
Exploring Instance Generation for 
Automated Planning

Ozgür Akgün, Nguyen Dang, Joan Espasa, 
Ian Miguel, András Z. Salamon and Christopher Stone

School of Computer Science, University of St Andrews, UK
{ozgur.akgun,nttd,jea20,ijm,Andras.Salamon,cls29}@st-andrews.ac.uk



Why Instance Generation?
● Varied benchmarks are crucial to evaluate solvers

● Using same benchmarks over and over: overfitting

● Better understanding of essential differences between solvers

2



What we build upon

(1) Problem specification in Essence
● Parameters
● Validity constraints
● Decision variables
● Problem constraints

conjure
(2) Instance generation 

problem in Essence
(3) Valid Instances with 

desirable properties
irace and
Essence CP-toolchain

3

An automated instance generation system for CP  (Akgün et al 2019, 2020)

● Essence CP-toolchain 1 : a high-level constraint modelling pipeline
● irace 2 (López-Ibáñez et al 2016): an automated parameter tuning tool

Our aim: extend the system to support automated instance generation 
for AI Planning Problems

1 https://constraintmodelling.org/ 2 https://iridia.ulb.ac.be/irace/

https://constraintmodelling.org/
https://iridia.ulb.ac.be/irace/


What is AI Planning?
A classical planning problem is a tuple Π =〈V,A,I,G〉:

● V: propositions (or Boolean variables)

● A: actions

○ formalized as pairs of <pre-conditions, effects>

● I: initial state 

● G: a formula over V that any goal state must satisfy.

4



What is AI Planning?
A classical planning problem is a tuple Π =〈V,A,I,G〉:

● V: propositions (or Boolean variables)

● A: actions

○ formalized as pairs of <pre-conditions, effects>

● I: initial state 

● G: a formula over V that any goal state must satisfy.

PDDL: a modelling language for classical planning problems

5



(:types robot tile color - object)

(:predicates 

    (robot-at ?r - robot ?x - tile) 

    (up ?x - tile ?y - tile)

    (down ?x - tile ?y - tile)

    (right ?x - tile ?y - tile)

    (left ?x - tile ?y - tile)

    (clear ?x - tile)

    (painted ?x - tile ?c - color)

    (robot-has ?r - robot ?c - color)

    (available-color ?c - color))

PDDL Examples
(:action move_up

  :parameters

    (?r - robot ?from - tile ?to - tile)

  :precondition (and

       (robot-at ?r ?from) 

       (up ?to ?from) (clear ?to))

  :effect (and

       (robot-at ?r ?to) 

       (not (robot-at ?r ?from))

       (clear ?from) (not (clear ?to))))

... 6



PDDL instance
(define (problem toy)

 (:domain floor-tile)

 (:objects 

    tile_0-0 tile_0-1 

    tile_1-0 tile_1-1 - tile

    robot1 robot2 - robot

    white black - color)

 (:goal (and 

(painted tile_0-0 white) 

(painted tile_1-0 black))))

 

(:init

   (robot-at robot1 tile_0-1) (robot-has robot1 white)

   (robot-at robot2 tile_1-1) (robot-has robot2 black)

   (available-color white) (available-color black)

   (clear tile_0-0) (clear tile_1-0)

   (up tile_0-1 tile_1-1) (up tile_0-0 tile_1-0)

   (down tile_1-1 tile_0-1) (down tile_1-0 tile_0-0)

   (right tile_0-1 tile_0-0) (right tile_1-1 tile_1-0)

   (left tile_0-0 tile_0-1) (left tile_1-0 tile_1-1))

7



PDDL instance
(define (problem toy)

 (:domain floor-tile)

 (:objects 

    tile_0-0 tile_0-1 

    tile_1-0 tile_1-1 - tile

    robot1 robot2 - robot

    white black - color)

 (:goal (and 

(painted tile_0-0 white) 

(painted tile_1-0 black))))

 

(:init

   (robot-at robot1 tile_0-1) (robot-has robot1 white)

   (robot-at robot2 tile_1-1) (robot-has robot2 black)

   (available-color white) (available-color black)

   (clear tile_0-0) (clear tile_1-0)

   (up tile_0-1 tile_1-1) (up tile_0-0 tile_1-0)

   (down tile_1-1 tile_0-1) (down tile_1-0 tile_0-0)

   (right tile_0-1 tile_0-0) (right tile_1-1 tile_1-0)

   (left tile_0-0 tile_0-1) (left tile_1-0 tile_1-1))

8

tile_0-0 tile_0-1

tile_1-0 tile_1-1



Validity Constraints
● Essence uses where constraints to restrict the input space:

● PDDL can’t express them in most cases

● Useful to guide the search for graded instances

● Pivotal, depending on the assumptions: 

given b: int(1..)
given r: int(1..)
where r <= b

9



Validity Constraints
● Essence uses where constraints to restrict the input space:

● PDDL can’t express them in most cases

● Useful to guide the search for graded instances

● Pivotal, depending on the assumptions: 

given b: int(1..)
given r: int(1..)
where r <= b

10

Augment PDDL to support those constraints?



