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Compilation

source assembly

program

) e back-end
front-end optimizer ok orogram
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* Front-end: depends on source programming language

changes infrequently (well...)

* Optimizer: independent optimizations
changes infrequently (well...)
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* Back-end: depends on processor architecture

changes often: new process, new architectures, new features, ...
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Generating Code: Unison

source back-end assembly
program (code generator) program

September 2019

Unison

* Infrequent changes: front-end & optimizer

reuse state-of-the-art: LLVM, for example
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* Frequent changes: back-end

use flexible approach: Unison
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State of the Art

instruction

selection

X=VY+z; ‘

add ro rl r2
mv $a6fo ro

* Code generation organized into stages

instruction selection,

September 2019
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State of the Art

register

allocation

September 2019

X — register rO
X=V+2z; ‘ y = memory (spill to stack)

* Code generation organized into stages

instruction selection, register allocation,
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State of the Art

instruction

scheduling 3

£
X=V+z U=v-—w;
u=v-w; X=Yy+2z;

* Code generation organized into stages

instruction selection, register allocation, instruction scheduling
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State of the Art

instruction register instruction

selection allocation scheduling

September 2019

* Code generation organized into stages
stages are interdependent: no optimal order possible
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State of the Art

instruction instruction register

selection scheduling allocation

September 2019

* Code generation organized into stages

stages are interdependent: no optimal order possible

* Example: instruction scheduling 5 register allocation

increased delay between instructions can increase throughput
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— registers used over longer time-spans
— more registers needed
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State of the Art

instruction register instruction

selection allocation scheduling

September 2019

* Code generation organized into stages

stages are interdependent: no optimal order possible

* Example: instruction scheduling 5 register allocation

put variables into fewer registers
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— more dependencies among instructions
— less opportunity for reordering instructions
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State of the Art

instruction instruction register

selection scheduling allocation

September 2019

* Code generation organized into stages

stages are interdependent: no optimal order possible

* Stages use heuristic algorithms
for hard combinatorial problems (NP hard)
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assumption: optimal solutions not possible anyway
difficult to take advantage of processor features
error-prone when adapting to change
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State of the Art

instruction instruction register

selection scheduling allocation

September 2019

* Code generation organized into stages

stages are interdependent: no optimal order possible
‘@
* Stages use heuristic algor

for hard combinatorial
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Rethinking: Unison Idea

* No more staging and complex heuristic algorithms!

many assumptions are decades old...

September 2019

* Use state-of-the-art technology for solving combinatorial
optimization problems: constraint programming

tremendous progress in last two decades...

* Generate and solve single model

captures all code generation tasks in unison
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high-level of abstraction: based on processor description
flexible: ideally, just change processor description
potentially optimal: tradeoff between decisions accurately reflected
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Unison Approach

instruction

selection

constraints
instruction

scheduling

register
allocation

constraints

September 2019

constraints

* Generate constraint model
based on input program and processor description
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constraints for all code generation tasks
generate but not solve: simpler and more expressive
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Unison Approach

instruction
selection

off-the-shelf

constraint

instruction
solver

scheduling

September 2019

[ / constraints

register
allocation

* Off-the-shelf constraint solver solves constraint model

solution is assembly program
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optimization takes inter-dependencies into account
optimal solution with respect to model in principle (time) possible
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Scope of this Talk

* Unison proper
instruction scheduling
register allocation

September 2019

* Instruction selection not covered
also constraint-based model available
less mature

Complete and Practical Universal Instruction Selection, Gabriel Hjort
Blindell, Mats Carlsson, Roberto Castaneda Lozano, Christian Schulte.
Transactions on Embedded Computing Systems, ACM Press, 2017.
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https://chschulte.github.io/papers/hjortblindellcarlssonea-tecs-2017.html
https://www.kth.se/profile/ghb
https://www.sics.se/people/mats-carlsson
https://robcasloz.github.io/
https://chschulte.github.io/

Overview

Basic Register Allocation

Instruction Scheduling

Advanced Register Allocation [sketch]

September 2019

Global Register Allocation

Solving

Evaluation

Discussion
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Source Material

* Constraint-based Regqister Allocation and Instruction
Scheduling, Roberto Castaneda Lozano, Mats Carlsson, Frej
Drejhammar, Christian Schulte. CP 2012.

