
A constraint-based tool
for generating benchmark instances

Nguyen Dang
University of St Andrews, UK

nttd@st-andrews.ac.uk

Ozgur Agkun Ian Miguel Christopher StonePatrick SpracklenAndras SalamonJoan Espasa Peter Nightingale

● Access to a wide range of instances is often needed when developing algorithms or comparing
existing ones.

○ Testing, debugging, and evaluating algorithm performance.
○ Tuning algorithm parameters.
○ Gaining insights into strength and weakness of algorithms.
○ Building a portfolio of algorithms with complementary strengths.

2

● Access to a wide range of instances is often needed when developing algorithms or comparing
existing ones.

○ Testing, debugging, and evaluating algorithm performance.
○ Tuning algorithm parameters.
○ Gaining insights into strength and weakness of algorithms.
○ Building a portfolio of algorithms with complementary strengths.

● Standard benchmark instance libraries are very useful, but the re-use of the same libraries over a
long period of time is not always ideal.

○ Potential bias and overfitting issues.
○ Some old benchmarks are no longer challenging.

3

● Benchmark instance generation:
○ Nurse Rostering problems (Vanhoucke and Maenhout, 2009)
○ Knapsack problems (Pisinger, 2005; Smith-Miles, Christiansen & Muñoz, 2021; Jooken, Leyman & De

Causmaecker, 2022)
○ Travelling Salesman Problems (van Hemert 2006, Bossek et al 2019)
○ AI Planning (Torralba, Seipp & Sievers 2021)
○ …

● Instance Space Analysis:
○ Machine Learning tasks

■ Classification (Muñoz, Villanova, Baatar & Smith-Miles, 2018), Regression (Muñoz et al 2021),
Clustering (Fernandes, Lorena & Smith-Miles 2021), …

○ Combinatorial optimisation problems
■ Personnel scheduling (Kletzander, Musliu & Smith-Miles, 2021), Bin packing (Liu, Smith-Miles,

& Costa 2020), Course timetabling (Coster et al 2021), Knapsack (Smith-Miles, Christiansen &
Muñoz, 2021), …

4

AutoIG: a constraint-based instance generation tool

5

Problem description

A constraint model

Instance generator

A constraint model

Solver(s)

AutoIG Instances with
“desirable” propertiesEssence pipeline

+
irace
+

MiniZinc toolchain

CP solvers: OR-Tools, Chuffed,...

SAT solvers: Kissat, Lingeling,...

SMT solvers: Z3, Yices,...

MIP solvers: CPLEX, Gurobi

AutoIG: a constraint-based instance generation tool

6

Problem description

A constraint model

Instance generator

A constraint model

Solver(s)

AutoIG Instances with
“desirable” propertiesEssence pipeline

+
irace
+

MiniZinc toolchain

CP solvers: OR-Tools, Chuffed,...

SAT solvers: Kissat, Lingeling,...

SMT solvers: Z3, Yices,...

MIP solvers: CPLEX, Gurobi

Called via MiniZinc/Essence toolchains

in Essence or MiniZinc

in Essence or MiniZinc

Essence pipeline: a constraint modelling tool (Frisch et al 2005, Agkun et al 2011)

MiniZinc toolchain: a constraint modelling tool (Nethercote et al 2007, Stuckey et al 2014)

in Essence

AutoIG: a constraint-based instance generation tool

7

Problem description

A constraint model

Instance generator

A constraint model

Solver(s)

AutoIG Instances with
“desirable” propertiesEssence pipeline

+
irace

+
MiniZinc toolchain

Essence pipeline: a constraint modelling tool (Frisch et al 2005, Agkun et al 2011)

MiniZinc toolchain: a constraint modelling tool (Nethercote et al 2007, Stuckey et al 2014)

irace: an automated algorithm configurator (López-Ibáñez et al 2016)

CP solvers: OR-Tools, Chuffed,...

SAT solvers: Kissat, Lingeling,...

SMT solvers: Z3, Yices,...

MIP solvers: CPLEX, Gurobi

Problem description

AutoIG: a constraint-based instance generation tool

8

Problem description

A constraint model

Instance generator

A constraint model

Solver(s)

AutoIG Instances with
“desirable” propertiesEssence pipeline

+
irace
+

MiniZinc toolchain

CP solvers: OR-Tools, Chuffed,...