Validity Constraints
● Essence uses where constraints to restrict the input space:

● PDDL can’t express them in most cases

● Useful to guide the search for graded instances

● Pivotal, depending on the assumptions: 

given b: int(1..)
given r: int(1..)
where r <= b

11

PDDL Essence+

Augment PDDL to support those constraints?

Planning problem description Validity constraints



First approach: Adding new keywords into PDDL
(1.1) PDDL Planning problem

● Objects and predicates
● Validity constraints via keywords
● Operators and conditions

conjure

(2) Instance generation 
problem in Essence

(3) Valid Instances with 
desirable properties

(in Essence)

(1.2) (Partial) problem specification in Essence
● Objects and predicates
● Validity constraintsrantanplan

(4) PDDL instances
irace and
Essence CP-toolchain

12

rantanplan

● Keyword examples: at-least-k, at-most-k, min, max, xor, square-grid 
● Keywords are translated to validity constraints in Essence by rantanplan



One single PDDL input by users

First approach: Adding new keywords into PDDL
(1.1) PDDL Planning problem

● Objects and predicates
● Validity constraints via keywords
● Operators and conditions

conjure

(2) Instance generation 
problem in Essence

(3) Valid Instances with 
desirable properties

(in Essence)

(1.2) (Partial) problem specification in Essence
● Objects and predicates
● Validity constraintsrantanplan

(4) PDDL instances
irace and
Essence CP-toolchain

13

rantanplan



● Limited flexibility in specifying validity constraints
square-grid: up-down-left-right, northwest-southeast-etc.
other shapes rather than square-grid?

● Bad scalability due to low-level representations

One single PDDL input by users

First approach: Adding new keywords into PDDL
(1.1) PDDL Planning problem

● Objects and predicates
● Validity constraints via keywords
● Operators and conditions

conjure

(2) Instance generation 
problem in Essence

(3) Valid Instances with 
desirable properties

(in Essence)

(1.2) (Partial) problem specification in Essence
● Objects and predicates
● Validity constraintsrantanplan

(4) PDDL instances
irace and
Essence CP-toolchain

14

rantanplan



Second approach: 
Expressing validity constraint directly using Essence

15

(1.1) PDDL Planning problem 
● Objects and predicates
● Operators and conditions

(1.2) Validity constraints in Essence (2) Instance generation 
problem in Essence

(3) Valid Instances with desirable 
properties

(in Essence)irace and
Essence CP-toolchain

conjure

(4) PDDL instances

An instance converter



● Flexibility in specifying validity constraints

● Much better scalability 
thanks to high-level representations

Second approach: 
Expressing validity constraint directly using Essence

16

(1.1) PDDL Planning problem 
● Objects and predicates
● Operators and conditions

(1.2) Validity constraints in Essence (2) Instance generation 
problem in Essence

(3) Valid Instances with desirable 
properties

(in Essence)irace and
Essence CP-toolchain

conjure

(4) PDDL instances

An instance converter



conjure

Lack of automation
3 user input components required

● Flexibility in specifying validity constraints

● Much better scalability 
thanks to high-level representations

Second approach: 
Expressing validity constraint directly using Essence

17

(1.1) PDDL Planning problem 
● Objects and predicates
● Operators and conditions

(1.2) Validity constraints in Essence (2) Instance generation 
problem in Essence

(3) Valid Instances with desirable 
properties

(in Essence)irace and
Essence CP-toolchain

(4) PDDL instances

An instance converter



conjure

18

(1.1) PDDL Planning problem 
● Objects and predicates
● Operators and conditions

(1.2) Validity constraints in Essence (2) Instance generation 
problem in Essence

(3) Valid Instances with desirable 
properties

(in Essence)irace and
Essence CP-toolchain

(4) PDDL instances

An instance converter

How about using Essence for the whole thing?



conjure

19

(1.1) PDDL Planning problem 
● Objects and predicates
● Operators and conditions

(1.2) Validity constraints in Essence (2) Instance generation 
problem in Essence

(3) Valid Instances with desirable 
properties

(in Essence)irace and
Essence CP-toolchain

How about using Essence for the whole thing?