 Combinatorial Spill Code Optimization and Ultimate
Coalescing, Roberto Castaneda Lozano, Mats Carlsson, Gabriel
Hjort Blindell, Christian Schulte. LCTES 2014.

 Combinatorial Register Allocation and Instruction
Scheduling, Roberto Castaneda Lozano, Mats Carlsson, Gabriel
Hjort Blindell, Christian Schulte.
Transactions on Programming Languages and Systems, ACM
Press, 20109.

* Survey on Combinatorial Register Allocation and Instruction
Scheduling, Roberto Castaneda Lozano, Christian Schulte.
Computing Surveys, ACM Press, 2019.

September 2019
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http://www.gecode.org/~schulte/paper.html?id=CastanedaCarlssonEa:CP:2012
http://www.sics.se/~rcas/
http://www.sics.se/~matsc/
http://www.sics.se/~frej/
http://www.gecode.org/~schulte/
http://www.gecode.org/~schulte/paper.html?id=CastanedaCarlssonEa:LCTES:2014
http://www.sics.se/~rcas/
http://www.sics.se/~matsc/
http://web.ict.kth.se/~ghb/
http://www.gecode.org/~schulte/
https://chschulte.github.io/papers/castanedacarlssonea-toplas-2019.html
https://robcasloz.github.io/
https://www.sics.se/people/mats-carlsson
https://www.kth.se/profile/ghb
https://chschulte.github.io/
https://chschulte.github.io/papers/castanedaschulte-csur-2019.html
https://robcasloz.github.io/
https://chschulte.github.io/

Unit and Scope

* Function is unit of compilation

generate code for one function at a time

September 2019

* Scope
global generate code for whole function
local generate code for each basic block in isolation

* Basic block: instructions that are always executed together

start execution at beginning of block
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leave execution at end of block
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Local (and slightly naive) register allocation

BASIC REGISTER ALLOCATION
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Local Register Allocation

Nf‘l-
1

mul t,, 2
sub t,;, 2
add t,, t;

oot
T1

September 2019

mul t,, t,
jr ts

ot
T1

* Instruction selection has already been performed

* Temporaries
defined or def-occurrence (lhs) t; in t, < sub t;, 2
used or use-occurrence (rhs) t, in t; < sub t,, 2
* Basic blocks are in SSA (single static assignment) form
each temporary is defined once
standard state-of-the-art approach
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Liveness & Interference

4

t, « mul t,, 2

t; < sub t,, 2 I I

t, < add t,, t, I

t. < mul t, t, v I
< Jr tg

live ranges

* Temporary is live from def to last use, defining its live range
live ranges are linear (basic block + SSA)

* Temporaries interfere if their live ranges overlap

* Non-interfering temporaries can be assigned to same register
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Spilling

If not enough registers available: spill

Spilling moves temporary to memory (stack)
store to memory after def
load from memory before use
spill decisions crucial for performance

September 2019

Architectures might have more than one register bank
some instructions only capable of addressing a particular bank
“spilling” from one register bank to another
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Unified register array
limited number of registers for each register file
memory just another “register” file (unlimited number)
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Coalescing

* Temporaries d and s move-related if

des
d and s should be coalesced (assigned to same register)

September 2019

coalescing saves move instructions and registers

* Coalescing is important due to
how registers are managed (calling convention)
how our model deals with global register allocation (more later)

cC
o =
&=
o C
O O
o wn
=< o
=
T
v T
oo
g5
A
0 c
5 2
2 0
C3
__L
o %
g <
(@)

O

—
N
w

—/




Copy Operations

* Copy operations replicate a temporary t to a temporary t’

= {iy, iy i }
copy is implemented by one of the alternative instructions iy, i, ..., i,

September 2019

instruction depends on where t and t’ are stored
similar to [Appel & George, 2001]

* Example MIPS32
t < {move, sw, nop}t
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t’ and t same register: nop coalescing
t’ register and t register (t'#t): move move-related
t’ memory and t register: SW spill
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Model: Variables

* Decision variables

reg(t) € N register to which temporary t is assigned %
instr(o) € N instruction that implements operation o g
cycle(o) e N issue cycle for operation o :,5‘,

active(o) € {0,1} whether operation o is active

* Derived variables

start(t) start of live range of temporary t
= cycle(o) where o defines t
end(t) end of live range of temporary t
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Model: Sanity Constraints

