
Modeling the Inglenook Shunting Puzzle
Helmut Simonis #

Insight Research Ireland Centre for Data Analytics
School of Computer Science & IT, University College Cork, Cork, Ireland

Luis Quesada #

Insight Research Ireland Centre for Data Analytics
School of Computer Science & IT, University College Cork, Cork, Ireland

Abstract
We present different models for the Inglenook shunting puzzle, a well known problem for model
railway enthusiasts. The puzzle consists of rearranging wagons in a railyard with the help of a
shunting locomotive to form a train with selected wagons in a specific order. This can also be
seen as a deterministic planning problem, where the length of the plan to be generated is not
known in advance. Traditionally, these puzzles are solved by hand, there is only limited literature
analyzing the puzzle as a combinatorial problem. We present different models of the problem, and
compare their efficiency on the different problem sizes. For the default problem size, all states (350k)
and moves (2.2M) can be precomputed, the resulting directed graph can then be analyzed using
Dijkstra’s shortest path algorithm. We present an alternative view as a Constraint Satisfaction
Problem modelled with large table constraints, which we test with different solver backends. Another
alternative model uses string constraints to describe the allowed moves, without enumerating all
states, we use the Z3 solver to search for solutions. A third model also does not rely on precomputed
states, but models the states for a fixed-length path as constraints over finite domain variables.
While there is an interest in solving this puzzle on its own, it also provides a scalable benchmark
problem to test CP systems with large table constraints, string constraints, or complex logic formulas
over finite domains.

2012 ACM Subject Classification Computing methodologies Planning and scheduling

Keywords and phrases Planning, Constraint Programming, Table constraint, Inglenook Puzzle

Acknowledgements This publication has emanated from research conducted with the financial
support of Science Foundation Ireland under Grant number 12/RC/2289-P2, co-funded under the
European Regional Development Fund. For the purpose of Open Access, the author has applied
a CC BY public copyright licence to any Author Accepted Manuscript version arising from this
submission. We are grateful to the reviewer who brought reference [10] to our attention.

1 Introduction

The Inglenook shunting puzzle is an example of a railway based planning problem. Given
an initial state of wagons placed in the layout, the aim is to achieve a given target state
in as few moves as possible. Each move is an operation involving a locomotive (also called
shunter) moving wagons between locations of a limited capacity, coupling and uncoupling
wagons as required. This is a very popular problem for railway enthusiasts, with many
articles and videos describing how to build such a puzzle layout. Details of its history are
for example given in [22]. The puzzle is typically solved by a human controlling the model
shunter, setting the points, and performing the coupling or uncoupling of wagons. In this
mode, the aim is to find a solution with the smallest number of moves. There are also two
player competitions, where two identical layouts are operated by the players, the winner
is determined by the shortest solution time, so that manual dexterity and familiarity with
model railroad operations are also important.

The only scientific paper to discuss this specific problem we found is [7]. It considers
under which conditions there are solutions to all puzzle instances, there is for example no

mailto:helmut.simonis@insight-centre.org
mailto:luis.quesada@insight-centre.org

2 Modeling the Inglenook Shunting Puzzle

solution for every instance if we consider nine wagons in the traditional layout. The paper
also gives (rather weak) upper bounds on the worst case optimal length of a solution for a
given puzzle size, but does not discuss how to produce solutions for instances by a program.

There has been a steady stream of papers on train sorting and reversal [20, 5, 10, 1], but the
underlying assumptions do not seem to match our problem. In practical terms, the problem
of load shunting for railways has been largely replaced by the container pre-marshalling
problem [9, 19].

In this paper we present three types of models for this problem, in addition to solving
instances where possible by creating a graph of all legal states and movements, and finding
solutions by a shortest path algorithm.

The first model encodes the possible states in domain variables for a path of a fixed
length, with table constraints expressing the possible actions between states. As the resulting
constraint graph is tree structured, and we can enforce domain consistency on the table
constraints[14, 13, 23], we achieve global consistency of the problem by propagation alone [11],
and find solutions without backtracking. But, given the large number of states and moves,
the propagation requires significant resources, which leads to overall quite slow solution
times.

The second model expresses the problem with constraints over strings of finite length.
The actions of the shunter can be expressed as string concatenation, with additional integer
constraints on the string length. While the model is quite compact, results using the Z3
solver are disappointing, perhaps due to our limited experience with this tool.

The third model expresses each state by a collection of domain variables which indicate
for each slot of the layout whether the cell is empty, or contains one of the possible wagons. A
global cardinality constraint [18] ensures that the correct number of values of each type is used
in each state. The state transitions are expressed by a large disjunction of logical formulas
describing each possible move. This formula can be concisely expressed as a MiniZinc [15]
predicate. Different solvers perform very differently on this model, with clause learning
solvers performing best.

The paper is structured as follows: We are now at the end of the Introduction (Section 1).
The next Section 2 describes the problem, and presents an example problem and its solution.
We also discuss some of the properties of the default problem size by generating and analyzing
all states and movements. In Section 3 we present three different models of the problem, a
state-based CP model in Section 3.1, a model using finite string constraints in Section 3.2,
and a position-based CP model in Section 3.3. We present experimental results in Section 4,
before concluding with a summary and outlook in Section 5.

2 Problem Description

We now present the problem in more detail. Figure 1 shows the layout of the puzzle. On the
left, we have three track areas, called A, B, C, which can hold 5, 3, and 3 wagons respectively.
The slots available for wagons are marked as green rectangles. On the right we have track
area X (also called head-shunt), which contains a locomotive (also called shunter) and space
for three wagons. Tracks A, B, C are connected to area X by some points, which can be set
for each move to connect X to either A, B, or C. The locomotive is coupled to any wagons
in area X, and can either drop the left-most wagons from X into the selected area on the
left, or pickup the right-most wagons in the selected area and pull those into the head-shunt.
Each drop or pickup action can involve either one, two, or three wagons.

We explain the operation of the puzzle on a running example, given in Figure 2. We

H. Simonis and L. Quesada 3

Figure 1 Layout of Puzzle

Layout
A

B

C

X

see the initial state at the top, and the target at the bottom. In the starting state, area A
contains five wagons, area B contains three wagons, and areas C and X are empty (except
for the shunter in area X). Five of the wagons are part of the target, they are numbered 1 to
5. The remaining three wagons are labeled x, we do not differentiate them, as they are not
part of the target state. In the final state of the puzzle, area A should contain the wagons
1, 2, 3, 4, 5 in that order, we do not care where the other wagons are placed. There are
problem variants which impose additional constraints on where the "don’t care" wagons can
be placed in the final state.

The fundamental challenge in the puzzle is that there is no random access to the wagons,
each track area contains an ordered list of wagons, and all operations only concatenate and
split these lists while maintaining the order within each list. To reverse the order of two
wagons, we need to use multiple areas to temporarily place wagons, before reassembling the
sequence in a different order.

Figure 2 Running Example

Start
A

B

C

Xx 4 3 1 2

x x 5

Target 1 2 3 4 5

An optimal solution to the sample problem is shown in Figure 3, consisting of 11 moves.
In the first move, we use the locomotive to pickup three wagons on the right end of area A,
and move them to the head-shunt, area X. For every move, we see where the wagons moved
originate (in blue), and where they end (in red). In the second move, we drop the left-most
wagon in area X into the empty area C. Each move is either a pickup or a drop, involving
one, two or three wagons. In principle, there are 18 possible actions, but in each state only
a subset of the actions can be applied as areas are either already filled, or do not contain
enough items to move.

In the last move, we drop the three wagons 3, 4, 5 from area X into area A, which already
contains wagons 1, 2. This matches the target, and the puzzle is solved. The solution can
be described as the sequence of actions performed. Note that there may be more than one
optimal (i.e. shortest) solution for a given instance, while there are typically many more,
non-optimal action sequences that achieve the target.

We can calculate the number of potential, legal states of the problem with the following
observations. First, we can enumerate the possible distributions of wagons to the different
track areas. We have eight wagons in total, and each area can hold between zero and
three or five wagons. We find that there are 53 unique distributions. States belonging to
different distributions are clearly different from each other. Within each distribution, we can
rearrange the wagons freely, except that we do not distinguish between the three "don’t care"
wagons. There are 8!/3! = 6, 720 resulting permutations of ordering the eight wagons in each

4 Modeling the Inglenook Shunting Puzzle

Figure 3 Sample Solution

Start
A

B

C

Xx 4 3 1 2

x x 5

Move 1: Pickup 3 from A
A

B

C

Xx 4

x x 5

3 1 2

Move 2: Drop 1 into C
A

B

C

Xx 4

x x 5

3

1 2

Move 3: Pickup 1 from A
A

B

C

Xx

x x 5

3

4 1 2

Move 4: Drop 1 into C
A

B

C

Xx

x x 5

3 4

1 2

Move 5: Pickup 1 from B
A

B

C

Xx

x x

3 4

5 1 2

Move 6: Drop 1 into C
A

B

C

Xx

x x

3 4 5

1 2

Move 7: Pickup 1 from A
A

B

C

X

x x

3 4 5

x 1 2

Move 8: Drop 1 into B
A

B

C

X

x x x

3 4 5

1 2

Move 9: Drop 2 into A
A

B

C

X1 2

x x x

3 4 5

Move 10: Pickup 3 from C
A

B

C

X1 2

x x x

3 4 5

Move 11: Drop 3 into A
A

B

C

X1 2 3 4 5

x x x

Target 1 2 3 4 5

H. Simonis and L. Quesada 5

distribution. Two states based on the same distribution, but using different permutations
will be different, so that there are 53 ∗ 6, 720 = 356, 160 distinct states for the default sized
problem.

We can write a program that creates all states, and then checks which moves are possible
between them. This leads to 2,284,800 potential moves. If a state contains five wagons in
area A, and three wagons in area B, it is a valid starting state, a different instance of the
puzzle. We find that there are 6,720 distinct puzzle instances. All states that contain the
wagons 1..5 in increasing order in area A are valid end states, there are ten such states,
considering that we do not differentiate the position of the three "don’t care" wagons.

We construct a directed graph consisting of all states as nodes, and each legal move as a
link between the origin and the target of the move. We add a dummy end-node which can
be reached from each end state of the problem. We can then run a shortest path algorithm
to determine the shortest path between a starting state and the end node. By reversing the
orientation of the graph, we can run Dijkstra’s algorithm to determine the distance of each
node in the graph to the destination. This requires only a few seconds.

3 Models

In this section, we will introduce three different approaches to modeling the Inglenook
shunting puzzle as a constraint problem. We follow the traditional modeling approach to
solving deterministic planning problems with Constraint Programming [21, 6]: We assume
an upper bound of the plan length, and encode each state as a collection of domain variables.
Constraints are used to ensure that only legal states are generated, and that consecutive
states are connected by legal moves. If we find a plan with the fixed length, we can then try
to find a shorter plan by reducing the number of states allowed. If we do not find a solution,
we have to allow a longer path, until we find a solution.

The first model assumes that we have already calculated all potential states and moves,
and encodes each state as a single variable which ranges over all possible states, and the
solution as a sequence of states that are linked by legal moves. The resulting model has
many desirable properties, but is rather pointless, considering that we can just solve the
shortest path problem on the implied state graph to find solutions. On the other hand, this
model provides a very interesting benchmark for very large table constraints, showing a wide
range of results from different solver implementations.

