case of more477

than one culprit pairs). Without loss of generality, assume that depth(xi) < depth(xj).478

Now consider that as soon as solution A is discovered, SBJ forces the solver to backjump to479

depth(xbj). It is not possible that depth(xj) < depth(xbj), because in this case we would480

have A[xi] = vi and A[xj ] = vj , and therefore, objA = D[vi, vj ], meaning that (xi, xj) would481

be a culprit pair for objA and the solver would have backjumped to depth(xj). Hence, either482

depth(xi) < depth(xbj) ≤ depth(xj) or depth(xbj) ≤ depth(xi).483

In the former case, when the solver backjumps to xbj , xi will still be assigned to vi and484

xj will become unassigned. Propagate_maxmin will be called and at some point the pair485

(xi, xj) will be revised. As D[vi, vj ] ≤ objbest = objA, vj will have no max-min support in xi486

and will thus be deleted. Hence, it will not be possible to discover a solution with xj = vj ,487

as long as vi is assigned to xi. In the latter case, when search moves forward, extending the488

branch that will eventually correspond to solution A′, it will at some point assign variable xi489

with vi. At this point, Propagate_maxmin will be called and, for the same reason as above,490

it will remove vj from Dom(xj). Hence, again it will not be possible to discover a solution491

with xi = vi, xj = vj . ◀492

While the application of Propagate_maxmin enforces max-min consistency, initializing493

the queue with all variables at every search node can be computationally expensive. We494

now show that it is not necessary. Consider that after a backjump to depth(xbj) has been495

carried out and propagation through Propagate_maxmin has been completed, no max-min496

inconsistent values will remain in any Dom(xj) for xj ∈ X+
xbj
∪ {xbj}. Now, as search moves497

forward, all values in Dom(xj), xj ∈ X+
xbj

, will certainly remain max-min consistent with498

respect to past assignments, as long as there is no backtrack to a depth higher up the search499

tree than depth(xbj). If there is no such backtrack then the only way in which a value of an500

unassigned variable can become max-min inconsistent is because of the propagation of the501

current assignment, meaning that, in this case, it suffices to initialize the queue with xcr, as502

Algorithm 1 does. To take advantage of this and reduce the redundant consistency checks, we503
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propose switching between Propagate_maxmin and Propagate (i.e. between initiliazing the504

queue with all variables and only xcr), according to the depth of xcr, compared to depth(xbj).505

Specifically, after a backjump to depth(xbj), we propagate with Propagate_maxmin to506

eliminate all inconsistent values vj ∈ Dom(xj) for xj ∈ X+
xbj
∪ {xbj}. If, at some point, the507

solver backtracks to a depth ≤ depth(xbj), we again use Propagate_maxmin to propagate508

any new assignments. However, as long as the search proceeds within X+
xbj

, we propagate509

any assignment using Function Propagate, and this suffices to maintain max-min consistency.510

We call this method that switches between the two propagation modes Propagate_adaptive.511

A byproduct of this property is that the application of Function Propagate_maxmin also512

guarantees that any solution discovered will improve the value of objbest.513

6 Evaluating SBJ and max-min pruning514

Tables 4 and 5 compare the custom solver described in Section 3.3 (CPc) that uses Function515

Propagate (Algorithm 1) for propagation to an implementation of the same solver that uses516

SBJ and applies max-min pruning during search using Propagate_adaptive (solver SBJ-PA517

hereafter). Both use dom/wdeg [2] for variable ordering and lexicographic value ordering.518

The columns in the tables follow those of Tables 2 and 3. Again, we do not report total CPU519

times as all solvers reached the cut off limit of 1 hour in all instances, except for the case of520