* Copy operation o is active <> no coalescing
active(o) < reg(s) # reg(d)

s is source of move, d is destination of move operation o

September 2019

* Operations implemented by suitable instructions

single possible instruction for non-copy operations

* Miscellaneous

some registers are pre-assigned
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some instructions can only address certain registers (or memory)
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Geometrical Interpretation

registers memory registers
o I Mg Mo My
o
o
(@)
~
(@)
<
o}
M
M unified register array temporary t

* Temporary t is rectangle
width is 1 (occupies one register)
top = start(t) issue cycle of def
bottom = end(t) last issue cycle of any use

* Consequence of linear live range (basic block + SSA)

—
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Model: Register Assignment

registers memory registers
o I Mg Mo My
o
o
(@)
~
(@)
<
o}
M
M unified register array temporary t

* Register assignment = geometric packing problem
find horizontal coordinates for all temporaries
such that no two rectangles for temporaries overlap

* For block B
nooverlap({(reg(t),reg(t)+1,start(t),end(t)) | teB})

—
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Register Packing

September 2019

* Temporaries might have different width width(t)
many processors support access to register parts
still modeled as geometrical packing problem [Pereira & Palsberg, 2008]
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Register Packing

AX BX CX width(t,)=1
AH AL BH BL CH CL

o width(t,)=2 2
(@) o~
o @
~ o!
0 =
< 2
(@ Q
® | width(t;)=1 3
width(t,)=2
* Temporaries might have different width width(t)

many processors support access to register parts
still modeled as geometrical packing problem [Pereira & Palsberg, 2008]

Combinatorial Register Allocation
& Instruction Scheduling, Schulte

* Example: Intel x86
assign two 8 bit temporaries (width = 1) to 16 bit register (width = 2)
register parts: AH, AL, BH, BL, CH, CL
possible for 8 bit: AH, AL, BH, BL, CH, CL
possible for 16 bit: AH, BH, CH
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Register Packing

AX BX CX - start(t,)=0 end(t,)=1  width(t,)=1
AH AL BH BL CH CL

o start(t,)=0 end(t,)=2  width(t;)=2 2
o ~
(@) tz )
~ o!
0 s
S 2
o | t3 start(t;)=0 end(t;)=1  width(t;)=1 &
- start(t,)=1 end(t,)=2  width(t,)=2
* Temporaries might have different width width(t)

many processors support access to register parts
still modeled as geometrical packing problem [Pereira & Palsberg, 2008]
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* Example: Intel x86
assign two 8 bit temporaries (width = 1) to 16 bit register (width = 2)
register parts: AH, AL, BH, BL, CH, CL
possible for 8 bit: AH, AL, BH, BL, CH, CL
possible for 16 bit: AH, BH, CH
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Register Packing

AX BX CX start(t,)=0 end(t;)=1  width(t,)=1
AH AL BH BL CH CL

o start(t,)=0 end(t,)=2  width(t;)=2 2
: :
s z
9 g £
S £
o | start(t;)=0 end(t;)=1  width(t;)=1 &

start(t,)=1 end(t,)=2  width(t,)=2

* Temporaries might have different width width(t)

many processors support access to register parts
still modeled as geometrical packing problem [Pereira & Palsberg, 2008]
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* Example: Intel x86
assign two 8 bit temporaries (width = 1) to 16 bit register (width = 2)
register parts: AH, AL, BH, BL, CH, CL
possible for 8 bit: AH, AL, BH, BL, CH, CL
possible for 16 bit: AH, BH, CH
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Model: Register Packing

* Take width of temporaries into account (for block B)
nooverlap({{reg(t),reg(t)+width(t),start(t),end(t)) | teB})

September 2019

* Exclude sub-registers depending on width(t)

simple domain constraint on reg(t)
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Local instruction scheduling (standard)

INSTRUCTION SCHEDULING
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Model: Dependencies

1i-n L) 1(t,)
tye-1i T A :
t,—slti ¢, 1(t,) i~ sl 3
bne t, 1(t,) L Sad ) €
1(t5) ne §
___________ .
out

