Demand-driven Delivery Staff Rostering: Preliminary Results

Andrea Rendl and Christina Burt

Satalia

Workshop on Modelling and Reformulation ModRef-2018

- Company sells goods that require a manual setup

- Company delivers with their own fleet and staff
- Customers select delivery date and time window

Weekly van/man hours and resulting possible deliveries

Problem: capacity from roster does not match demand
Possible deliveries versus real demand

Our goal: find a roster that matches the real demand
Adapting the van hours to match the real demand

adapted van hours

- real demand

Mathematical Model

Parameters

- Shift patterns (weeks) S
- Drivers / vans V
- Estimated demand per weekday (in orders) 0

Constants (1/2)

- Time factor τ
- Time units $\mathrm{T}=\left\{1 . .24^{\star} \tau\right\}$
- Stem time $\mathrm{t}_{\text {stem }}$
- Lunch break duration $\mathrm{t}_{\text {lunch }}$

Constants (2/2)

- Max working hours

```
- \(\mathrm{t}_{\text {daily }}\)
- \(\mathrm{t}_{\text {weekly }}\)
```

- Paid working hours $t_{\text {paid }}$
- Shift constants
- min/max shift length
- Earliest start time
- Latest end time
- oin 凬+ average orders delivered per van per hour
- $\mathrm{Vv}_{\mathrm{v}}{ }^{5}$ in $\{0,1\}$

1 if van v is assigned to shift pattern s

Main Decision variables

- $s_{d}{ }_{d}$ in T

Start time of shift on weekday d, for shift pattern s

- $e_{d}{ }_{d}$ in T

End time of shift on weekday d, for shift pattern s

Helper Decision variables

- $l^{5}{ }_{d}$ in T
length of shift on weekday d, for shift pattern s
- $w^{5}{ }_{d}$ in $\{0,1\}$

1 if weekday d in shift pattern s is a working day

- v_{d} in $\left\{0\right.$.. $\left.T_{\text {max }}\right\}$

The number of hours all vans are working on weekday d

"Objective" decision variables

- a_{d} in 風+

The average number of orders delivered on weekday d (over all shift patterns)

- u_{d} in 克+

Unmet demand (in orders) on weekday d, over all shift patterns

Shift Constraints

- $s_{d}{ }_{d} \geq$ earliestStartTime
$\forall \mathrm{s}, \mathrm{d}$
- $\mathrm{e}^{5}{ }_{\mathrm{d}} \leq$ latestEndTime
- $e^{5}{ }_{d} \geq S^{5}{ }_{d}$
$\forall \mathrm{s}, \mathrm{d}$
- $l^{5}{ }_{d}=e^{5}{ }_{d}-S^{5}{ }_{d}$
$\forall \mathrm{s}, \mathrm{d}$
- $l^{5}{ }_{d} \leq M * w^{5}{ }_{d}$
$\forall \mathrm{s}, \mathrm{d}$ with $\mathrm{M} \geq \mathrm{t}_{\text {day }}$

Working hour Constraints

- $\Sigma_{\text {s,d }}\left\{l^{5}{ }_{d}\right\}-\Sigma_{s, d}\left\{w^{s}{ }_{d}{ }^{*} t_{\text {lunch }}\right\}=t_{\text {paid }}$ The average number of working hours over all shift patterns must be equal to the number of paid hours
- $\sum_{d}\left\{l^{5}{ }_{d}\right\}-\sum_{d}\left\{w^{5}{ }_{d}{ }^{*} t_{\text {lunch }}\right\} \leq t_{\text {week }} \quad \forall s$ in S For each shift pattern, the maximal number of working hours is not exceeded

