Exploring Instance Generation for
Automated Planning

s OzgUr Akgun, Nguyen Dang, Joan Espasa, s
lan Miguel, Andras Z. Salamon and Christopher Stone

School of Computer Science, University of St Andrews, UK
{ozgur.akgun,nttd, jea20,ijm, Andras.Salamon,cls29}@st-andrews.ac.uk

Why Instance Generation?

e Varied benchmarks are crucial to evaluate solvers
e Using same benchmarks over and over: overfitting

e Better understanding of essential differences between solvers

What we build upon

An automated instance generation system for CP (Akgiin et al 2019, 2020)

e Essence CP-toolchain " : a high-level constraint modelling pipeline
e jrace ? (Lépez-Ibariez et al 2016): an automated parameter tuning tool

(1) Problem specification in Essence
° Parameters

O Validity constraints > (2) Instanc_e generation > (3) Val_lid Instances _with
. . . problem in Essence desirable properties

e Decision variables conjure irace and

° Problem constraints Essence CP-toolchain

Our aim: extend the system to support automated instance generation
for Al Planning Problems

T https.//constraintmodelling.org/ 2 https.//iridia.ulb.ac.be/irace/ 3
s

https://constraintmodelling.org/
https://iridia.ulb.ac.be/irace/

What is Al Planning?

A classical planning problem is a tuple M ={V,A,l,G):

e V: propositions (or Boolean variables)
e A: actions

o formalized as pairs of <pre-conditions, effects>
e |: initial state

e G: aformula over V that any goal state must satisfy.

What is Al Planning?

A classical planning problem is a tuple M ={V,A,l,G):

e V: propositions (or Boolean variables)
e A: actions

o formalized as pairs of <pre-conditions, effects>
e |: initial state

e G: aformula over V that any goal state must satisfy.

PDDL: a modelling language for classical planning problems

PDDL Examples

———

(:types robot tile color - object) (:action move_up

(:predicates :parameters

(robot-at ?r - robot ?x - tile) (?r - robot ?from - tile ?to - tile)
(up ?x - tile ?y - tile) :precondition (and
(down ?x - tile ?y - tile) (robot-at ?r ?from)
(right ?x - tile ?y - tile) (up ?to ?from) (clear ?to))
(left ?x - tile ?y - tile) :effect (and
(clear ?x - tile) (robot-at ?r ?to)
(painted ?x - tile ?c - color) (not (robot-at ?r ?from))
(robot-has ?r - robot ?c - color) (clear ?from) (not (clear ?to))))

(available-color ?c - color))

PDDL instance

(define (problem toy)
(:domain floor-tile)
(:objects

tile_0-0 tile_0-1
tile_1-0 tile_1-1 - tile

white black - color)
(:goal (and
(painted tile_0-0 white)

i robot1 robot2 - robot
i (painted tile_1-0 black))))

(robot-at robot1 tile_0-1) (robot-has robot1 white)
(robot-at robot2 tile_1-1) (robot-has robot2 black)
(available-color white) (available-color black)
(clear tile_0-0) (clear tile_1-90)

(up tile_0-1 tile_1-1) (up tile_0-0 tile_1-0)

(down tile_1-1 tile_0-1) (down tile_1-0 tile_0-0)
(right tile_0-1 tile_0-0) (right tile_1-1 tile_1-0)
(left tile_0-0 tile_0-1) (left tile_1-0 tile_1-1))

tle_0-0 | tile_0-1

(right tile_0-1 tile_0-0) (right tile_1-1 tile_1-0)
(left tile_0-0 tile_0-1) (left tile_1-0 tile_1-1))

(:goal (and
(painted tile_0-0 white)
(painted tile_1-0 black))))

PDDL instance e
tile_1-0 | tile_1-1
i(define (problem toy) E ?(init
i (:domain floor-tile) i i (robot-at robot1 tile_0-1) (robot-has robot1 white)
E (:objects i i (robot-at robot2 tile_1-1) (robot-has robot2 black)
i tile_0-0 tile_0-1 E E (available-color white) (available-color black)
i tile_1-0 tile_1-1 - tile i i (clear tile_0-0) (clear tile_1-90)
E robot1 robot2 - robot i i (up tile_0-1 tile_1-1) (up tile_0-0 tile_1-0)
i white black - color) E j_ (down tile_1-1 tile_0-1) (down tile_1-0 tile_0-0)

Validity Constraints

e Essence uses where constraints to restrict the input space: | given b: int(1..)
i given r: int(1..)
' where r <= b

e PDDL can'’t express them in most cases
e Useful to guide the search for graded instances

e Pivotal, depending on the assumptions:

Validity Constraints

e Essence uses where constraints to restrict the input space: | given b: int(1..)
i given r: int(1..)
' where r <= b
—eo PDDL can’t express them in most cases
e Useful to guide the search for graded instances
e Pivotal, depending on the assumptions:

——» Augment PDDL to support those constraints?