(1) Planning problem specification in Essence
● Objects and states
● Validity constraints
● Operators and conditions



conjure

20

(1.1) PDDL Planning problem 
● Objects and predicates
● Operators and conditions

(1.2) Validity constraints in Essence (2) Instance generation 
problem in Essence

(3) Valid Instances with desirable 
properties

(in Essence)irace and
Essence CP-toolchain

(1) Planning problem specification in Essence
● Objects and states
● Validity constraints
● Operators and conditions

Third approach: Expressing planning problems in Essence



conjure

21

(1.1) PDDL Planning problem 
● Objects and predicates
● Operators and conditions

(1.2) Validity constraints in Essence (2) Instance generation 
problem in Essence

(3) Valid Instances with desirable 
properties

(in Essence)irace and
Essence CP-toolchain

(1) Planning problem specification in Essence
● Objects and states
● Validity constraints
● Operators and conditions

Third approach: Expressing planning problems in Essence

● Flexibility & good scalability
○ high-level data types allows capture abstract structures easily

■ sequence, set, relation, function, partition, record, ...

letting STATE be domain record {
  robots : sequence (size n_robot) of 
              record{row:int, column:int, colour:COLOUR},             
  grid : GRID}



conjure

22

(1.1) PDDL Planning problem 
● Objects and predicates
● Operators and conditions

(1.2) Validity constraints in Essence (2) Instance generation 
problem in Essence

(3) Valid Instances with desirable 
properties

(in Essence)irace and
Essence CP-toolchain

(1) Planning problem specification in Essence
● Objects and states
● Validity constraints
● Operators and conditions

Third approach: Expressing planning problems in Essence

● Flexibility & good scalability
○ high-level data types allows capture abstract structures easily

■ sequence, set, relation, function, partition, record, ...

● A single input by users



conjure

23

(1.1) PDDL Planning problem 
● Objects and predicates
● Operators and conditions

(1.2) Validity constraints in Essence (2) Instance generation 
problem in Essence

(3) Valid Instances with desirable 
properties

(in Essence)irace and
Essence CP-toolchain

(1) Planning problem specification in Essence
● Objects and states
● Validity constraints
● Operators and conditions

Third approach: Expressing planning problems in Essence

● Flexibility & good scalability
○ high-level data types allows capture abstract structures easily

■ sequence, set, relation, function, partition, record, ...

● A single input by users

● Multiple solving paradigms supported:
○ could be refined to PDDL, CP, SAT, SMT, ...



24

Takeaway

● PDDL has limited expressivity and is not well-suited for automated instance 

generation for planning 

● We believe that expressing planning problem using high-level modelling language 

such as Essence is the key solution

● Next step: we need to implement the described extension in Essence

→ it’s a lot of work for the implementation, so we want to know if the community 

would like it :)

Please let us know what you think!



25



26



What is AI Planning?
A classical planning problem is defined as a tuple Π =〈V,A,I,G〉:

● V - a set of propositions (or Boolean variables)
● A - is a set of actions, formalized as pairs〈p,e〉, where p is a set of 

preconditions and e a set of effects
● I - is the initial state 
● G - is a formula over V that any goal state must satisfy.

27



What we build upon

● Uses the Essence CP-toolchain and irace to generate instances 
● We treat it as a black box

(1) Problem specification in Essence
● Parameters
● Validity constraints
● Decision variables 
● Problem constraints

conjure
(2) Instance generation 

problem in Essence
(3) Valid Instances with 

desirable properties
irace and
Essence CP-toolchain

Akgün, Dang, Miguel, Salamon, Stone, Instance generation via generator instances (CP 2019)

28



First approach: Extend PDDL
New keywords:   instance-constraints, init, goal, appear, min, max, 
exactly-k, atleast-k, atmost-k, xor + A library of structures: isLRUDquareGrid

(1.1) PDDL Planning problem:
● Objects and predicates
● Validity constraints
● Operators and conditions

conjure

(2) Instance generation 
problem in Essence (3) Graded Instances

(1.2) (Partial) problem specification in Essence
● Objects and predicates
● Validity constraintsrantanplan

(4) PDDL instances
irace and
Essence CP-toolchain

rantanplan

29

Problem: many structural constraints (such as a graph being connected) cannot 
be expressed in a purely first-order language like PDDL



Second approach: Use Essence
Using Essence directly would be a solution, giving the user more expressivity.

(1.1) PDDL Planning problem 
● Objects and predicates
● Operators and conditions

(1.2) Validity constraints in Essence (2) Instance generation 
problem in Essence (3) Graded Instances

irace and
Essence CP-toolchain

conjure

(4) PDDL instances

An instance converter

30

The good: Higher level constructs means better performance

The bad: lack of automation. No easy way of deriving the semantics between 
the two representations.



Third approach: Extend Essence
● high-level type constructors, such as set, relation and function
● No need to reconstruct the structure from a PDDL  description
● Could refine down to PDDL, CP, SAT, SMT, ...

(1) Planning problem specification in Essence
● Objects and states
● Validity constraints
● Operators and conditions

conjure
(2) Instance generation 

problem in Essence
(3) Valid Instances with 

desirable properties
irace and
Essence CP-toolchain

Letting STATE be domain record {
robots : sequence (size n_robot) of record

{ row :int,
column:int,
colour: COLOUR },

     grid : GRID}

31



Takeaways:

● Working system for simple PDDL problems

● PDDL has limited expressivity for what we need

● Proposal of an elegant solution

32


