SATALIA

Demand-driven Delivery Staff Rostering: Preliminary Results

<u>Andrea Rendl</u> and Christina Burt Satalia

Workshop on Modelling and Reformulation ModRef-2018

Context of this work: Delivery company

- Company sells goods that require a manual setup

- Company delivers with their own fleet and staff

- Customers **select** delivery date and time window

SATALIA

Cyclic Roster for Drivers

Van hours and resulting delivery capacity

Problem: capacity from roster does not match demand

SATALIA

Our goal: find a roster that matches the real demand

SATALIA

Mathematical Model

Parameters

• Shift patterns (weeks) **S**

• Drivers / vans V

• Estimated demand per weekday (in orders) **O**

Constants (1/2)

• Time factor τ

• Time units **T** = $\{1.. 24^*\tau\}$

- Stem time t_{stem}
- Lunch break duration t lunch

SATALIA

Constants (2/2)

- Max working hours
 - t_{daily}
 t_{weekly}
- Paid working hours t_{paid}

- Shift constants
 - min/max shift length
 - Earliest start time
 - Latest end time

- o in R+ average orders delivered per van per hour
- vv_v^s in {0,1}
 - 1 if van v is assigned to shift pattern s

Main Decision variables

s^s_d in T
 Start time of shift on weekday d, for shift pattern s

e^s_d in T
 End time of shift on weekday d, for shift pattern s

SATALIA

Helper Decision variables

 l^s_d in T length of shift on weekday d, for shift pattern s

- w^s_d in {0, 1}
 1 if weekday d in shift pattern s is a working day
- vh_d in {0 .. T_{max}}
 The number of hours all vans are working on weekday d

"Objective" decision variables

 u_d in R+ Unmet demand (in orders) on weekday d, over all shift patterns SATAL

Shift Constraints

- $s_d^s \ge earliestStartTime$ $\forall s,d$
- e^s_d ≤ latestEndTime
- $e_d^s \ge s_d^s$
- $l_d^s = e_d^s s_d^s$
- $l_d^s \leq M * W_d^s$

∀ s,d

∀ s,d

∀ s,d

 \forall s,d with M \geq t_{day}

Working hour Constraints

• $\sum_{s,d} \{l_d^s\} - \sum_{s,d} \{w_d^s * t_{lunch}\} = t_{paid}$ The average number of working hours over all shift patterns must be equal to the number of paid hours

• $\sum_{d} \{l_{d}^{s}\} - \sum_{d} \{w_{d}^{s} * t_{lunch}\} \le t_{week}$ $\forall s in S$ For each shift pattern, the maximal number of working hours is not exceeded

SATAL I/

2-day break Constraints

•
$$(w_{Sat}^{s} + w_{Sun}^{s} = 0) + (w_{Sun}^{s} + w_{Mon}^{s+1} = 0)$$

+ $(w_{Mon}^{s} + w_{Tue}^{s} = 0) = 1$ $\forall s in S - 1$
• $(w_{Sat}^{s} + w_{Sun}^{s} = 0) + (w_{Sun}^{s} + w_{Mon}^{1} = 0)$
+ $(w_{Mon}^{s} + w_{Tue}^{s} = 0) = 1$

There is a two day break between each shift

SATALIA

Van hour Constraints

•
$$vh_d = \sum_{s,v} \{vv_v^{s*} l_d^s\}$$

$$- \sum_{s,d} \{ w_d^s \} * \sum_{s,v} \{ vv_v^s * t_{lunch} \} \quad \forall d$$

Calculating the van hours vh_d for each weekday d, over all shift patterns

- vv_v^s in {0,1}: 1 if van v is assigned to shift pattern s (constant)
- w_{d}^{s} in {0, 1}: 1 if weekday d in shift pattern s is a working day

Serviced-orders Constraints

• $a_d = o * (vh_d - 2 * t_{stem} * \{ \sum_{s,d} \{w_d^s \} * \sum_{s,v} \{vv_v^s\} \}) \quad \forall$