10

Validity Constraints

e Essence uses where constraints to restrict the input space: | given b: int(1..)
i given r: int(1..)
' where r <= b

—eo PDDL can’t express them in most cases
e Useful to guide the search for graded instances

e Pivotal, depending on the assumptions:

——» Augment PDDL to support those constraints?

PDDL + Essence

———

L e R e e A A ! 11

First approach: Adding new keywords into PDDL

(1.1) PDDL Planning problem
° Objects and predicates

(1.2) (Partial) problem specification in Essence

e \Validity constraints via keywords - ° Obj.eclts and pred.icates
e Operators and conditions rantanplan ° Validity constraints
conjure
N (2) Instance generation (3) Valid Instances with
problem in Essence P> desirable properties
irace and (in Essence)

Essence CP-toolchain

rantanplan

Keyword examples: at-least-k, at-most-k, min, max, xor, square-grid

Keywords are translated to validity constraints in Essence by rantanplan

A A

(4) PDDL instances

12

First approach: Adding new keywords into PDDL

I
(1.1) PDDL Planning problem |
o Objects and predicates (1.2) (Partial) problem specification in Essence
] . a
e Validity constraints via keywords J B Obj.eC.tS and pred.lcates
e Operators and conditions | rantanplan e Validity constraints
|
-] - e e e e e e e e e e s
conjure
(2) Instance generation (3) Valid Instances with
— problem in Essence P> desirable properties »| (4) PDDL instances
irace and (in Essence) rantanplan
Essence CP-toolchain

o
S
™
2.
S
wQ
)
o
O
O
-
=
©
c
-+
o
<
c
(%2}
@
)
wn

First approach: Adding new keywords into PDDL

(1.1) PDDL Planning problem
o Objects and predicates (1.2) (Partial) problem specification in Essence

° Validity constraints via keywords - ° Obj.ec.ts and pred.icates
e Operators and conditions rantanplan e \Validity constraints

conjure

(2) Instance generation (3) Va“d Instances_wnh
— P> desirable properties

lemin E)
problem in Essence irace and (in Essence) ran tanplan
Essence CP-toolchain

A A

(4) PDDL instances

. e Limited flexibility in specifying validity constraints
i square-grid: up-down-left-right, northwest-southeast-etc.
: other shapes rather than square-grid?

o
S
™
2.
S
wQ
)
o
O
O
-
=
©
c
-+
o
<
c
(%2}
@
)
wn

e Bad scalability due to low-level representations

Second approach:

Expressing validity constraint directly using Essence

(1.1) PDDL Planning problem
° Objects and predicates
. Operators and conditions

(1.2) Validity constraints in Essence

—
conjure

(2) Instance generation
problem in Essence

(4) PDDL instances

An instance converter T

irace and

—>

(3) Valid Instances with desirable
properties
(in Essence)

Essence CP-toolchain

15

Second approach:
Expressing validity constraint directly using Essence

(1.1) PDDL Planning problem
° Objects and predicates
. Operators and conditions

(1.2) Validity constraints in Essence

—

conjure

e Flexibility in specifying validity constraints

(2) Instance generation
problem in Essence

(4) PDDL instances

An instance converter T

e Much better scalability

thanks to high-level representations

irace and

—P>

(3) Valid Instances with desirable
properties
(in Essence)

Essence CP-toolchain

16

Second approach:
Expressing validity constraint directly using Essence

______________ -
. |

(1.1) PDDL Planning problem
° Objects and predicates I
° Operators and conditions |
|
|

(1.2) Validity constraints in Essence —|—> () I ETED) TR el

problem in Essence

e Flexibility in specifying validity constraints

e Much better scalability
thanks to high-level representations !

irace and
Essence CP-toolchain

Lack of automation
3 user input components required

(4) PDDL instances

(3) Valid Instances with desirable
properties
(in Essence)

(1.1) PDDL Planning problem
° Objects and predicates

° Operators and conditions

(1.2) Validity constraints in Essence —|—>

(2) Instance generation
problem in Essence

irace and
Essence CP-toolchain

(4) PDDL instances

(3) Valid Instances with desirable
properties
(in Essence)

How about using Essence for the whole thing?

18

(1) Planning problem specification in Essence

e Objects and states
e Validity constraints

e Operators and conditions

|conjure

(2) Instance generation
problem in Essence

irace and

—>

(3) Valid Instances with desirable
properties
(in Essence)

Essence CP-toolchain

How about using Essence for the whole thing?