The second model uses string constraints [2][4][3] over finite strings to model the potential
moves. Constraints over strings have been studied in a number of different constraint systems,
but most works are experimental, and have not found their way into a ready-to-run system.
We use the Z3 solver [8] which provides a finite string package.

The third model encodes states by a collection of variables, one for each slot for a wagon
in the layout. The values are either zero, representing an empty slot, or the number of the
wagon placed in the slot. Some constraints are used to force each state to be a legal state.
A large disjunction links consecutive states by enforcing legal moves between states. The
resulting model does not rely on any pre-computation, and expresses the problem in a very
compact form.

3.1 State-Based Model
Our first model assumes that all states and moves are precalculated, and are represented
in tabular form. The states are numbered from 0 to target-1, and the state transitions are
available as a two dimensional integer array moves, where each row describes one move by

6 Modeling the Inglenook Shunting Puzzle

giving the source and the destination of the move. As described above, we add an overall end
node with index target, and moves from all target states to this end node, and another move
from the end node to itself. This allows to extend a solution by dummy moves at the end.

Program 4 gives the very compact MiniZinc model. We have an array of state variables
x of length size, each state variable ranges from 0 to target. The first state is set to the
required start state, the last state is the overall end state. We link all consecutive pairs
of state variables with a table constraint using the moves array. We could add additional
constraints, for example an alldifferent_except_target constraint to enforce that each state,
except the end state, can only be used once.

Figure 4 MiniZinc Program for State-Based Model

1 include "globals.mzn";
2 int:start;
3 int:target;
4 int:size;
5 array[int,int] of int:moves;
6
7 array[1..size] of var 0..target:x;
8
9 constraint x[1] = start;

10 constraint x[size] = target;
11 constraint forall(i in 1..size-1)(table([x[i],x[i+1]],moves));
12
13 solve satisfy;

This program has many interesting properties. We can enforce domain consistency for
each table constraint, different variants of that constraint have been developed over time.
We also note that the constraint graph is a chain. We know that in this case propagation
alone will enforce generalized arc-consistency, removing all inconsistent values from the
domains of the variables. Each value left is part of a solution, so that we can find a solution
by assigning values without backtracking. It also means that we detect inconsistency of a
problem instance by propagation alone. If the selected path length is too small, propagation
of the table constraints will detect that there is no solution before search is started. This is
very helpful if we want to find the shortest solution length.

This model encodes all information about the states and legal moves into the table
constraints, and achieves all possible propagation by enforcing domain consistency of each
table constraint. As far as propagation is concerned, this is the best possible model, but it
requires pre-computation of all states and moves, which may be too resource heavy for larger
problem sizes, and will in any case need significant time to perform the propagation.

3.2 String-Based Model
This section explains our approach for solving the Inglenook Shunting Puzzle. The proposed
method aims to find a sequence of moves that transforms the initial state into the target state
by modeling the problem using string constraints. The approach is implemented using the
Python binding for the Z3 SMT solver, which allows us to define constraints and transitions
in a formal way. The Z3 solver is a powerful tool for solving logical formulas and is widely
used in various applications, including formal verification and constraint satisfaction problems
[8].

The problem is modeled using string constraints to represent the transitions between
states. Each state is defined by four variables: A, B, C, and X, which represent the positions
of the train cars and the shunting engine. The transitions between states are constrained by
the following rules:

H. Simonis and L. Quesada 7

Capacity Constraints: Each track has a maximum capacity:

Length(A) ≤ 5,

Length(B) ≤ 3,

Length(C) ≤ 3,

Length(X) ≤ 3.

Transition Constraints: The valid transitions are expressed as a disjunction of con-
junctions:(

(A + X = Anext + Xnext) ∧ (B = Bnext) ∧ (C = Cnext) ∧ (A ̸= Anext)
)
∨(

(A = Anext) ∧ (B + X = Bnext + Xnext) ∧ (C = Cnext) ∧ (B ̸= Bnext)
)
∨(

(A = Anext) ∧ (B = Bnext) ∧ (C + X = Cnext + Xnext) ∧ (C ̸= Cnext)
)
.

This formalization allows the Z3 SMT solver to compute valid sequences of moves that
transform the initial state into the target state while respecting all constraints.

3.3 Position Based Model
Our third model also does not rely on pre-computation, and encodes each state as a collection
of domain variables. For one state, we use one variable for each slot in the layout (see
Figure 1). Theses variables can take one of seven possible values: The value zero indicates
that the slot is empty, the values 1..5 indicate that one of the target wagons is placed in
this cell, and the value 6 indicates that one of the "don’t care" wagons is placed here. In
our Program 5 we use arrays A, B, C, and X to hold theses variables for each state in our
finite path-length model. We also introduce an array S, which combines the variables for
each state into a single list. The constraints of the model either constrain the variables for
each state to only allow legal states, or to link two consecutive states together. We first
express the rows of the S array as the concatenation of the corresponding rows of the A, B,
C, and X arrays. We then state that the first state must contain the wagons in the starting
locations, and the last state must contain the wagons in the A array in the correct target
sequence. The next constraint (Line 35) is a global_cardinality constraint, which ensures
that each value for a state occurs the right number of times. For the variables of one state,
the target values 1..5 occur exactly once, the "don’t care" value occurs three times, and the
empty value zero occurs six times.

The next constraints (Lines 39-43) enforce that the empty cells are at the beginning
of arrays A, B, and C, and at the end of array X. This is an important step to remove
unwanted symmetry, and to ensure that we can control how many non-zero elements are in
an array by just checking a single cell.

We then use a predicate move to express the constraint of legal moves between any two
consecutive states. This predicate is given in Program 6. Finally, there are four potential
extra constraints (Lines 48-51) that play a dual role to the previous implications. If a cell is
non-zero, then all cells to the right (resp. left for X) must also be non-zero. These constraints
are not used in our default runs, they are only used in Table 9 as a variation of the model.

The definition of the move predicate in Program 6 links the variables of one state in
arrays A, B, C, and X, with the variables of the next state in arrays A1, B1, C1, and X1.
The definition consists of a large disjunction of all 18 potential moves, where each move is
expressed by a logical conjunction in one line. As an example we consider the first entry
(Line 9 in Figure 6), which describes the move "pickup one wagon from A into X". We can

8 Modeling the Inglenook Shunting Puzzle

Figure 5 MiniZinc Program for Position-Based Model

1 include "globals.mzn";
2
3 % constants, some read from command-line
4 int:size;
5 int:nrWagons;
6 int:lengthA=5;
7 int:lengthB=3;
8 int:lengthC=3;
9 int:lengthX=3;

10 int:lengthTotal = lengthA+lengthB+lengthC+lengthX;
11 int:nrZero = lengthTotal-nrWagons;
12 int:nrDontCare = nrWagons-5;
13
14 set of int:Run = 1..size;
15 set of int:Dom = 0..6;
16 array[int] of int:startA;
17 array[int] of int:startB;
18 array[int] of int:target=[1,2,3,4,5];
19
20 % variables
21 array[Run,1..lengthA] of var Dom:A;
22 array[Run,1..lengthB] of var Dom:B;
23 array[Run,1..lengthC] of var Dom:C;
24 array[Run,1..lengthX] of var Dom:X;
25 array[Run,1..lengthTotal] of var Dom:S;
26
27 % S as concatenation of A, B, C, and X for each state
28 constraint forall(i in 1..size)
29 (row(S,i) = row(A,i)++row(B,i)++row(C,i)++row(X,i));
30 % initial and target conditions
31 constraint row(A,1) = startA;
32 constraint row(B,1) = startB;
33 constraint row(A,size) = target;
34 % global cardinality to enforce correct number of values in each state
35 constraint forall(i in 1..size)(global_cardinality(row(S,i),
36 [0,1,2,3,4,5,6],
37 [nrZero,1,1,1,1,1,nrDontCare]));
38 % implications to force zeros at start (resp. end for X) of shunt
39 constraint forall(i in 1..size,j in 2..lengthA)(A[i,j] = 0 -> A[i,j-1] = 0);
40 constraint forall(i in 1..size,j in 2..lengthB)(B[i,j] = 0 -> B[i,j-1] = 0);
41 constraint forall(i in 1..size,j in 2..lengthC)(C[i,j] = 0 -> C[i,j-1] = 0);
42 constraint forall(i in 1..size,j in 1..lengthX-1)
43 (X[i,j] = 0 -> X[i,j+1] = 0);
44 % move constraint between two consecutive states
45 constraint forall(i in 1..size-1)(move(row(A,i),row(B,i),row(C,i),row(X,i),
46 row(A,i+1),row(B,i+1),row(C,i+1),row(X,i+1)));
47 % potential extra constraints, not used in default mode
48 constraint forall(i in 1..size,j in 1..lengthA-1)(A[i,j] != 0 -> A[i,j+1] != 0);
49 constraint forall(i in 1..size,j in 1..lengthB-1)(B[i,j] != 0 -> B[i,j+1] != 0);
50 constraint forall(i in 1..size,j in 1..lengthC-1)(C[i,j] != 0 -> C[i,j+1] != 0);
51 constraint forall(i in 1..size,j in 2..lengthX)(X[i,j] != 0 -> X[i,j-1] != 0);
52
53 solve satisfy;

H. Simonis and L. Quesada 9

Figure 6 Transition Predicate for Position-Based Model

1 predicate move(array[1..lengthA] of var Dom:A,
2 array[1..lengthB] of var Dom:B,
3 array[1..lengthC] of var Dom:C,
4 array[1..lengthX] of var Dom:X,
5 array[1..lengthA] of var Dom:A1,
6 array[1..lengthB] of var Dom:B1,
7 array[1..lengthC] of var Dom:C1,
8 array[1..lengthX] of var Dom:X1) =
9 (A[5]!=0 /\ X[3]=0 /\ A1=[0,A[1],A[2],A[3],A[4]] /\ X1=[A[5],X[1],X[2]] /\ B1=B /\ C1=C) \/

