Half-checking Propagators

Mikael Zayenz Lagerkvist

Magnus Rattfeldt

What if Propagators could remove solutions?

- Propagation incorrect
- Solving incomplete
- ...more propagation?

Propagators are awesome!

- Smart propagation is crucial
- Key to CP success
- Complicated
 - Never remove solutions
 - Propagation is coNP-style problem

What is a propagator?

Function from domains to domains.

- Local
- 2. Contracting, $p(d) \subseteq \overline{d}$
- 3. Checking, p(a) = a iff $a \in c$
- 4. Weakly monotonic, $a \in d, p(a) \subseteq p(d)$

What is a half-checking propagator?

Function from domains to domains.

- I. Local
- 2. Contracting, $p(d) \subseteq d$
- 3. Half checking, if p(a) = a then $a \in c$
- 4. Weakly monotonic

Implications

- Not complete solving
- Lifting incompleteness to propagators
- More than domain consistency

Integration into a system

- Recomputation
- Testing is complicated
- Portfolio solving
 - No-goods are not globally valid

Three general ideas applied to cost-circuit

How to design half-checking propagators?

- Dominating solutions
 - No crossing lines
- Heuristic bounds
 - Christofides-Serdyukov bound
- Heuristic deductions
 - one-tree based deductions

Other approaches

- All incomplete methods
 - Local search, LNS,
- Streamliner constraints
 - Propagators vs models
- Belief and cost propagation

Key takeaways

- New idea for incomplete solving
 - Half-checking propagator
- Can be combined with other techniques
- No-goods need to be handled carefully
- <u>github.com/zayenz/</u> <u>half-checking-propagators</u>

s J