2-day break Constraints

- $\left(w_{\text {Sat }}^{5}+w_{\text {Sun }}^{5}=0\right)+\left(w_{\text {Sun }}^{5}+w^{5+1}{ }_{\text {Mon }}=0\right)$

$$
+\left(w_{\text {Mon }}^{5}+w_{\text {Tue }}^{5}=0\right)=1 \quad \forall s \text { in } S-1
$$

$$
\left(w_{\text {Sat }}^{5}+w_{\text {sun }}^{S}=0\right)+\left(w_{\text {Sun }}^{s}+w_{\text {Mon }}^{1}=0\right)
$$

$$
+\left(w^{5}{ }_{\text {Mon }}+w_{\text {Tue }}^{5}=0\right)=1
$$

There is a two day break between each shift

Van hour Constraints

- $v h_{d}=\sum_{s, v}\left\{v v^{s}{ }_{v}{ }^{*} l^{s}{ }_{d}\right\}$

$$
-\sum_{s, d}\left\{w_{d}^{s}\right\} * \sum_{s, v}\left\{v v_{v}^{s}{ }^{*} t_{\text {lunch }}\right\}
$$

$$
\forall d
$$

Calculating the van hours vh ${ }_{d}$ for each weekday d, over all shift patterns

- $\mathrm{vv}_{\mathrm{v}}{ }^{5}$ in $\{0,1\}: 1$ if van v is assigned to shift pattern s (constant)
- $w^{s}{ }_{d}$ in $\{0,1\}$: 1 if weekday d in shift pattern s is a working day

Serviced-orders Constraints

- $a_{d}=0 *\left(\mathrm{vh}_{\mathrm{d}}-2{ }^{*} \mathrm{t}_{\text {stem }} *\left\{\Sigma_{\mathrm{s}, \mathrm{d}}\left\{\mathrm{w}_{\mathrm{d}}^{\mathrm{s}}\right\}^{*} \Sigma_{\mathrm{s}, \mathrm{v}}\left\{\mathrm{vv}^{\mathrm{s}}{ }_{\mathrm{v}}\right\}\right\}\right)$

Calculating the average number of serviced orders (fleet capacity) a_{d} for each weekday d : multiplying o with the net worked hours (removing the stem time)

- $\quad 0$: average orders delivered per van per hour
- $\mathrm{vv}_{\mathrm{v}}{ }^{5}$ in $\{0,1\}$: 1 if van v is assigned to shift pattern s (constant)
- $w^{5}{ }_{d}$ in $\{0,1\}$: 1 if weekday d in shift pattern s is a working day

Unmet demand Constraints

- $\mathrm{u}_{\mathrm{d}}=\left|\mathrm{O}_{\mathrm{d}}-\mathrm{a}_{\mathrm{d}}\right| \quad \forall \mathrm{d}$

The unmet demand u_{d} : the absolute value of expected order O_{d} minus the fleet capacity a_{d}

- O_{d} in R: expected number of orders on day d
- a_{d} in R: average fleet capacity in number of orders

Objective 1: minimize unmet demand

- Minimize p

Minimize the maximal unmet demand p

- $p \geq 0.0$
$p \leq$ max demand
- $\mathrm{p}>\mathrm{u}_{\mathrm{d}}$
$\forall d$

Objective 2: weighted unmet demand

- Minimize $\Sigma_{d}\left\{c_{d}{ }^{*} u_{d}\right\}$

Minimize the unmet demand u_{d} weighted with c_{d}

Preliminary Results

MiniZinc model

- Implemented model in MiniZinc
- Model + data available on github (MIT license):
https://github.com/angee/demand-shift-pattern
(link is also in the paper)

Problem instances

- Parameters:
- Vans/drivers: 12,24,60
- Shift patterns: 2, 4, 6
- 2 Demand scenarios:
- Linear-increase of demand over week
- Peak demand on Thu/Fri
- Reflect real-world problem sizes

Experimental Setup

- MiniZinc v2.1.7
- Solvers:
- Gecode
- COIN-OR cbc
- Timeout: 300 seconds
- Default search

Observations

- MIP solver outperforms CP solver
- We do not use full power of CP
- search strategy
- global constraints
- Several optimal solutions cannot match demand
- Working hour settings very conservative

Future Work

- Alternative CP-style formulation
- Global constraints
- Custom search strategies
- Include optional constraints
- E.g. holidays every other Saturday
- Evaluate constant settings: with what settings can we find a solution to fully match the demand?