10 (A[4]!=0 /\ X[2]=0 /\ A1=[0,0,A[1],A[2],A[3]] /\ X1=[A[4],A[5],X[1]] /\ B1=B /\ C1=C)\/
11 (A[3]!=0 /\ X[1]=0 /\ A1=[0,0,0,A[1],A[2]] /\ X1=[A[3],A[4],A[5]] /\ B1=B /\ C1=C) \/
12 (A[1]=0 /\ X[1]!=0 /\ A1=[A[2],A[3],A[4],A[5],X[1]] /\ X1=[X[2],X[3],0] /\ B1=B /\ C1=C)\/
13 (A[2]=0 /\ X[2]!=0 /\ A1=[A[3],A[4],A[5],X[1],X[2]] /\ X1=[X[3],0,0] /\ B1=B /\ C1=C)\/
14 (A[3]=0 /\ X[3]!=0 /\ A1=[A[4],A[5],X[1],X[2],X[3]] /\ X1=[0,0,0] /\ B1=B /\ C1=C) \/
15
16 (B[3]!=0 /\ X[3]=0 /\ A1=A /\ B1=[0,B[1],B[2]] /\ X1=[B[3],X[1],X[2]] /\ C1=C) \/
17 (B[2]!=0 /\ X[2]=0 /\ A1=A /\ B1=[0,0,B[1]] /\ X1=[B[2],B[3],X[1]] /\ C1=C)\/
18 (B[1]!=0 /\ X[1]=0 /\ A1=A /\ B1=[0,0,0] /\ X1=[B[1],B[2],B[3]] /\ C1=C) \/
19 (B[1]=0 /\ X[1]!=0 /\ A1=A /\ B1=[B[2],B[3],X[1]] /\ X1=[X[2],X[3],0] /\ C1=C)\/
20 (B[2]=0 /\ X[2]!=0 /\ A1=A /\ B1=[B[3],X[1],X[2]] /\ X1=[X[3],0,0] /\ C1=C)\/
21 (B[3]=0 /\ X[3]!=0 /\ A1=A /\ B1=[X[1],X[2],X[3]] /\ X1=[0,0,0] /\ C1=C)\/
22
23 (C[3]!=0 /\ X[3]=0 /\ A1=A /\ B1=B /\ C1=[0,C[1],C[2]] /\ X1=[C[3],X[1],X[2]]) \/
24 (C[2]!=0 /\ X[2]=0 /\ A1=A /\ B1=B /\ C1=[0,0,C[1]] /\ X1=[C[2],C[3],X[1]])\/
25 (C[1]!=0 /\ X[1]=0 /\ A1=A /\ B1=B /\ C1=[0,0,0] /\ X1=[C[1],C[2],C[3]]) \/
26 (C[1]=0 /\ X[1]!=0 /\ A1=A /\ B1=B /\ C1=[C[2],C[3],X[1]] /\ X1=[X[2],X[3],0])\/
27 (C[2]=0 /\ X[2]!=0 /\ A1=A /\ B1=B /\ C1=[C[3],X[1],X[2]] /\ X1=[X[3],0,0])\/
28 (C[3]=0 /\ X[3]!=0 /\ A1=A /\ B1=B /\ C1=[X[1],X[2],X[3]] /\ X1=[0,0,0]);

apply the rule only if the last entry of A is not empty, and the last entry of X is empty.
Remember that we enforce that all empty cells in A are on the left, and all empty cells of X

are on the right. These two terms on the left form a guard which enforces the precondition
of the rule to be usable. We then describe how the move of A[5] shifts the elements of A1
to the right, creating a new empty space at the head of A1, and placing A[5] at the head
of array X1, removing the empty space at the end of X. In this move, arrays B and C are
not changed, so B1 = B and C1 = C. Note that the move enforces the invariant on the
cardinality of each value occurrence. We remove one item from A, that is moved to X1,
while we remove one empty cell from X, that re-appears to the left of A1.

Each line describes one potential move, but the moves can only be used when the guard
conditions are enforced, so in reality only the moves feasible in a given states can be applied.
The correctness of the program now obviously depends on the correctness of the move
descriptions, which requires a careful check by hand.

Overall, the resulting program is not as compact as the state-based model, as each state
is described by a collection of variables instead of a single variable. The resulting model also
does no longer enforce domain consistency, so we rely on search to find feasible assignments.
This creates a problem for back-end solvers which do not use clause learning, as their search
method starts to thrash for larger problem instances. It makes it also very hard to rely on
enumeration to show that there is no solution if the path length is chosen too small.

4 Experiments

In order to test the scalability of different solvers, we not only test the full-sized problem with
eight wagons, but also studied problem instances with 5, 6, and 7 wagons. These problem
variants are also sometimes used by humans wanting a slightly simpler puzzle instance. All
of these instances use the default parameters (x/5/5/3/3/3/3). The parameters given are the
total number of wagons, the number of wagons in the ordered solution, the number of spaces

10 Modeling the Inglenook Shunting Puzzle

in shunts A, B, C, and X, and the maximum number of wagons moved at any one time. We
have also added problem sizes with 9 and 10 wagons, which significantly increase the number
of states and moves, using parameters (9/5/5/4/4/4/3) and (10/5/5/5/4/4/3) respectively.

Table 1 shows the characteristics of the different problem sizes. For five wagons, both the
number of states, as well as the number of moves is only a fraction of the full problem size of
using eight wagons, these instances should be much easier to solve.

Table 1 Problem Instances

Wagons
Distri-
butions

Permu-
tations States Moves

Starting
States

Finishing
States

Min
Moves

Max
Moves

5 44 120 5,280 31,920 120 1 3 9
6 53 720 38,160 244,890 720 3 4 9
7 56 2,520 141,120 917,280 2,520 6 5 9
8 53 6,720 356,160 2,284,800 6,720 10 4 9
9 95 15,120 1,436,400 11,823,840 15,120 15 6 12

10 105 30,240 3,175,200 26,429,760 30,240 19 6 12

For the experiments, we ran the state-based and position based models on a Windows 11
laptop with a 2.3GHz Intel(R) Core(TM) i7-10875H CPU with 64 GB of memory. We used
MiniZinc 2.93[15] from the command line, as the large data files created issues with the IDE
version. We used the provided back-end solvers for Chuffed, CP-Sat [16], and Gecode [12], but
also tested stand-alone solver back-ends for IBM’s CPO (version 22.1.0), Choco-solver [17]
(version 4.10.18) and Jacop (version 4.7.0) in Java. We used Cplex (version 22.1.0) only for
the position-based model, as results for the state-based model were disappointing, possibly
due to the mapping of the table constraints to linear constraints in the MiniZinc compiler.
Where possible, we use 8 worker threads for the solvers. The Z3 [8] experiments were
conducted on a MacBook Pro (2021) equipped with an Apple M1 Pro chip and 32 GB of
memory. The machine runs macOS Sequoia 15.5 and utilises Python 3.11.11 alongside Z3
version 4.15.0.

For each problem size, we selected instances that require different shortest path lengths,
using the precomputed states and moves. In the experiments below, we use one instance for
each required, non-trivial path-length.

4.1 Results for State-Based Model
Table 2 shows the results of the state-based model on problem instances with six wagons,
the largest problem size for which all solvers provided results. All solvers find solutions
for all instances, with Gecode and Jacop struggling with the large instances. Note that all
solvers find the first solution without backtracking, and time differences are due to either
the propagation of the table constraints themselves, or to the scheduling of the propagation
of multiple table constraints in a chain. The results for Chuffed, CP-Sat and CPO are
very similar, as there is no search there is no advantage in using multiple threads for the
enumeration phase for CP-Sat and CPO, compared to the single-worker search for Chuffed.

Table 3 shows the results for the eight wagon instances. Both Choco and Gecode1 are
not able to deal with the table constraints requiring over 2 million tuples. Jacop increasingly

1 We tested a C++ standalone version of the Gecode model to check that the problem is in the library
itself, not in the MiniZinc interface.

H. Simonis and L. Quesada 11

Table 2 State Model - Time (in Seconds) to Find First Solution for 6 Wagons

MiniZinc Java
Config Nr Moves Nr Sols Chuffed CP-Sat Gecode CPO Choco Jacop

5
1234x 3 1 1.74 1.70 5.44 1.22 2.99 0.52

5
123x4 4 2 1.93 1.83 6.13 1.26 2.54 0.52

x
12435 5 4 2.32 2.14 7.70 1.37 3.11 0.74

5
124x3 6 3 2.52 2.27 8.78 1.50 4.15 1.60

x
14235 7 2 2.71 2.40 9.84 1.51 3.55 4.46

x
31245 8 2 3.15 2.73 11.14 1.58 4.02 16.01

x
21345 9 14 3.37 2.82 12.53 1.68 4.98 38.86

x
32145 10 16 3.56 2.85 13.23 1.89 5.98 62.75

x
21354 11 70 3.68 3.29 14.35 2.43 7.37 60.64

1
x5432 12 69 4.19 3.70 16.14 2.02 9.10 65.03

struggles to perform the propagation with the length of the solution path, indicating room for
improvement either in the table constraint itself, or, more likely, in the constraint scheduling
inside the solver. Again, results for Chuffed, CP-Sat and CPO are quite similar, this seems
to indicate the current state-of-the-art for CP Solvers on this problem. The time taken,
nearly a minute for the largest instances, shows the limits of the state-based approach. While
performing only propagation, and zero backtracks, it takes a long time to achieve generalized
domain consistency.

Table 3 State Model - Time (in Seconds) to Find First Solution for 8 Wagons

MiniZinc Java
Config Nr Moves Nr Sols Chuffed CP-Sat Gecode CPO Choco Jacop

x5x
1234x 3 1 23.85 19.68 - 14.92 - 3.81

5xx
1234x 4 1 22.21 19.51 - 16.95 - 5.76

xxx
12435 5 2 26.55 24.12 - 19.45 - 9.10

3xx
12x45 6 1 28.35 25.14 - 20.47 - 17.93

xxx
14235 7 1 29.55 25.02 - 25.19 - 46.67

5xx
1243x 8 4 35.77 29.39 - 24.39 - 141.71

xxx
21345 9 4 40.18 30.40 - 26.78 - 474.84

xxx
41235 10 4 37.44 31.70 - 29.93 - 1,464.93

xxx
32145 11 4 43.28 36.96 - 28.99 - 1,781.49

xxx
34125 12 2 47.90 36.51 - 30.91 - 2,220.74

5xx
x4231 13 5 44.99 37.06 - 33.13 - 3,196.63

5xx
x3241 14 5 50.37 38.51 - 35.36 - 3,948.59

2xx
4351x 15 14 53.01 43.63 - 36.46 - 4,070.72

1xx
x3254 16 16 55.97 45.67 - 39.70 - 5,296.88

21x
xx543 17 33 60.52 47.81 - 42.05 - 6,456.42

Table 4 shows the results for instances with 10 wagons. Chuffed, CP-Sat and CPO are
finding solutions within a timeout of one hour, spending up to 15 minutes on the initial
propagation, but then requiring no search to extract all solutions. For this problem size,
CP-Sat outperforms the other solvers. The results for the other problem sizes are given in

12 Modeling the Inglenook Shunting Puzzle

appendix B.

Table 4 State Model - Time (in seconds) to Find First Solution for Size 10 (Parameters
10/5/5/5/4/4/3)

Config Nr Moves Nr Sols Chuffed CP-Sat Gecode CPO Choco Jacop
xx5xx
1234x 3 1 230.11 220.99 - 254.91 - 62.33
xxx5x
123x4 4 2 255.93 226.85 - 273.20 - 84.37
xxxxx
12435 5 2 332.41 280.73 - 326.64 - 142.80
xxxxx
13245 6 6 339.16 285.57 - 399.61 - 560.39
xxxxx
41235 7 1 377.29 292.67 - 437.96 - 3549.13
xxxxx
31245 8 3 449.27 341.49 - 414.79 - TO
xxxxx
21345 9 10 486.66 343.58 - 456.89 - TO
xxxxx
43215 10 24 479.84 357.94 - 521.55 - TO
xxxxx
21543 11 34 561.30 412.78 - 618.92 - TO
5xxxx
x2341 12 154 624.45 422.22 - 672.77 - TO
5xxxx
32x41 13 128 608.73 424.66 - 651.12 - TO
2xxxx
5314x 14 26 695.48 448.25 - 704.93 - TO
1xxxx
543x2 15 73 740.45 492.48 - 823.29 - TO
2154x
xxx3x 16 77 731.95 530.05 - 878.32 - TO

4.2 Results for the String-Based Model

Table 5 shows the results for the string-based model on problem instances with six wagons.
The Z3 solver finds solutions for all selected instances, but solution times are quite variable,
and, for the larger instances, significantly worse than the solution times needed by the
state-based models.

