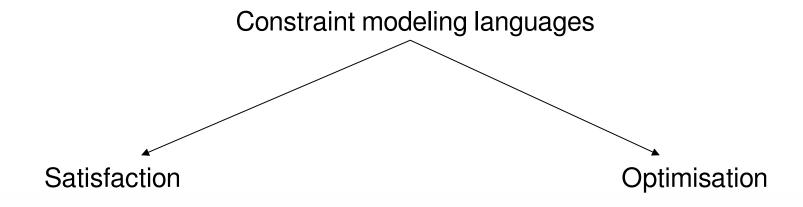
Modeling Solution Dominance over CSPs

Tias Guns, Peter Stuckey, Guido Tack

ModRef 2018

Constrained satisfaction and optimisation



Find a satisfying solution (or find all satisfying solutions)

Minimize/maximize one objective

Find a best solution

Beyond optimisation

- Lexicographic optimisation
- Multi-objective optimisation (pareto-frontier solutions)
- X-minimal models (solutions with smallest subset of true Boolean variables in set X)
- Weighted (partial) MaxCSP (like MaxSAT)
- Valued CSP (each constraint has a value for being satisfied)
- Maximally Satisfiable subsets (MSS, MCS, MUS)
- CP-nets (expresses preferences through a DAG of conditional preference tables)
- Domain specific dominance relations (e.g. in itemset mining: closedness and maximality)
- → not available in constraint modeling languages!

Solution dominance

A solution dominance relation specifies when one solution dominates another

find
$$\{X \in \mathcal{S} | \nexists Y \in \mathcal{S}...\}$$
 where \mathcal{S} i' set of all solutions of a CSP

How to formalize that one solution dor

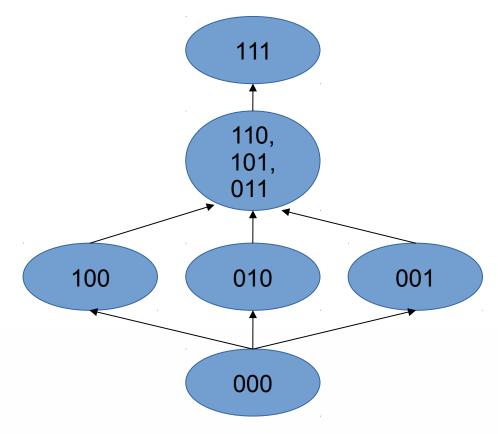
Pre-order

A pre-order is *reflexive* and *transitive*

→ think partial order with equivalence classes

Examples dominance relations:

- Optimisation (min): $X \leq_f Y \Leftrightarrow f(X) \leq f(Y)$
- Multi-objective optimisation: $X \leq_F Y \Leftrightarrow \forall_i f_i(X) \leq f_i(Y)$
- X-minimal models: $X \leq_{\mathcal{X}} Y \Leftrightarrow \forall v \in \mathcal{X} : X(v) \leq Y(v)$ X(v) is truth value $\{0,1\}$ of v in X



From dominance relation to solution set

What is the **solution set** of a Constrained Dominance Problem (CDP)?

- Complete (every CSP solution is dominanted or equivalent to one of the CDP solution)
- Domination-free (CDP solutions are not dominated by other CDP solutions, except equivalent ones)
- \rightarrow this set is unique
- → in Multi-Objective optimisation, this is the *efficient* set

- Complete
- Domination-free
- Equivalence-free (no two CDP solutions are equivalent to each other)
- \rightarrow this set is NOT unique
- → equivalent solutions are typically not of interest

(even so in standard optimisation)

Detailed example: multi-objective

Multi-objective

$$\{X \in S \mid \exists Y \in S : Y \preceq_F X \land X \nsim_F Y\}$$

$$\leftrightarrow \{X \in S \mid \exists Y \in S : \forall_i f_i(Y) \leq f_i(X) \land \neg(\forall_j f_j(X) = f_j(Y))\}$$

$$\leftrightarrow \{X \in S \mid \exists Y \in S : \forall_i f_i(Y) \leq f_i(X) \land \exists_j f_j(X) \neq f_j(Y)\}$$

$$\leftrightarrow \{X \in S \mid \exists Y \in S : \forall_i f_i(Y) \leq f_i(X) \land \exists_j f_j(X) < f_j(Y)\}$$

which is the classical definition of multi-objective optimization [9].

More examples...