Calculating the average number of serviced orders (fleet capacity) **a**_d for each weekday d: multiplying **o** with the net worked hours (removing the stem time)

- **o** : average orders delivered per van per hour
- vv_v^s in {0,1}: 1 if van v is assigned to shift pattern s (constant)
- w_d^{s} in {0, 1}: 1 if weekday d in shift pattern s is a working day

SATAL 1/

Unmet demand Constraints

• $\mathbf{u}_{d} = |\mathbf{O}_{d} - \mathbf{a}_{d}| \quad \forall d$

The unmet demand u_d : the absolute value of expected order O_d minus the fleet capacity a_d

- O_d in \mathbb{R} : expected number of orders on day d
- a_d in \mathbb{R} : average fleet capacity in number of orders

Objective 1: minimize unmet demand

• Minimize p

Minimize the maximal unmet demand **p**

• $p \ge 0.0$ $p \le max demand$ • $p \ge u_d \qquad \forall d$ SATAL IA

Objective 2: weighted unmet demand

• Minimize $\sum_{d} \{ c_{d} * u_{d} \}$

Minimize the unmet demand u_d weighted with c_d

SATAL IA

Preliminary Results

- Implemented model in MiniZinc
- Model + data available on github (MIT license):

https://github.com/angee/demand-shift-pattern

(link is also in the paper)

Problem instances

SATALIA

• Parameters:

- Vans/drivers: 12, 24, 60
- Shift patterns: 2, 4, 6
- 2 Demand scenarios:
 - Linear-increase of demand over week
 - Peak demand on Thu/Fri
- Reflect real-world problem sizes

Experimental Setup

- MiniZinc v2.1.7
- Solvers:
 - Gecode
 - COIN-OR cbc
- Timeout: 300 seconds
- Default search

Instance			Runtime (sec)		Objective	
vans	shift p.	demand	Gecode	cbc	Gecode	cbc
v12	$\mathbf{s6}$	linear	300.000	300.000		3.81728
v24	s2	linear	0.027	0.353	*27.0	*27.03456
v24	$\mathbf{s4}$	linear	300.000	10.006		*27.03456
v60	$\mathbf{s6}$	linear	300.000	241.377		*17.0864
v60	s2	linear	0.026	0.328	*68.0	*68.0864
v60	$\mathbf{s4}$	linear	300.000	11.444		*68.0864
v24	$\mathbf{s6}$	linear	300.000	300.000		18.23456
v12	s2	linear	300.000	0.317	38.2	*13.01728
v12	s4	linear	300.000	17.668		*13.01728
v60	$\mathbf{s4}$	peak-thu-fri	300.000	2.404		*42.0864
v12	s2	peak-thu-fri	0.013	0.292	*17.0	*17.01728
v60	s2	peak-thu-fri	0.014	0.327	*84.0	*84.0864
v12	s4	peak-thu-fri	300.000	2.161		8.01728
v24	s2	peak-thu-fri	0.047	0.284	*33.0	*33.03456
v60	$\mathbf{s6}$	peak-thu-fri	300.000	0.728		*12.0864
v12	$\mathbf{s6}$	peak-thu-fri	300.000	1.16		*2.41728
v24	$\mathbf{s4}$	peak-thu-fri	300.000	5.765		*17.03456
v24	$\mathbf{s6}$	peak-thu-fri	300.000	0.962		*5.43456

SΔTΛLIΔ

Observations

- MIP solver outperforms CP solver
 - We do not use full power of CP
 - search strategy
 - global constraints
- Several optimal solutions cannot match demand
 Working hour settings very conservative

Future Work

- Alternative **CP-style** formulation
 - Global constraints
 - Custom search strategies
- Include optional constraints
 - E.g. holidays every other Saturday
- Evaluate constant settings: with what settings can we find a solution to fully match the demand?

SATAL