Table 5 String Based-Model - Time (in seconds) and Number of Choices with Z3 for 6 Wagons

Config Nr Moves Time Nr Decisions
5

1234x 3 0.29 921
5

123x4 4 0.35 2,764
x

12435 5 0.28 2,567
5

124x3 6 0.81 10,459
x

14235 7 1.06 9,086
x

31245 8 2.49 12,878
x

21345 9 4.21 25,282
x

32145 10 19.03 51,334
x

21354 11 210.39 107,414
1

x5432 12 347.98 184,332

Table 6 shows the solutions found for instances with eight wagons, where solutions are
only found for path length less than 12. This is signiifcantly worse than the results for the
state-based model (when the back-end solver are able to handle the instance size). Results
for other problem sizes are found in Appendix C.

H. Simonis and L. Quesada 13

Table 6 String Based-Model - Time (in seconds) and Number of Choices with Z3 for 8 Wagons

Config Nr Moves Time Nr Decisions
x5x

1234x 3 0.26 1,155
5xx

1234x 4 0.50 7,189
xxx

12435 5 0.47 5,810
3xx

12x45 6 54.91 73,402
xxx

14235 7 1.69 16,755
5xx

1243x 8 337.83 165,057
xxx

21345 9 7.87 39,837
xxx

41235 10 11.99 57,080
xx5

x4312 11 111.42 121,153
xxx

34125 12 TO -
5xx

x4231 13 TO -
5xx

x3241 14 TO -
2xx

4351x 15 TO -
1xx

x3254 16 TO -
21x

xx543 17 TO -

4.3 Results for Position-Based Model
Table 7 shows the results for the position based model from Section 3.3 for four different
back-end solvers in MiniZinc on the eight wagon problem instances. The differences in the
results for the different back-end solvers are striking. While Gecode can only handle the
smallest path lengths, and Cplex also times out for large instances, both Chuffed and CP-Sat
find solutions for all problem instances. It is not clear if the significant advantage of CP-Sat
in execution time is only due to the multi-threaded search (using eight threads), compared to
the single thread execution of the Chuffed backend, or if the MiniZinc compilation for CP-Sat
produces a better model. CP-Sat execution with a single thread is often disappointing, and
is not reported here (details in Table 21 in the appendix).

Table 8 shows the results for the position based model for instances with 10 wagons. Only
Chuffed and CP-Sat are able to solve all instances within a 300 second timeout, with CP-Sat
again providing much more consistent results, even for instances with more required moves.
Results for the other problem instances are found in appendix D.

Overall, the position-based model using CP-Sat performs very well in finding a first
solution, but it is not able to check infeasibility of larger problem instances. While the
solution provided can be used to find solutions quickly, and those solutions are often optimal,
at the moment we cannot prove optimality without creating the full state graph.

The implications and the global cardinality constraints of the position based model are
redundant, as they are implied by the move constraints. We performed some experiments
where we modify the MiniZinc program to see if these redundant constraints have a positive
impact. The first variant adds the additional implications (Lines 48-51 in Figure 5) to the
model, the second version is our default, used in all other reported results. The third variation
removes the implications for zero values (Lines 39-43), while the next variant removes the
global cardinality constraints (Line 35). The final variant only keeps the move constraints,
more details are given in Appendix F. When we compare results for CP-Sat (Table 9) for size
8, we see that the global cardinality constraint is essential, without it even CP-Sat struggles
to find solutions for the instances with larger move numbers, while the implications have a

14 Modeling the Inglenook Shunting Puzzle

Table 7 Position Model - Time (in seconds) to Find First Solution for 8 Wagons, All Solvers in
MiniZinc

Config Nr Moves Chuffed CP-Sat Cplex Gecode
Time Nodes Time Failures Time Nodes Time Nodes

x5x
1234x 3 0.30 285 0.37 0 0.63 0 0.35 807

5xx
1234x 4 0.33 894 0.39 0 0.54 0 28.27 13,648,985

xxx
12435 5 0.36 2,970 0.50 203 0.89 0 92.77 39,097,442

3xx
12x45 6 0.56 10,897 0.54 261 1.11 0 TO >120,581,535

xxx
14235 7 0.64 14,018 0.61 456 3.02 2,795 TO >108,711,063

5xx
1243x 8 0.48 7,117 0.69 1,158 24.45 14,261 TO >108,768,673

xxx
21345 9 1.10 26,053 0.78 2,414 91.66 30,611 TO >81,069,139

xxx
41235 10 3.12 74,281 0.94 2,433 TO >82,632 TO >75,116,733

xxx
32145 11 3.47 87,001 1.07 3,233 TO >78,093 TO >94,125,683

xxx
34125 12 3.05 77,928 1.34 9,538 TO >75,077 TO >76,713,584

5xx
x4231 13 5.35 124,490 1.31 8,116 TO >62,390 TO >65,023,177

5xx
x3241 14 37.62 409,555 2.81 25,034 TO >63,241 TO >46,175,216

2xx
4351x 15 34.15 444,126 2.72 23,731 TO >67,384 TO >59,826,122

1xx
x3254 16 15.67 287,364 2.63 20,361 TO >50,273 TO >42,507,680

21x
xx543 17 35.28 421,762 3.41 33,689 TO >60,772 TO >43,260,349

Table 8 Position Model - Time (in seconds) to Find First Solution for 10 Wagons, All Solvers in
MiniZinc

Config Nr Moves Chuffed CP-Sat Cplex Gecode
Time Nodes Time Failures Time Nodes Time Nodes

xx5xx
1234x 3 0.36 247 0.45 0 0.53 0 0.89 1,673
xxx5x
123x4 4 0.37 481 0.49 0 0.78 0 TO -
xxxxx
12435 5 0.43 2,091 0.60 167 1.18 0 TO -
xxxxx
13245 6 0.55 7,709 0.69 390 1.21 0 TO -
xxxxx
41235 7 0.75 15,256 0.79 297 7.53 3,030 TO -
xxxxx
31245 8 0.88 15,238 0.96 1,176 69.88 19,566 TO -
xxxxx
21345 9 1.29 29,714 1.00 1,090 9.70 4,324 TO -
xxxxx
43215 10 3.06 74,012 1.15 872 TO - TO -
xxxxx
21543 11 2.25 58,035 1.42 4,874 TO - TO -
5xxxx
x2341 12 14.17 190,670 1.78 9,737 TO - TO -
5xxxx
32x41 13 7.45 155,753 2.10 13,597 TO - TO -
2xxxx
5314x 14 186.76 1,215,177 3.73 25,152 TO - TO -
1xxxx
543x2 15 152.52 1,184,709 4.02 27,502 TO - TO -
2154x
xxx3x 16 107.89 758,501 6.77 53,847 TO - TO -

H. Simonis and L. Quesada 15

smaller impact. This may also explain the relatively poor performance of the string based
model, the Z3 solver currently does not seem to have constraints to constrain the number of
occurrences of literals in the string variables.

Table 9 Position Model - Time (in seconds) to Find First Solution for Model Variants for 8
Wagons, CP-Sat Only

Config Nr Moves +Imply Default -Imply -GCC Move Only
x5x

1234x 3 0.34 0.37 0.37 0.98 0.32
5xx

1234x 4 0.39 0.39 0.37 0.36 0.37
xxx

12435 5 0.45 0.50 0.45 0.42 0.37
3xx

12x45 6 0.53 0.54 0.52 0.46 0.45
xxx

14235 7 0.60 0.61 0.59 0.61 0.56
5xx

1243x 8 0.67 0.69 0.62 0.55 0.80
xxx

21345 9 0.71 0.78 0.75 1.19 1.97
xxx

41235 10 0.98 0.94 0.79 2.20 2.99
xxx

32145 11 1.07 1.07 0.92 5.03 7.25
xxx

34125 12 1.09 1.34 1.23 13.65 13.11
5xx

x4231 13 1.14 1.31 2.23 10.21 13.17
5xx

x3241 14 2.32 2.81 3.02 50.15 61.70
2xx

4351x 15 2.49 2.72 1.93 30.68 171.75
1xx

x3254 16 3.66 2.63 2.91 199.31 TO
21x

xx543 17 2.92 3.41 3.91 262.22 54.82

5 Conclusions

In this paper we have explored different models for the Inglenook shunting puzzle, which is a
popular problem solved by hand by model railway enthusiasts, but which can also be seen as
an example of a deterministic planning problem. Our first model, which achieves generalized
domain consistency, requires the pre-computation of all possible states and moves, and needs
rather large table constraints. While this model is very simple, it offers little advantage over
a shortest-path algorithm run on the implied state graph. The second model uses string
constraints with finite strings in the Z3 solver. Results are preliminary, and would benefit
from validation with another string solver. The third model, based on representing states as
a collection of position variables, achieves very good results with CP-Sat (and, to a lesser
extend, Chuffed), outperforming the state-based model by an order of magnitude. If we take
the time required to find the state graph into account, it also outperforms the shortest-path
approach which works on the complete state graph.

In this paper we only rely on the default search methods of the different solvers. But we
can for example easily assign a heuristic evaluation to each move, based on the improvement
in the problem difficulty it provides. Combining a (learned) heuristic with the constraint
models studied could possibly result in an even faster solution to the problem.

The resulting problem instances show wide performance differences for some of the solvers
used. They therefore might also be useful as a benchmark sets to compare table constraint
methods, string solvers, or the use of complex logical formulas in a large disjunction of cases.

16 Modeling the Inglenook Shunting Puzzle

References
1 Jan-Alexander Adlbrecht, Benno Hüttler, Jan Zazgornik, and Manfred Gronalt. The train mar-

shalling by a single shunting engine problem. Transportation Research Part C: Emerging Tech-
nologies, 58:56–72, 2015. URL: https://www.sciencedirect.com/science/article/
pii/S0968090X15002466, doi:https://doi.org/10.1016/j.trc.2015.07.006.

2 Roberto Amadini. A survey on string constraint solving. ACM Comput. Surv., 55(2):16:1–16:38,
2023. doi:10.1145/3484198.

3 Roberto Amadini, Pierre Flener, Justin Pearson, Joseph D. Scott, Peter J. Stuckey, and Guido
Tack. Minizinc with strings. In Manuel V. Hermenegildo and Pedro López-García, editors, Logic-
Based Program Synthesis and Transformation - 26th International Symposium, LOPSTR 2016,
Edinburgh, UK, September 6-8, 2016, Revised Selected Papers, volume 10184 of Lecture Notes in
Computer Science, pages 59–75. Springer, 2016. doi:10.1007/978-3-319-63139-4_4.

4 Roberto Amadini, Graeme Gange, Peter Schachte, Harald Søndergaard, and Peter J. Stuckey.
String constraint solving: Past, present and future. In Giuseppe De Giacomo, Alejandro Catalá,
Bistra Dilkina, Michela Milano, Senén Barro, Alberto Bugarín, and Jérôme Lang, editors,
ECAI 2020 - 24th European Conference on Artificial Intelligence, 29 August-8 September 2020,
Santiago de Compostela, Spain, August 29 - September 8, 2020 - Including 10th Conference
on Prestigious Applications of Artificial Intelligence (PAIS 2020), volume 325 of Frontiers in
Artificial Intelligence and Applications, pages 2875–2876. IOS Press, 2020. doi:10.3233/
FAIA200431.