X-minimal models: $\rightarrow \{X \in S | \nexists Y \in S : pos_{\mathcal{X}}(Y) \subset pos_{\mathcal{X}}(X)\}$

CP-net:

- dominance in terms of preference ranking (the typical one): NP-hard
- can play with other dominance relations, e.g. local dominance (for equal parents only)

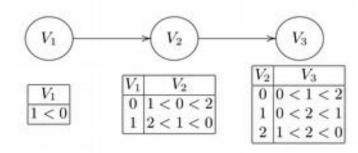


Fig. 1. CP-net example over 3 variables.

Domain specific examples...

Frequent itemset mining: find all solutions X where freq(X,D) >= Value

Maximal freq. itemsets: there does not exist a subset that is also frequent

→ X-maximal solutions!

Closed freq. itemsets: there does not exist a subset that has the same frequency

→ conditional X-maximal solutions!

→ compatible with arbitrary constraints (a positive thing in constrained itemset mining)

Search

Specific settings have specific, efficient, solving methods e.g. multi-objective, MaxCSP, MUS, ...

But domain-specific ones don't. General search mechanism?

→ incrementally add non-backtrackable nogoods

Algorithm 1 search $(V, D, C, \preceq, \mathcal{O})$:

- 1: $A := \emptyset$
- 2: while $S := \mathcal{O}(V, D, C)$ do
- 3: $A := A \cup \{S\}$
- 4: $C := C \cup \{S \not\preceq V \lor S \sim V\}$
- 5: end while
- 6: return A

Modeling in a language

We propose to model **dominance nogoods**, rather than dominance relations:

- 1) can be used to specify <u>both</u> equivalence-free and with equivalences
- we found it more intuitive to specify an *invariant* for the search (e.g. in case of minimisation, if S is a solution then f(V) < f(S) for any future solution V)

```
dominance_nogood f(V) < f(sol(V));</pre>
```


Modeling and search in MiniZinc

Modeling: a primitive for specifying a dominance nogood

```
dominance_nogood exists(i in index_set(B))(B[i] < sol(B[i]));</pre>
```

Search: post a (non-backtrackable) constraint each time a solution is found

*solve search = MiniSearch extension

Example experiments

Constraint dominance problems in a declarative solver-independent language

Solvers:

- gecode-api with minisearch incremental API
- gecode/ortools/chuffed with minisearch black box restarts

Search strategy: **free** or such that preferred assignments are enumerated first (**ordered**)

Example: MaxCSP

Table 1. MaxCSP runtimes in seconds, — timed out after 30 min.

Instance	gecode-api		gecode		ortools		chuffed		optcpx	
	free	ord	free	ord	free	ord	free	ord	free	ord
cabinet-5570	-	0.9	-	_	36	0.2	257	-	3.9	0.3
cabinet-5571	_	0.9	-	-	36	0.2	257	_	3.9	0.4
latinSq-dg-3_all	0.2	0.1	0.5	0.3	0.1	0.1	0.2	0.3	0.1	0.1
${\tt latinSq-dg-4_all}$	0.6	0.9	0.8	6.8	0.5	1.3	0.5	13	0.6	0.3
quasigrp4-4	46	-	-	-	4.5	-	3.8	18	1.4	7.7
quasigrp5-4	0.4	1651	1158	_	1.1	_	1.6	5.4	1.6	1.3
q13-1110973670	479	1.1	32	0.9	540	0.7	635	43	11	7.5
q13-1111219348	569	1.1	32	1.3	385	0.9	641	72	8.8	7.0

Providing a guiding search strategy often helps, but not always!

Different solvers behave quite differently, can compare thanks to solver-independence

Example: Bi-objective TSP

Instance	gecode-api		gecode		ortools		chut	ffed	oscar	
	time	sols	time	sols	time	sols	time	sols	time	sols
ren10	0.5	108	7.5	108	6.8	108	38	105	2.3	110
ren15	368	949	_	545	-	565	-	343	61	891
ren20		998	-	382	-	392	-	381	_	_
ren10-mg	1.8	41	2.8	41	1.3	45	5	38	n.a.	n.a.
ren15-mg	14	135	247	135	541	145	-	128	n.a.	n.a.
ren20-mg	-	925		292	_	294	-	171	n.a.	n.a.

- Shows number of *intermediate* solutions (not final frontier size)
- Top-rows: free search, bottom-rows: max regret search → search strategy helps
- Oscar has efficient global bi-objective constraint (only relevant in free search)

Conclusion

Beyond satisfaction/optimisation:

Constraint dominance problems in a declarative solver-independent language

- from dominance relation to dominance nogoods
- can be added to modeling languages
- → creates breathing room for domain-specific dominance relations? (examples?)

Modeling
Solution Dominance
over CSPs

Tias Guns, Peter Stuckey, Guido Tack ModRef 2018