SBJ-PA in a1 (100,10) and d1 (100,10) of Table 4 where the solver terminated in ≈ 3,081521

and 136,25 seconds in each class, respectively.522

We have also tried solving all instances of Table 5 using OR-Tools and CP Optimizer with523

the optimization models, but the CP solvers were unable to handle such classes, crashing524

or timing out on all instances due to the size of the constructed model (the same holds525

for the satisfaction models). This is denoted with X in mem columns. The crash/timeout526

occured either because of memory exhaustion (mainly in the case of OR-Tools) or because527

the solver took longer than 1 hour to load the model, due to its size (mainly in the case of528

CP Optimizer). In contrast, note that CPc and SBJ-PA only required 37 MB at most for529

any instance.530

Evidently, SBJ-PA locates solutions of much higher quality than CPc in all classes in531

both tables, with the differences in the large classes of Table 5 being overwhelming. Focusing532

on classes MDG a1 (100,10) and GKD d1 (100,10), SBJ-PA was able to prove optimality533

in all instances, in contrast to the other solvers, terminating successfully within the time534

limit. On the other hand, it locates slightly worse solutions in class a1 (100,20). But most535

importantly, SBJ-PA is able to easily handle, memory-wise, the large classes where both536

OR-Tools and CP Optimizer fail with any of the considered models.537

7 Conclusions538

We evaluated variants of a CP model for the pDD problem that allows it to be modeled and539

solved by any CP solver. We observed that as instance sizes grow, these models scale poorly,540

often leading to memory exhaustion and system failures, even if the pDD is viewed as a541

satisfaction problem. This is due to the inefficient handling of the distance constraints offered542

by high-level modeling tools, such as the Element and the Table constraints. In contrast, a543

simple CSP model implemented within a custom CP solver avoids such issues, but at the544

cost of reduced propagation strength, resulting in lower-quality solutions. To address this545

trade-off, we have enhanced CP solving for the pDD through two simple but very effective546

techniques. Solution Based Backjumping takes advantage of the maxmin objective to skip547
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Table 4 Comparing CPc and SBJ-PA on small grid and MDPLIB pDDs.
Class CPc SBJ-PA
(n,|P |,p) objb tb mem objb tb mem

GRID
g1 (10,80,30) 1.23 0 2MB 2 1 2MB
g2 (20,150,50) 1 0 2MB 3 1 2MB

MDPLIB - MDG
a1 (100,10) 4.26 636 2MB 4.68 67 2MB
a1 (100,20) 1.57 871 2 MB 1.65 1,664 2MB

MDPLIB - GKD
d1 (100,10) 32.91 1,809 2MB 34.06 16 2MB
d1 (250,10) 29.68 168 3MB 36.31 1,670 3MB

Table 5 Comparing CPc and SBJ-PA on large grid and MDPLIB pDDs.
Class CPc SBJ-PA ORto1 ORto2 CPopto1 CPopto2

(n,|P |,p) objb tb mem objb tb mem mem mem mem mem
GRID

g1 (60,1K,100) 1 27 12MB 6.19 248 12MB X X X X
g2 (60,1K,200) 1 297 13MB 4 1,158 13MB X X X X

MDPLIB - MDG
b18 (500,100) 2.89 783 5MB 4.74 1,709 5MB X X X X
b40 (2K,100) 4.06 26 36MB 41.95 723 36MB X X X X
b40 (2K,120) 3.76 34 37MB 21.78 1,057 37MB X X X X

MDPLIB - GKD
d1 (500,100) 1.35 4 5MB 7.18 70 5MB X X X X
d1 (1K,100) 1.59 9 12MB 7.88 264 12MB X X X X
d1 (1K,200) 0.88 74 14MB 2.85 2,161 14MB X X X X

an exponentially sized portion of the search space, whereas max-min pruning guarantees548

that despite the use of a basic CP model, only improving solutions are discovered as search549

unravels, by simply checking past assignments against unassigned variables at certain points550

during search. We experimented with pDDs having up to 2,000 potential locations and 200551

facilities. Results demonstrate that applying SBJ in tandem with max-min pruning can552

result in profoundly improved solutions being discovered, especially in large hard instances553

that standard solvers cannot handle.554
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