5 Nancy Amato, Manuel Blum, Sandra Irani, and Ronitt Rubinfeld. Reversing trains: A turn of
the century sorting problem. Journal of Algorithms, 10(3):413–428, 1989. URL: https://
www.sciencedirect.com/science/article/pii/0196677489900370, doi:https:

//doi.org/10.1016/0196-6774(89)90037-0.
6 Philippe Baptiste, Philippe Laborie, Claude Le Pape, and Wim Nuijten. Constraint-based

scheduling and planning. In Francesca Rossi, Peter van Beek, and Toby Walsh, editors,
Handbook of Constraint Programming, volume 2 of Foundations of Artificial Intelligence, pages
761–799. Elsevier, 2006. doi:10.1016/S1574-6526(06)80026-X.

7 Simon R. Blackburn. Inglenook shunting puzzles. Electron. J. Comb., 26(2):2, 2019. doi:
10.37236/8297.

8 Leonardo Mendonça de Moura and Nikolaj S. Bjørner. Z3: an efficient SMT solver. In C. R.
Ramakrishnan and Jakob Rehof, editors, Tools and Algorithms for the Construction and
Analysis of Systems, 14th International Conference, TACAS 2008, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary,
March 29-April 6, 2008. Proceedings, volume 4963 of Lecture Notes in Computer Science,
pages 337–340. Springer, 2008. doi:10.1007/978-3-540-78800-3_24.

9 Christopher Expósito-Izquierdo, Belén Melián-Batista, and Marcos Moreno-Vega. Pre-
marshalling problem: Heuristic solution method and instances generator. Expert Systems with
Applications, 39(9):8337–8349, 2012. URL: https://www.sciencedirect.com/science/
article/pii/S0957417412002151, doi:https://doi.org/10.1016/j.eswa.2012.
01.187.

10 Stefan Felsner and Martin Pergel. The complexity of sorting with networks of stacks and
queues. In Dan Halperin and Kurt Mehlhorn, editors, Algorithms - ESA 2008, pages 417–429,
Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

11 Eugene C. Freuder. A sufficient condition for backtrack-free search. J. ACM, 29(1):24–32,
1982. doi:10.1145/322290.322292.

12 Gecode Team. Gecode: Generic constraint development environment, 2006. Available from
http://www.gecode.org.

13 Christophe Lecoutre, Chavalit Likitvivatanavong, and Roland H. C. Yap. STR3:
A path-optimal filtering algorithm for table constraints. Artif. Intell., 220:1–27,
2015. URL: https://doi.org/10.1016/j.artint.2014.12.002, doi:10.1016/J.

ARTINT.2014.12.002.

https://www.sciencedirect.com/science/article/pii/S0968090X15002466
https://www.sciencedirect.com/science/article/pii/S0968090X15002466
https://doi.org/https://doi.org/10.1016/j.trc.2015.07.006
https://doi.org/10.1145/3484198
https://doi.org/10.1007/978-3-319-63139-4_4
https://doi.org/10.3233/FAIA200431
https://doi.org/10.3233/FAIA200431
https://www.sciencedirect.com/science/article/pii/0196677489900370
https://www.sciencedirect.com/science/article/pii/0196677489900370
https://doi.org/https://doi.org/10.1016/0196-6774(89)90037-0
https://doi.org/https://doi.org/10.1016/0196-6774(89)90037-0
https://doi.org/10.1016/S1574-6526(06)80026-X
https://doi.org/10.37236/8297
https://doi.org/10.37236/8297
https://doi.org/10.1007/978-3-540-78800-3_24
https://www.sciencedirect.com/science/article/pii/S0957417412002151
https://www.sciencedirect.com/science/article/pii/S0957417412002151
https://doi.org/https://doi.org/10.1016/j.eswa.2012.01.187
https://doi.org/https://doi.org/10.1016/j.eswa.2012.01.187
https://doi.org/10.1145/322290.322292
https://doi.org/10.1016/j.artint.2014.12.002
https://doi.org/10.1016/J.ARTINT.2014.12.002
https://doi.org/10.1016/J.ARTINT.2014.12.002

H. Simonis and L. Quesada 17

14 Christophe Lecoutre and Radoslaw Szymanek. Generalized arc consistency for positive table
constraints. In Frédéric Benhamou, editor, Principles and Practice of Constraint Programming
- CP 2006, 12th International Conference, CP 2006, Nantes, France, September 25-29, 2006,
Proceedings, volume 4204 of Lecture Notes in Computer Science, pages 284–298. Springer,
2006. doi:10.1007/11889205_22.

15 Nicholas Nethercote, Peter J. Stuckey, Ralph Becket, Sebastian Brand, Gregory J. Duck, and
Guido Tack. Minizinc: Towards a standard cp modelling language. In Christian Bessière,
editor, Principles and Practice of Constraint Programming – CP 2007, pages 529–543, Berlin,
Heidelberg, 2007. Springer Berlin Heidelberg.

16 Laurent Perron and Frédéric Didier. Cp-sat. URL: https://developers.google.com/
optimization/cp/cp_solver/.

17 Charles Prud’homme and Jean-Guillaume Fages. Choco-solver: A java library for constraint
programming. Journal of Open Source Software, 7(78):4708, 2022. doi:10.21105/joss.

04708.
18 Jean-Charles Régin. Generalized arc consistency for global cardinality constraint. In William J.

Clancey and Daniel S. Weld, editors, Proceedings of the Thirteenth National Conference on
Artificial Intelligence and Eighth Innovative Applications of Artificial Intelligence Conference,
AAAI 96, IAAI 96, Portland, Oregon, USA, August 4-8, 1996, Volume 1, pages 209–215.
AAAI Press / The MIT Press, 1996. URL: http://www.aaai.org/Library/AAAI/1996/
aaai96-031.php.

19 Andrea Rendl and Matthias Prandtstetter. Constraint models for the container pre-marshaling
problem. In ModRef 2013: The Twelfth International Workshop on Constraint Modelling and
Reformulation, 2013.

20 Robert Tarjan. Sorting using networks of queues and stacks. J. Assoc. Comput. Mach.,
19:341–346, 1972. doi:10.1145/321694.321704.

21 Peter van Beek and Xinguang Chen. Cplan: A constraint programming approach to planning. In
Jim Hendler and Devika Subramanian, editors, Proceedings of the Sixteenth National Conference
on Artificial Intelligence and Eleventh Conference on Innovative Applications of Artificial
Intelligence, July 18-22, 1999, Orlando, Florida, USA, pages 585–590. AAAI Press / The MIT
Press, 1999. URL: http://www.aaai.org/Library/AAAI/1999/aaai99-083.php.

22 Adrian Wymann. The model railways shunting puzzles website. URL: https://www.wymann.
info/ShuntingPuzzles/sw-inglenook.html.

23 Roland H. C. Yap, Wei Xia, and Ruiwei Wang. Generalized arc consistency algorithms for
table constraints: A summary of algorithmic ideas. In The Thirty-Fourth AAAI Conference
on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial
Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances
in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pages
13590–13597. AAAI Press, 2020. URL: https://doi.org/10.1609/aaai.v34i09.7086,
doi:10.1609/AAAI.V34I09.7086.

https://doi.org/10.1007/11889205_22
https://developers.google.com/optimization/cp/cp_solver/
https://developers.google.com/optimization/cp/cp_solver/
https://doi.org/10.21105/joss.04708
https://doi.org/10.21105/joss.04708
http://www.aaai.org/Library/AAAI/1996/aaai96-031.php
http://www.aaai.org/Library/AAAI/1996/aaai96-031.php
https://doi.org/10.1145/321694.321704
http://www.aaai.org/Library/AAAI/1999/aaai99-083.php
https://www.wymann.info/ShuntingPuzzles/sw-inglenook.html
https://www.wymann.info/ShuntingPuzzles/sw-inglenook.html
https://doi.org/10.1609/aaai.v34i09.7086
https://doi.org/10.1609/AAAI.V34I09.7086

18 Modeling the Inglenook Shunting Puzzle

A Graph Analysis

Figure 7 shows the distribution of states with a given number of neighbors for the default,
eight wagon problem. In some states, we can only perform four legal moves, while the largest
number of neighboring states is nine, but the most common number is six. This means that
in each state we have between four and nine choices, so that the number of paths of a given
length grows exponentially with the length.

Figure 7 Distribution of States with Given Number of Neighbors for Eight Wagon Problem

4 5 6 7 8 9

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

·105

20,160
20,160

1.88 · 105

53,760
67,200

6,720

Nr of Neighbors

N
r

St
at

es

Nr of States with Given Number of Neighbors

We can also investigate how many starting states have a given minimal distance to a
target state in the graph. Figure 8 shows the distribution for the default problem with
eight wagons. There is one starting state "12345/xxx" which is also a valid target state, and
therefore has distance zero, otherwise we need at least three and at most 17 moves to reach a
target state, with the most common distances being 11, 12, and 13. We use this information
in the experiments section to generate problem instances with the minimal required number
of moves ranging from 3 to 17.

H. Simonis and L. Quesada 19

Figure 8 Distribution of Instances by Minimal Number of Moves, Default Eight Wagon Problem

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0

200

400

600

800

1,000

1,200

1,400

1 0 0 3 8 20 38
122 191

511

677

1,2101,292

1,231

874

471

70
1

Distance

N
r

St
ar

tin
g

St
at

es

Nr of Starting States with given distance to Target (Total 6,720 Start States)

20 Modeling the Inglenook Shunting Puzzle

B More Results for State-Based Model

Tables 10, 11, and 12 shows the results of the state-based model for five, seven, and nine
wagon problems.

Table 10 State Model - Time (in Seconds) to Find First Solution for 5 Wagons

MiniZinc Java
Config Nr Moves Nr Sols Chuffed CP-Sat Gecode CPO Choco Jacop

12435 5 4 0.45 0.40 1.34 0.28 0.27 0.18
14235 7 2 0.49 0.40 1.13 0.13 0.17 0.26
31245 8 2 0.53 0.43 1.17 0.14 0.21 0.41
21345 9 20 0.54 0.46 1.22 0.15 0.17 0.47
32145 10 20 0.61 0.51 1.27 0.16 0.17 0.48
21354 11 88 0.63 0.67 1.33 0.16 0.18 0.49

Table 11 State Model - Time (in Seconds) to Find First Solution for 7 Wagons

MiniZinc Java
Config Nr Moves Nr Sols Chuffed CP-Sat Gecode CPO Choco Jacop

5x
1234x 3 1 6.84 7.45 88.19 5.24 - 1.56

x4
123x5 4 1 7.60 7.58 104.49 6.08 - 2.06

xx
12435 5 4 9.14 9.31 120.35 6.20 - 3.21

5x
12x43 6 1 10.02 9.57 150.29 6.78 - 7.08

xx
14235 7 1 10.70 9.69 169.69 7.37 - 20.62

xx
31245 8 1 12.43 11.08 217.98 7.86 - 88.74

xx
21345 9 10 13.05 11.53 230.79 8.39 - 271.38

xx
21435 10 4 13.86 11.72 247.02 8.99 - 458.47

xx
32145 11 22 15.49 13.83 281.56 9.61 - 570.27

5x
x4321 12 9 16.22 13.98 202.99 10.24 - 772.13

2x
543x1 13 34 16.83 14.57 323.98 10.91 - 1,007.58

1x
x5432 14 41 17.94 16.12 341.56 11.57 - 1,131.86

Table 13 compares the time needed by the best solvers to prove infeasibility of instances
where the given path length is too small by one. This clearly is the worst case situation.
But all three solvers, (Chuffed, CP-Sat and CPO) are able to detect infeasibility just by
propagation, with execution times very similar to the time needed to find a solution for the
feasible problem with increased path length. This result is important if we want to prove
optimality, but it requires the precomputation of the complete state graph.