* Data and control dependencies
data, control, artificial (for making in and out first/last)

* If operation o, depends on o;:
active(o,) A active(o,) —
cycle(o,) = cycle(o,) + latency(instr(o,))
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Model: Processor Resources

* Processor resources: functional units, data buses, ...

also: instruction bundle width for VLIW processors

* Classical cumulative scheduling problem
processor resource has capacity #functional units
instructions occupy parts of resource #used units
resource consumption never exceeds capacity

* Modeling for block B
cumulative({{cycle(o),dur(o,r),active(o)xuse(o,r)) | o€B})

—

September 2019
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Ultimate Coalescing & Spill Code Optimization

using alternative temporaries

ADVANCED REGISTER ALLOCATION
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Interference Too Naive!

tl t2
t, < A

' 2
e 8
t, <« mv t,; o t, and t, interfere 3
[V}
=
- .t v &

= ..t .. v

* Move-related temporaries might interfere...
...but contain the same value!
* Ultimate notion of interference =
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temporaries interfere < their live ranges overlap and
they have different values
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[Chaitin ea, 1981]




Spilling Too Naive!

£, - .

. t, « st t, .

t, « 1dt £

Tt S et 5
T b t, « 1dt,
-ty

* Known as spill-everywhere model

reload from memory before every use of original temporary
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* Example: t; should be used rather than reloading t,

t, allocated in memory!
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Alternative Temporaries

* Used to track which temporaries are equal

* Representation is augmented by operands

act as def and use ports in operations

September 2019

temporaries hold values transferred among operations by connecting
to operands

* Enable ultimate coalescing and spill-code optimization
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Register allocation for entire functions

GLOBAL REGISTER ALLOCATION
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Entire Functions

int fac(int n) { t,<1i
int £ = 1; t,—slti t, ] 2
while (n > 0) { bne t, tgemul t,,t, p
f=Ff * n; n--; > ty—subiu t, §
} bgtz t,
return f; *
} [ Jr tie

* Use control flow graph (CFG) and turn it into LSSA form

edges = control flow
nodes = basic blocks (no control flow)

* LSSA = linear SSA = SSA for basic blocks plus... to be explained
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Linear SSA (LSSA)

1_

t,-1i =t
t,eslti t, I
bne t, tg—mul t.,,t,
t,=t, ty—subiu t,
t,=t,, l bgtz t,
[ Jr toe

te=1y
t=1s

* Linear live range of a temporary cannot span block boundaries

* Liveness across blocks defined by temporary congruence =

t=t! & represent same original temporary

—
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Linear SSA (LSSA)

1_

ty-1i tte

t,eslti t, =0 I
t=t,, ty—subiu t, t=t,
t=t,, bgtz t,
[ jr ti,

* Linear live range of a temporary cannot span block boundaries
* Liveness across blocks defined by temporary congruence =
t=t! & represent same original temporary

* Example: t;, t,, tg, t,; are congruent
correspond to the program variable f (factorial result)
not discussed: t; return address, t, first argument, t,, return value

—
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Linear SSA (LSSA)

1_

t,e1i t25t6
t,eslti t, I =
bne t, teemul t,,t, t=t, g
c =
t=t,, ty—subiu tg t=t, &
[ Jr tie

* Linear live range of a temporary cannot span block boundaries
* Liveness across blocks defined by temporary congruence =
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t=t! & represent same original temporary

* Advantage
simple modeling for linear live ranges (geometrical interpretation)
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Global Register Allocation

* Try to coalesce congruent temporaries
this is why coalescing is (even more) crucial in this model

* Introduces natural problem decomposition
master problem (function)  coalesce congruent temporaries
slave problems (basic blocks) register allocation & instruction scheduling

September 2019

* What is happening
if register pressure is low...
no copy instruction needed (nop)
= coalescing
if register pressure is high...
copy operation might be implemented by a move
= no coalescing
copy operation might be implemented by a load/store
= spill
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Additional Model Components

* Many additional aspects captured
stack frame elimination

latencies across basic blocks

September 2019

scheduling with operator forwarding
two versus three-operand instructions
double load and store instructions

* This is where modeling truly pays off!

traditional compilers have to work very hard!
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Why an Expressive Model
Matters!