19

Third approach: Expressing planning problems in Essence

(1) Planning problem specification in Essence
e Objects and states
e Validity constraints
e Operators and conditions

|conjure

(2) Instance generation
problem in Essence

irace and

—>

(3) Valid Instances with desirable
properties
(in Essence)

Essence CP-toolchain

20

Third approach: Expressing planning problems in Essence

| |
: (1) Planning problem specification in Essence I
: e Objects and states ;
I e Validity constraints I
I e Operators and conditions ! (2) Instance generation - (3) Valid lnst?gcgiigslth desirable
. problem in Essence prop
I jconjure irace and (in Essence)
———————————————— - Essence CP-toolchain
"
T %

' e Flexibility & good scalability 5
o high-level data types allows capture abstract structures easily

[] sequence, set, relation, function, partition, record,

__

: letting STATE be domain record {

i robots : sequence (size n_robot) of

! record{row:int, column:int, colour:COLOUR},
' grid : GRID}

Third approach: Expressing planning problems in Essence

| |
: (1) Planning problem specification in Essence I
: e Objects and states ;
I e Validity constraints I
I e Operators and conditions ! (2) Instance generation - (3) Valid lnst?gcgiigslth desirable
. problem in Essence prop
I jconjure irace and (in Essence)
———————————————— - Essence CP-toolchain
"
‘‘ %

e Flexibility & good scalability
o high-level data types allows capture abstract structures easily

|

|

1

1

1

1

1

:

. . . . 1
[] sequence, set, relation, function, partition, record, ... !
1

1

1

1

1

1

1

e Asingle input by users

Third approach: Expressing planning problems in Essence

| |
: (1) Planning problem specification in Essence I
: e Objects and states ;
I e Validity constraints I
I e Operators and conditions ! (2) Instance generation - (3) Valid lnstfgcgiigslth desirable
. problem in Essence prop
I jconjure irace and (in Essence)
———————————————— - Essence CP-toolchain
"
e %

e Flexibility & good scalability
o high-level data types allows capture abstract structures easily

[] sequence, set, relation, function, partition, record,
e Asingle input by users

e Multiple solving paradigms supported:
o could be refined to PDDL, CP, SAT, SMT, ...

Takeaway

PDDL has limited expressivity and is not well-suited for automated instance

generation for planning

We believe that expressing planning problem using high-level modelling language
such as Essence is the key solution

Next step: we need to implement the described extension in Essence

— it's a lot of work for the implementation, so we want to know if the community

would like it :)

Please let us know what you think!

24

25

26

What is Al Planning?

A classical planning problem is defined as a tuple M ={V,A,l,G):

e V - a set of propositions (or Boolean variables)

e A -is a set of actions, formalized as pairs{p,e), where p is a set of
preconditions and e a set of effects
e |- is the initial state

e G -is aformula over V that any goal state must satisfy.

27

What we build upon

. Akgun, Dang, Miguel, Salamon, Stone, Instance generation via generator instances (CP 2019)

e Uses the Essence CP-toolchain and irace to generate instances
e \We treat it as a black box

(1) Problem specification in Essence
° Parameters
. Validity constraints
° Decision variables
° Problem constraints

conjure

—>>

(2) Instance generation
problem in Essence

irace and
Essence CP-toolchain

(3) Valid Instances with
desirable properties

28

First approach: Extend PDDL

New keywords: instance-constraints, init, goal, appear, min, max,
exactly-k, atleast-k, atmost-k, xor + Alibrary of structures: isLRUDquareGrid

(1.1) PDDL Planning problem:
° Objects and predicates
° Validity constraints

(1.2) (Partial) problem specification in Essence
- . Objects and predicates

e Operators and conditions rantanplan e Validity constraints
conjure
5| (2)Instance generation B (3) Graded Instances (4) PDDL instances
problem in Essence . rantanplan
irace and P
Essence CP-toolchain

Problem: many structural constraints (such as a graph being connected) cannot

be expressed in a purely first-order language like PDDL

29
s

Second approach: Use Essence

Using Essence directly would be a solution, giving the user more expressivity.

(1.1) PDDL Planning problem (4) PDDL instances
° Objects and predicates
° Operators and conditions An instance converter
(1.2) Validity constraints in Essence - @) Instancg SCTEIE —»| (3) Graded Instances
. problem in Essence .
conjure irace and

Essence CP-toolchain
The good: Higher level constructs means better performance

The bad: lack of automation. No easy way of deriving the semantics between
the two representations.

30

Third approach: Extend Essence

e high-level type constructors, such as set, relation and function
e No need to reconstruct the structure from a PDDL description
e Could refine down to PDDL, CP, SAT, SMT, ...

Letting STATE be domain record {
robots : sequence (size n_robot) of record
{ row :int,
column:int,
colour: COLOUR },
grid : GRID}

(1) Planning problem specification in Essence

° Objects and states > (2) Instance generation > (3) Valid Instances with
° Validity constraints problem in Essence desirable properties

. Operators and conditions conjure irace and
Essence CP-toolchain

Takeaways:

e \Working system for simple PDDL problems
e PDDL has limited expressivity for what we need

e Proposal of an elegant solution

32