The results shown are for satisfiability only, where for each instance we ask for a solution
with the required minimal path length. For a new problem size, we will not know the optimal
path length a priori, and have to solve an optimization problem. Table 14 shows some basic
results. We compare two solvers, CPO with a bottom-up approach, and Chuffed with a
top-down approach. In the bottom-up model, we start with the shortest possible path length,
and try the model for that length. If it succeeds, then we have an optimal solution. If it fails,
we increase the path length, until we find a solution. For the top-down approach we start
with an a priori upper bound, and on finding a solution shorten the path by assigning more

H. Simonis and L. Quesada 21

Table 12 State Model - Time (in seconds) to Find First Solution for 9 Wagons (Parameters
9/5/5/4/4/4/3)

Config Nr Moves Nr Sols Chuffed CP-Sat Gecode CPO Choco Jacop
x5xx

1234x 3 1 106.57 98.36 - 101.77 - 24.95
xx4x

1235x 4 1 111.46 99.99 - 113.44 - 36.76
xxxx

12435 5 2 143.41 123.13 - 119.58 - 65.98
xxxx

13245 6 6 143.88 125.83 - 133.91 - 245.53
xxxx

41235 7 1 158.86 128.58 - 149.53 - 1,212.94
xxxx

31245 8 3 205.95 152.04 - 171.10 - 4,153.93
xxxx

21345 9 10 211.06 153.71 - 165.42 - 6,776.66
xxxx

43215 10 24 202.11 156.68 - 180.67 - TO
xxxx

21543 11 34 222.67 181.24 - 194.75 - TO
5xxx

x3241 12 14 238.74 185.82 - 215.07 - TO
5xxx

432x1 13 87 263.80 190.19 - 233.21 - TO
1xxx

543x2 14 67 255.92 197.40 - 270.82 - TO

Table 13 State Model - Time (in Seconds) to Show Infeasibility of Relaxed Problem (NrMoves-1
Steps) for 8 Wagons

Config Nr Moves Chuffed CP-Sat CPO
x5x

1234x 3 17.32 14.19 9.68
5xx

1234x 4 20.73 18.28 11.02
xxx

12435 5 21.34 18.81 14.46
3xx

12x45 6 25.93 22.85 14.23
xxx

14235 7 30.02 23.69 16.26
5xx

1243x 8 30.71 23.67 17.63
xxx

21345 9 35.39 27.87 20.29
xxx

41235 10 36.24 28.89 20.06
xxx

32145 11 40.71 29.22 21.88
xxx

34125 12 44.28 34.10 23.16
5xx

x4231 13 45.47 36.66 24.72
5xx

x3241 14 47.04 36.84 26.69
2xx

4351x 15 52.82 39.48 28.95
1xx

x3254 16 57.49 44.51 30.52
21x

xx543 17 59.60 42.59 33.69

22 Modeling the Inglenook Shunting Puzzle

end values. This works very well for Chuffed, as its default search typically finds solution
with the largest number of end-values at the end of the path.

Table 14 State Model - Time (in Seconds) to Find Optimal Solution for 8 Wagons

MiniZinc Java

Config
Optimal

Nr Moves
Chuffed

Top-Down
CPO

Bottom-up
x5x

1234x 3 65.77 15.04
5xx

1234x 4 63.99 28.95
xxx

12435 5 63.96 43.10
3xx

12x45 6 57.44 61.03
xxx

14235 7 62.20 77.77
5xx

1243x 8 64.58 103.73
xxx

21345 9 65.25 135.91
xxx

41235 10 63.93 164.26
xxx

32145 11 61.14 208.66
xxx

34125 12 62.49 233.69
5xx

x4231 13 67.67 237.99
5xx

x3241 14 60.91 277.59
2xx

4351x 15 58.32 331.38
1xx

x3254 16 58.99 371.84
21x

xx543 17 59.77 412.55

Note that both approaches can be significantly improved by exploiting the fact that we
achieve domain consistency. For the top-down model, we can generate a custom search
routine which forces the tail of the path variables to the end value. For the bottom-up model,
we can try a binary search for the optimal value, or run models with multiple path-length
limits in parallel.

H. Simonis and L. Quesada 23

C More Results for the String-Based Model

Tables 15 and 16 show the results for the string-based model for 5 and 7 wagons. We did not
run problem instances for nine or ten wagons.

Table 15 String Based-Model - Time (in seconds) and Number of Choices with Z3 for 5 Wagons

Config Nr Moves Time Nr Decisions

12435 5 0.25 318
14235 7 0.77 6,684
31245 8 2.10 17,045
21345 9 5.02 25,509
32145 10 33.18 53,804
21354 11 325.00 133,841

Table 16 String Based-Model - Time (in seconds) and number of Choices with Z3 for 7 Wagons

Config Nr Moves Time Nr Decisions
5x

1234x 3 0.25 1,347
x4

123x5 4 0.26 1,197
xx

12435 5 0.26 1,757
5x

12x43 6 16.11 55,683
xx

14235 7 0.98 8,947
xx

31245 8 4.12 28,800
xx

21345 9 3.63 29,348
xx

21435 10 24.71 57,695
xx

32145 11 273.38 192,548
5x

x4321 12 TO -
2x

543x1 13 TO -
1x

x5432 14 TO -

24 Modeling the Inglenook Shunting Puzzle

D More Results for Position-Based Model

Tables 17, 18, 19, and 20 show the results of the position-based model on the smaller problem
sizes five, six, and seven, as wells as for nine wagons. Even for the smallest sizes, Gecode is
not able to solve all instances.

Table 17 Position Model - Time (in seconds) to Find First Solution for 5 Wagons, All Solvers in
MiniZinc

Config Nr Moves Chuffed CP-Sat Cplex Gecode
Time Nodes Time Failures Time Nodes Time Nodes

12435 5 0.78 1,154 1.04 26 0.82 0 1.19 92,072
14235 7 0.63 9,630 0.62 183 1.19 0 11.52 3,710,497
31245 8 1.00 19,323 0.68 656 1.79 718 TO >88,826,386
21345 9 0.74 14,809 0.75 164 1.06 0 TO >80,964,084
32145 10 1.65 34,928 0.89 2,091 2.23 1,298 TO >76,396,792
21354 11 8.08 105,598 0.87 582 11.36 8,413 TO >67,476,721

Table 18 Position Model - Time (in seconds) to Find First Solution for 6 Wagons, All Solvers in
MiniZinc

Config Nr Moves Chuffed CP-Sat Cplex Gecode
Time Nodes Time Failures Time Nodes Time Nodes

5
1234x 3 0.37 101 0.46 0 0.46 0 0.34 233

5
123x4 4 0.36 810 0.41 0 0.52 0 3.83 1,205,710

x
12435 5 0.37 1,546 0.52 123 0.74 0 6.11 2,036,009

5
124x3 6 0.43 4,127 0.56 272 0.93 0 295.10 104,278,426

x
14235 7 1.04 19,807 0.64 455 1.64 153 TO >102,087,090

x
31245 8 4.92 71,795 0.71 763 10.98 9,621 TO >90,663,333

x
21345 9 1.75 40,181 0.79 943 2.34 180 TO >85,931,315

x
32145 10 24.58 207,624 0.89 630 129.05 47,912 TO >80,075,211

x
21354 11 8.03 95,531 1.02 4,118 231.35 69,219 TO >64,320,990

1
x5432 12 7.18 110,257 1.04 3,678 287.69 85,043 TO >71,438,350

H. Simonis and L. Quesada 25

Table 19 Position Model - Time (in seconds) to Find First Solution for 7 Wagons, All Solvers in
MiniZinc

Config Nr Moves Chuffed CP-Sat Cplex Gecode
Time Nodes Time Failures Time Nodes Time Nodes

5x
1234x 3 0.35 67 0.40 0 0.42 0 0.34 543

x4
123x5 4 0.33 410 0.44 0 0.61 0 5.40 2,079,016

xx
12435 5 0.39 2,127 0.52 112 0.80 0 50.12 19,008,873

5x
12x43 6 0.69 13,556 0.61 296 1.42 246 TO >114,384,439

xx
14235 7 0.99 21,672 0.67 267 3.75 3,368 TO >112,096,981

xx
31245 8 1.09 23,758 0.76 651 29.59 19,764 TO >102,854,194

xx
21345 9 1.86 46,093 0.87 3,512 113.01 35,339 TO >90,796,428

xx
21435 10 2.00 55,888 1.03 3,408 81.04 29,319 TO >86,480,756

xx
32145 11 4.55 95,084 1.14 3,501 38.88 16,438 TO >65,743,243

5x
x4321 12 4.74 104,841 1.25 5,789 TO >70,382 TO >28,903,445

2x
543x1 13 13.24 186,311 1.41 7,944 TO >69,519 TO >58,181,117

1x
x5432 14 60.76 488,725 2.40 2,958 TO >55,884 TO >52,327,002

Table 20 Position Model - Time (in seconds) to Find First Solution for 9 Wagons, All Solvers in
MiniZinc

Config Nr Moves Chuffed CP-Sat Cplex Gecode
Time Nodes Time Failures Time Nodes Time Nodes

x5xx
1234x 3 3.24 249 1.10 0 0.72 0 1.23 1,541

xx4x
1235x 4 0.38 1,113 0.45 0 0.81 0 204.96 85,464,241
xxxx

12435 5 0.47 5,073 0.54 140 0.82 0 84.15 29,956,721
xxxx

13245 6 0.50 6,756 0.66 569 1.28 0 TO >97,475,197
xxxx

41235 7 0.72 14,671 0.76 227 9.15 6,201 TO >86,394,700
xxxx

31245 8 1.25 28,077 0.85 1,377 171.77 42,499 TO >76,724,666
xxxx

21345 9 1.65 39,360 0.90 826 280.62 72,615 TO >67,941,473
xxxx

43215 10 1.63 42,822 1.06 2,567 TO >74,139 TO >58,438,772
xxxx

21543 11 3.21 78,377 1.32 8,122 108.31 19,513 TO >50,167,323
5xxx

x3241 12 6.79 125,633 2.64 15,140 TO >65,585 TO >46,353,858
5xxx

432x1 13 59.36 578,932 3.13 21,527 TO >58,024 TO >50,691,919
1xxx

543x2 14 159.02 1,177,650 3.19 21,290 TO >51,051 TO >42,295,170

26 Modeling the Inglenook Shunting Puzzle

D.1 Impact of Number of Worker Threads on CP-Sat Results for the
Position-Based Model

Tables 21 and 22 compare the results for CP-Sat on instances of sizes 8 and 10 with varying
numbers of worker threads. While the results indicate that more instances are solved fastest
with eight worker threads, the results for two to eight workers differ only slightly. On the
other hand, results with only one worker thread for the larger instances are much weaker.
This is a common outcome for CP-Sat for other problems, CP-Sat seems optimized to use at
least two workers in parallel.