* Expressive model
captures all transformations state-of-the-art compilers do

September 2019

* Optimal code means here...
code that is optimal with respect to the model!

* Not the fastest code!
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SOLVING



Portfolios

* External portfolio
Gecode with decomposition-based model
Chuffed with global model (using MiniZinc)
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in isolation, no communication among them

* Internal portfolio
for decomposition-based model
which variable to select
which value to select
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Improvements

Implied constraints
derived from program structure

derived from solving relaxations
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Symmetry and dominance constraints

registers, ...

Probing
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Relaxation crucial
lower bound allows to derive optimality gap
nice information to user: what is the quality of the generated code

—
192
N

—/




Implementation

Available on GitHub
https://github.com/unison-code

Based on LLVM compiler toolchain

September 2019

Implemented in C++ & Haskell

Production quality

in industrial use

Important: there will always be a solution!
the solution produced by LLVM!
yields an upper bound
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https://github.com/unison-code

—
33InYy2s ‘Sulnpayds uoiNIIsuU| 1 <
LN

d
610C 12qUWSIESS 511 es0y 1935199y [erioreUIqWO)

—

EVALUATION



Setup

* Processors

Hexagon VLIW DSP %
ARM RISC E
MIPS RISC 2

* Benchmark sets
principled selection from MediaBench and SPEC CPU2006

* Systems
LLVM 3.8 (used as baseline, hence relative numbers)
Gecode 6.0.0
Chuffed as distributed with MiniZinc 2.1.2
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Estimated Speedup

* Hexagon
mean improvement 10% %
improved functions 64% %
mean gap 3.4% %
optimal functions 81% :w

* ARM 23
mean improvement 1.1% <=E Eo
improved functions 41% 23
mean gap 5% % E
optimal functions 60% g §

* MIPS 2t
mean improvement 5.4% o
improved functions 47%
mean gap 18.5% [ 56 ]

optimal functions 34%




Code Size Reduction

* Hexagon
mean improvement
improved functions
mean gap
optimal functions

* ARM

mean improvement
improved functions
mean gap

optimal functions

* MIPS

mean improvement
improved functions
mean gap

optimal functions

1.3%
9%
3%
77%

2.5%
45%
7.6%
64%

3.8%
46%
10.7%
54%
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Scalability

0%
30%
70%
60%
50%
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40%
30%
207
10%

O% 1 1or3=3-7°C1 |“| Ol B 1 ! 1 1 o o e e e H 1 1 { TR I O el B}
0.1s 1s 10s 100s 10008

* Accumulated % of optimal solutions

* Scales to medium-sized functions (up to 1000 instructions)
96% of benchmark functions
up to 946 instruction in tens up to hundreds of seconds
might time out on functions with 30 instructions
90% of functions solved with a 10% optimality gap
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Actual Speedup

* Unison first approach to be able to measure this

requires that the generated code actually runs!

September 2019

* Achieves still substantial speedups
for the hottest functions
only Hexagon analyzed

* Statistical analysis
a positive correlation
complicated [check the TOPLAS paper]
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DISCUSSION



Summary

* Unison first combinatorial approach that is

complete all transformations from state-of-the-art compilers %
scalable medium-sized function (1000 instructions) g
executable generates executable code :,5‘,

and generates better code than the state-of-the-art

* Notable
production quality
executable code
several processors
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What Happened?

* We wanted a single model including all three tasks
we have two models
one model of production quality: Unison
one model showing promise: instruction selection

* Can we combine these models?
in principle, yes
practically, no (scalability)

* Did we fail?
no, research is about taking risks
now, we know better!
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How Did We Do It?

* Publication strategy (Unison only)
CP paper
initial model, showing some promise

Papers at Embedded Systems/Programming Language venues
Final paper at TOPLAS

massive evaluation
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* Publishing a CP application paper is just the start!

* Constant issue
“this” has been “tried” before and “failed”

“this” any combinatorial optimization technique
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“tried” typically proof of concept, often naive
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“failed” did not replace state-of-the-art technology




Unison

* First combinatorial approach that is

complete all transformations from state-of-the-art compilers %
scalable medium-sized function (1000 instructions) g
executable generates executable code :,5‘,

and generates better code than the state-of-the-art

* Unison is practicable
intended use: generate high-quality code
main use: find deficiencies in existing compiler
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