Table 21 Position Model - Time (in seconds) to Find First Solution for 8 Wagons, CP-Sat in
MiniZinc, 1-8 Worker Threads, Fastest Run in Bold

Number of Worker Threads
Config Nr Moves 1 2 3 4 5 6 7 8

x5x
1234x 3 0.50 0.41 0.39 0.38 0.38 0.50 0.38 0.36

5xx
1234x 4 0.39 0.45 0.42 0.42 0.40 0.39 0.53 0.40

xxx
12435 5 0.66 0.51 0.50 0.51 0.52 0.48 0.59 0.48

3xx
12x45 6 0.63 0.61 0.59 0.56 0.56 0.56 0.65 0.55

xxx
14235 7 0.79 0.77 0.68 0.65 0.66 0.64 0.66 0.61

5xx
1243x 8 1.26 0.73 0.73 0.78 0.74 0.71 0.70 0.66

xxx
21345 9 1.21 0.82 0.80 0.81 0.80 0.76 0.79 0.78

xxx
41235 10 1.05 0.89 0.85 0.92 0.88 0.84 0.83 0.81

xxx
32145 11 4.02 1.08 0.98 1.07 1.07 1.02 1.04 0.94

xxx
34125 12 6.65 1.20 1.20 1.28 1.20 1.37 1.24 1.20

5xx
x4231 13 8.65 2.43 2.34 2.30 2.41 1.36 1.48 1.42

5xx
x3241 14 20.34 2.74 1.74 2.52 1.60 3.06 2.40 2.52

2xx
4351x 15 27.26 2.81 3.10 2.69 2.66 2.81 2.63 2.54

1xx
x3254 16 108.55 3.22 3.49 4.91 3.49 3.21 2.87 2.93

21x
xx543 17 174.02 4.31 3.74 3.31 4.17 3.55 3.40 4.15

H. Simonis and L. Quesada 27

Table 22 Position Model - Time (in seconds) to Find First Solution for 10 Wagons, CP-Sat in
MiniZinc, 1-8 Worker Threads, Fastest Run in Bold

Number of Worker Threads
Config Nr Moves 1 2 3 4 5 6 7 8
xx5xx
1234x 3 0.41 0.43 0.42 0.42 0.42 0.42 0.39 0.39
xxx5x
123x4 4 0.46 0.49 0.46 0.48 0.46 0.57 0.46 0.44
xxxxx
12435 5 0.64 0.57 0.58 0.56 0.58 0.57 0.55 0.53
xxxxx
13245 6 0.73 0.68 0.67 0.66 0.65 0.63 0.62 0.60
xxxxx
41235 7 0.97 0.76 0.76 0.73 0.76 0.78 0.72 0.70
xxxxx
31245 8 1.20 0.91 0.86 0.86 0.86 0.85 0.80 0.79
xxxxx
21345 9 1.87 1.02 0.96 1.00 0.99 1.01 0.93 0.88
xxxxx
43215 10 2.74 1.13 1.07 1.03 1.14 1.01 0.96 0.99
xxxxx
21543 11 4.90 1.27 1.24 1.26 1.21 1.19 1.40 1.12
5xxxx
x2341 12 14.12 1.62 1.40 1.78 1.68 1.79 1.54 1.62
5xxxx
32x41 13 7.94 1.43 3.64 2.94 3.00 2.76 1.77 2.74
2xxxx
5314x 14 377.12 3.06 2.17 3.26 3.12 3.23 3.11 1.60
1xxxx
543x2 15 1245.39 3.53 3.32 3.38 1.96 3.89 3.09 1.82
2154x
xxx3x 16 TO 3.69 4.68 1.92 3.75 1.63 5.83 3.59

28 Modeling the Inglenook Shunting Puzzle

E Split State Model

We now briefly present an additional model, which is still state based, but which uses a
different state representation, using two variables to describe each state.

The state-based model in Section 3.1 used a unique identifier for each state, and expressed
the possible moves as a table with two columns. For bigger problem sizes, the number of
states is quite large (see Table 1), and we may want to explore a different state representation.
We have described in Section 2 how the states are created as the Cartesian product of
distributions and permutations. We can choose a different state representation with two
variables, one which describes the distribution used, and one which describes the permutation
used in the state. In our constraint model we now use two variables, xD[i] for the distribution,
and xP [i] for the permutation used in step i. The moves are represented as a table with four
columns, the total number of rows in the table does not change compared to the state-based
model, as it is the number of feasible moves between any two states.

Program 9 shows the resulting MiniZinc program, with the moves loaded as an array
with four columns. We again introduce an artificial target state which can only be reached
from the states satisfying the target condition. Two values each are used to identify the start
and target state, and are given as input data. The requested path length size is also an input
parameter.

Figure 9 MiniZinc Program for Split State-Based Model

1 include "globals.mzn";
2 int:startD;
3 int:startP;
4 int:targetD;
5 int:targetP;
6 int:size;
7 array[int,1..4] of int:moves;
8
9

10 array[1..size] of var 0..targetD:xD;
11 array[1..size] of var 0..targetP:xP;
12
13 constraint xD[1] = startD;
14 constraint xP[1] = startP;
15 constraint xD[size] = targetD;
16 constraint xP[size] = targetP;
17 constraint forall(i in 1..size-1)(table([xD[i],xP[i],xD[i+1],xP[i+1]],moves));
18
19 solve satisfy;

Tables 23 to 26 show the results of running this model on problem instances with five
to eight wagons, using the MiniZinc model given. It seems that Gecode prefers this model
over the state-based model, while Chuffed and CP-Sat perform much worse, and are not
able to find solutions within the timeout limit for instances that they can solve easily with
the state-based model. As this split-state model also achieves generalized arc-consistency
through propagation alone, the difference is not due to excessive search, but only caused by
a different sequence of steps used to propagate the table constraints.

H. Simonis and L. Quesada 29

Table 23 Split Model - Time to Find First Solution for 5 Wagons

MiniZinc Java
Config Nr Moves Nr Sols Chuffed CP-Sat Gecode CPO Choco Jacop

12435 5 0.89 0.67 1.53 0.31
14235 7 0.73 0.73 1.33 0.17
31245 8 0.77 0.84 1.34 0.17
21345 9 0.80 1.36 1.35 0.19
32145 10 1.20 5.33 1.39 0.22
21354 11 1.06 15.71 1.51 0.24

Table 24 Split Model - Time to Find First Solution for 6 Wagons

MiniZinc Java
Config Nr Moves Nr Sols Chuffed CP-Sat Gecode CPO Choco Jacop

5
1234x 3 3.08 3.29 4.46 1.45

5
123x4 4 3.80 4.34 4.90 1.48

x
12435 5 4.08 4.40 5.20 1.56

5
124x3 6 4.42 4.80 5.50 1.69

x
14235 7 5.23 6.33 6.71 1.82

x
31245 8 5.91 8.08 6.89 2.04

x
21345 9 6.51 23.67 7.35 2.22

x
32145 10 15.06 58.24 8.46 2.48

x
21354 11 9.13 74.04 10.41 4.63

1
x5432 12 42.43 98.40 9.24 3.73

Table 25 Split Model - Time (in seconds) to Find First Solution for 7 Wagons

MiniZinc Java
Config Nr Moves Nr Sols Chuffed CP-Sat Gecode CPO Choco Jacop

5x
1234x 3 11.94 13.44 16.18 5.61

x4
123x5 4 13.14 13.96 16.79 6.00

xx
12435 5 15.72 17.31 19.54 7.21

5x
12x43 6 16.84 18.44 20.79 7.02

xx
14235 7 17.77 20.62 22.22 7.49

xx
31245 8 20.58 27.72 25.78 7.96

xx
21345 9 21.67 65.34 27.33 8.79

xx
21435 10 24.12 164.34 33.59 9.83

xx
32145 11 103.96 244.91 52.49 26.30

5x
x4321 12 722.45 757.53 60.73 173.40

2x
543x1 13 3,365.28 544.00 41.99 120.39

1x
x5432 14 TO TO 625.49 251.43

30 Modeling the Inglenook Shunting Puzzle

Table 26 Split Model - Time (in seconds) to Find First Solution for 8 Wagons

MiniZinc Java
Config Nr Moves Nr Sols Chuffed CP-Sat Gecode CPO Choco Jacop

x5x
1234x 3 29.63 33.25 39.68 15.52

5xx
1234x 4 39.62 34.91 45.02 16.60

xxx
12435 5 48.15 43.81 53.44 19.51

3xx
12x45 6 46.43 46.37 58.73 19.09

xxx
14235 7 66.50 50.17 63.68 21.34

5xx
1243x 8 66.14 77.75 70.88 22.20

xxx
21345 9 259.21 123.75 78.65 25.58

xxx
41235 10 186.72 301.84 89.49 27.16

xxx
32145 11 TO 734.58 112.09 51.85

xxx
34125 12 TO 1,579.99 306.06 377.39

5xx
x4231 13 TO 969.98 393.78

5xx
x3241 14 2,245.55

2xx
4351x 15 1,385.17

1xx
x3254 16 TO

21x
xx543 17 TO

H. Simonis and L. Quesada 31

F Position Model Variations

In this section we discuss potential variations of the position based model. In the version
defined in Section 3.3, not all constraints are strictly required, the global_cardinality
constraint and the implications are redundant constraint intended to help with propagation.
We should check that these constraints really help with solving the problem, and that other
potential redundant constraints are not helping. We focus on the standard problem size of 8
wagons, for the simpler instances with 5, 6, or seven wagons the impact of the redundant
constraints is less noticeable. A summary of the results for CP-Sat only were given in Table 9,
where we compare different variants to our default model. The results indicate that the
global cardinality constraint is very important to the model, while the different implication
have a much smaller impact.

Results in this section should be compared to Table 7.

F.1 Adding More Implications
The position model above uses some implications to state that any zero values are at the front
of shunts A,B, and C, and at the back of shunt X. If a zero value occurs in some position,
then all values to the left (resp. right for X) must also be zero. There is a corresponding
rule stating that if a non-zero value occurs in a shunt, then all values to the right (resp. left
for shunt X) must also be non-zero. As a constraint this is weaker, as it uses disequality
constraints for the check, and for the implied condition.

1 constraint forall(i in 1..size,j in 1..lengthA-1)(A[i,j] != 0 -> A[i,j+1] != 0);
2 constraint forall(i in 1..size,j in 1..lengthB-1)(B[i,j] != 0 -> B[i,j+1] != 0);
3 constraint forall(i in 1..size,j in 1..lengthC-1)(C[i,j] != 0 -> C[i,j+1] != 0);
4 constraint forall(i in 1..size,j in 2..lengthX)(X[i,j] != 0 -> X[i,j-1] != 0);

Table 27 shows the results for the standard problem size. For some instances, results are
improved, but for others, it takes more time and nodes to find the solution. This can be
explained by changes in the search tree exploration in the updated program.

F.2 Pure Model without Global Cardinality
The global_cardinality constraint in the position model is used to state that we use
the correct number of the values 0..6 describing each state. But for the first state this is
given by the input data, and the predicate move has an invariant stating that each move
does not change the number of of values used from one state to the next. We can therefore
remove the global_cardinality constraint without affecting the solution space. This
change will affect the propagation, we expect less propagation without it, but it will also
affect the search tree traversal, as variables will be selected in a different order. We want to
check whether this changes the results.

1 int:size;
2 int:nrWagons;
3 int:lengthA=5;
4 int:lengthB=3;
5 int:lengthC=3;
6 int:lengthX=3;
7 int:lengthTotal = lengthA+lengthB+lengthC+lengthX;
8 int:nrZero = lengthTotal-nrWagons;
9 int:nrDontCare = nrWagons-5;

10
11 set of int:Run = 1..size;
12 set of int:Dom = 0..6;
13 array[int] of int:startA;
14 array[int] of int:startB;
15 array[int] of int:target=[1,2,3,4,5];
16

32 Modeling the Inglenook Shunting Puzzle

Table 27 Stronger Position Model - Time (in seconds) to Find First Solution for 8 Wagons, All
Solvers in MiniZinc

Config Nr Moves Chuffed CP-Sat Cplex Gecode
Time Nodes Time Failures Time Nodes Time Nodes

x5x
1234x 3 0.30 121 0.34 0 0.35 0 1.20 1,275

5xx
1234x 4 0.33 811 0.39 0 0.51 0 28.95 15,460,952

xxx
12435 5 0.35 1,249 0.45 196 0.70 0 60.03 28,095,542

3xx
12x45 6 0.42 4,749 0.53 261 0.77 0 TO

xxx
14235 7 0.50 9,067 0.60 592 1.79 708 TO

5xx
1243x 8 2.54 45,343 0.67 677 22.64 14,791 TO

xxx
21345 9 0.71 17,763 0.71 1,500 23.93 10,616 TO

xxx
41235 10 1.99 58,877 0.98 1,059 281.14 104,335 TO

xxx
32145 11 2.96 77,743 1.07 3,498 TO TO

xxx
34125 12 4.31 111,796 1.09 6,414 TO TO

5xx
x4231 13 16.49 226,184 1.14 5,428 TO TO

5xx
x3241 14 56.22 502,488 2.32 17,235 TO TO

2xx
4351x 15 22.97 338,606 2.49 20,015 TO TO

1xx
x3254 16 9.14 205,275 3.66 36,823 TO TO

21x
xx543 17 116.51 934,771 2.92 29,209 TO TO

17 array[Run,1..lengthA] of var Dom:A;
18 array[Run,1..lengthB] of var Dom:B;
19 array[Run,1..lengthC] of var Dom:C;
20 array[Run,1..lengthX] of var Dom:X;
21 array[Run,1..lengthTotal] of var Dom:S;
22
23 constraint forall(i in 1..size)(row(S,i) = row(A,i)++row(B,i)++row(C,i)++row(X,i));
24 constraint row(A,1) = startA;
25 constraint row(B,1) = startB;
26 constraint row(C,1) = [0,0,0];
27 constraint row(X,1) = [0,0,0];
28 constraint row(A,size) = target;
29 constraint forall(i in 1..size,j in 2..lengthA)(A[i,j] = 0 -> A[i,j-1] = 0);
30 constraint forall(i in 1..size,j in 2..lengthB)(B[i,j] = 0 -> B[i,j-1] = 0);
31 constraint forall(i in 1..size,j in 2..lengthC)(C[i,j] = 0 -> C[i,j-1] = 0);
32 constraint forall(i in 1..size,j in 1..lengthX-1)(X[i,j] = 0 -> X[i,j+1] = 0);
33 constraint forall(i in 1..size-1)
34 (move(row(A,i),row(B,i),row(C,i),row(X,i),row(A,i+1),row(B,i+1),row(C,i+1),row(X,i+1)));
35
36 solve satisfy;

Results are shown in Table 28.

H. Simonis and L. Quesada 33

Table 28 Position Pure Model - Time (in seconds) to Find First Solution for 8 Wagons, All
Solvers in MiniZinc

Config Nr Moves Chuffed CP-Sat Cplex Gecode
Time Nodes Time Failures Time Nodes Time Nodes

x5x
1234x 3 2.92 183 1.01 0 0.70 0 1.65 36,657

5xx
1234x 4 0.30 551 0.37 12 0.52 0 1.45 348,443

xxx
12435 5 0.35 3,215 0.41 59 0.59 0 0.99 36,978

3xx
12x45 6 0.32 1,497 0.43 401 1.58 2,582 1.97 473,502

xxx
14235 7 0.42 8,385 0.56 1,437 16.96 16,965 8.52 3,860,578

5xx
1243x 8 0.83 21,373 0.85 2,548 52.94 46,326 35.00 16,433,324

xxx
21345 9 0.74 26,551 1.60 10,192 51.40 39,057 61.43 27,526,468

xxx
41235 10 0.82 31,278 1.84 9,441 230.36 145,359 TO

xxx
32145 11 1.32 51,921 6.33 34,759 TO TO

xxx
34125 12 6.16 125,983 7.55 52,448 TO TO

5xx
x4231 13 20.84 215,846 13.96 93,353 TO TO

5xx
x3241 14 20.57 279,699 66.44 288,896 TO TO

2xx
4351x 15 13.47 254,686 49.23 228,767 TO TO

1xx
x3254 16 31.77 400,527 186.11 667,133 TO TO

21x
xx543 17 58.59 587,110 TO TO TO

34 Modeling the Inglenook Shunting Puzzle

F.3 Even Purer Model
Once we remove the global_cardinality constraint, we do not really need the concat-
enated array S of all variables per state. This cleans up the code a bit more.

1 int:size;
2 int:nrWagons;
3 int:lengthA=5;
4 int:lengthB=3;
5 int:lengthC=3;
6 int:lengthX=3;
7 int:lengthTotal = lengthA+lengthB+lengthC+lengthX;
8 int:nrZero = lengthTotal-nrWagons;
9 int:nrDontCare = nrWagons-5;

10
11 set of int:Run = 1..size;
12 set of int:Dom = 0..6;
13 array[int] of int:startA;
14 array[int] of int:startB;
15 array[int] of int:target=[1,2,3,4,5];
16
17 array[Run,1..lengthA] of var Dom:A;
18 array[Run,1..lengthB] of var Dom:B;
19 array[Run,1..lengthC] of var Dom:C;
20 array[Run,1..lengthX] of var Dom:X;
21
22 constraint row(A,1) = startA;
23 constraint row(B,1) = startB;
24 constraint row(C,1) = [0,0,0];
25 constraint row(X,1) = [0,0,0];
26 constraint row(A,size) = target;
27 constraint forall(i in 1..size,j in 2..lengthA)(A[i,j] = 0 -> A[i,j-1] = 0);
28 constraint forall(i in 1..size,j in 2..lengthB)(B[i,j] = 0 -> B[i,j-1] = 0);
29 constraint forall(i in 1..size,j in 2..lengthC)(C[i,j] = 0 -> C[i,j-1] = 0);
30 constraint forall(i in 1..size,j in 1..lengthX-1)(X[i,j] = 0 -> X[i,j+1] = 0);
31 constraint forall(i in 1..size-1)
32 (move(row(A,i),row(B,i),row(C,i),row(X,i),row(A,i+1),row(B,i+1),row(C,i+1),row(X,i+1)));
33
34 solve satisfy;

The results for 8 wagons are shown in Table 29.

Table 29 Position Purer Model - Time (in seconds) to Find First Solution for 8 Wagons, All
Solvers in MiniZinc

Config Nr Moves Chuffed CP-Sat Cplex Gecode
Time Nodes Time Failures Time Nodes Time Nodes

x5x
1234x 3 2.88 187 0.98 0 0.66 0 1.63 9,356

5xx
1234x 4 0.28 771 0.36 12 0.55 0 1.16 97,302

xxx
12435 5 0.32 1,398 0.42 303 0.64 0 1.27 219,092

3xx
12x45 6 0.35 5,440 0.46 315 1.76 2,582 2.10 581,845

xxx
14235 7 0.36 3,309 0.61 1,638 19.15 16,965 8.34 3,971,408

5xx
1243x 8 0.55 15,246 0.55 1,448 55.87 46,326 52.27 25,535,070

xxx
21345 9 0.67 25,591 1.19 7,318 52.14 39,057 233.24 108,415,395

xxx
41235 10 0.63 23,008 2.20 15,038 225.56 145,359 TO

xxx
32145 11 1.63 51,901 5.03 34,649 TO TO

xxx
34125 12 5.65 136,088 13.65 66,034 TO TO

5xx
x4231 13 17.81 268,835 10.21 71,255 TO TO

5xx
x3241 14 142.44 1,250,421 50.15 296,312 TO TO

2xx
4351x 15 81.53 814,305 30.68 167,454 TO TO

1xx
x3254 16 TO 199.31 726,025 TO TO

21x
xx543 17 73.94 849,959 262.22 862,559 TO TO

H. Simonis and L. Quesada 35

F.4 Purest Position Model
The final variant we consider also removes the implications from the model, we are left with
only the move constraints between the variables of two consecutive states. The results are
shown in Table 30. Results for CP-Sat are disappointing, it no longer finds solutions for all
instances within the timeout.

Table 30 Position Purest Model - Time (in seconds) to Find First Solution for 8 Wagons, All
Solvers in MiniZinc

Config Nr Moves Chuffed CP-Sat Cplex Gecode
Time Nodes Time Failures Time Nodes Time Nodes

x5x
1234x 3 0.27 147 0.32 0 0.73 0 1.65 18,593

5xx
1234x 4 0.28 681 0.37 56 0.51 0 0.35 19,708

xxx
12435 5 0.31 1,648 0.37 153 0.69 0 1.48 276,717

3xx
12x45 6 0.40 8,351 0.45 444 1.52 1,276 1.56 239,387

xxx
14235 7 0.69 18,968 0.56 1,548 3.71 5,952 16.90 7,822,881

5xx
1243x 8 0.72 22,126 0.80 3,204 11.73 11,376 21.21 9,529,100

xxx
21345 9 0.79 26,799 1.97 13,594 41.57 36,377 TO

xxx
41235 10 1.92 58,827 2.99 21,745 28.41 25,257 TO

xxx
32145 11 5.96 148,427 7.25 53,705 TO TO

xxx
34125 12 5.00 122,742 13.11 83,477 TO TO

5xx
x4231 13 10.89 227,354 13.17 79,778 TO TO

5xx
x3241 14 44.64 623,231 61.70 264,293 TO TO

2xx
4351x 15 14.44 291,429 171.75 363,160 TO TO

1xx
x3254 16 151.01 1,528,946 TO TO TO

21x
xx543 17 215.57 2,117,069 54.82 256,328 TO TO

	1 Introduction
	2 Problem Description
	3 Models
	3.1 State-Based Model
	3.2 String-Based Model
	3.3 Position Based Model

	4 Experiments
	4.1 Results for State-Based Model
	4.2 Results for the String-Based Model
	4.3 Results for Position-Based Model

	5 Conclusions
	A Graph Analysis
	B More Results for State-Based Model
	C More Results for the String-Based Model
	D More Results for Position-Based Model
	D.1 Impact of Number of Worker Threads on CP-Sat Results for the Position-Based Model

	E Split State Model
	F Position Model Variations
	F.1 Adding More Implications
	F.2 Pure Model without Global Cardinality
	F.3 Even Purer Model
	F.4 Purest Position Model