SAT solvers: Kissat, Lingeling,...

SMT solvers: Z3, Yices,...

MIP solvers: CPLEX, Gurobi

Problem description

Valid: satisfy certain constraints among parameters

SAT/UNSAT/both

Graded: be within a certain difficulty level for a solver

Discriminating: exhibit pronounce performance difference between two solvers

AutoIG: a constraint-based instance generation tool

9

Problem description

A constraint model

Instance generator

A constraint model

Solver(s)

AutoIG Instances with
“desirable” propertiesEssence pipeline

+
irace
+

MiniZinc toolchain

CP solvers: OR-Tools, Chuffed,...

SAT solvers: Kissat, Lingeling,...

SMT solvers: Z3, Yices,...

MIP solvers: CPLEX, Gurobi

Problem description

AutoIG: a constraint-based instance generation tool

10

Problem description

A constraint model

Instance generator

A constraint model

Solver(s)

AutoIG Instances with
“desirable” propertiesEssence pipeline

+
irace
+

MiniZinc toolchain

CP solvers: OR-Tools, Chuffed,...

SAT solvers: Kissat, Lingeling,...

SMT solvers: Z3, Yices,...

MIP solvers: CPLEX, Gurobi

Problem description

Declarative instance generator

● Users describe the generator and its parameters as a constraint model (in Essence)
● Instances are generated by a constraint solver (minion: Gent, Jefferson & Miguel 2006)

○ According the parameter setting of the generator
○ Satisfying validity constraints among instance parameters

11

Declarative instance generator

● Users describe the generator and its parameters as a constraint model (in Essence)
● Instances are generated by a constraint solver (minion: Gent, Jefferson & Miguel 2006)

○ According the parameter setting of the generator
○ Satisfying validity constraints among instance parameters

12

A nurse rostering generator model

Parameters:
● number of nurses
● ratio of nurses for each skill
● min/max/average of daily demand

Decision variables (~ instance parameters)
● a set of nurses & their skills & preference
● demand for each day, shift and skill

Constraints (~ instance validity)
● patterns on nurse preference: day shifts vs night shifts,

 weekdays vs weekends,...
● patterns on daily demand: head nurses vs nurses vs trainees

tuned by irace

solved by a constraint solver

AutoIG: a constraint-based instance generation tool

13

Problem description

A constraint model

Instance generator

A constraint model

Solver(s)

AutoIG Instances with
“desirable” propertiesEssence pipeline

+
irace
+

MiniZinc toolchain

CP solvers: OR-Tools, Chuffed,...

SAT solvers: Kissat, Lingeling,...

SMT solvers: Z3, Yices,...

MIP solvers: CPLEX, Gurobi

Problem description

AutoIG instance generation process

14

Instance generator & its parameter space described as a constraint model via Essence

AutoIG instance generation process

New generator configurations are sampled

15

Instance generator & its parameter space

irace

generator instances

described as a constraint model via Essence

New generator configurations are sampled

AutoIG instance generation process

16

Instance generator & its parameter space

irace

generator instances

candidate instances

described as a constraint model via Essence

Generator instances are solved via the Essence pipeline

New generator configurations are sampled

AutoIG instance generation process

17

Instance generator & its parameter space

irace

generator instances

candidate instances

scores

described as a constraint model via Essence

Generator instances are solved via the Essence pipeline

Quality of instances are evaluated

New generator configurations are sampled

AutoIG instance generation process

18

Instance generator & its parameter space

irace

generator instances

candidate instances

scores

described as a constraint model via Essence

Generator instances are solved via the Essence pipeline

Quality of instances are evaluated
No candidate

instance generated

New generator configurations are sampled

AutoIG instance generation process

19

Instance generator & its parameter space

irace

generator instances

candidate instances

scores

described as a constraint model via Essence

Generator instances are solved via the Essence pipeline

Quality of instances are evaluated

Scores are returned as feedbacks to irace

No candidate
instance generated

AutoIG: a constraint-based instance generation tool

SAT/UNSAT/both

Valid: satisfy certain constraints among parameters

Graded: be within a certain difficulty level for a solver

Discriminating: exhibit pronounce performance difference between two solvers

20

Problem description

A constraint model

Instance generator

A constraint model

Solver(s)

AutoIG Instances with
“desirable” propertiesEssence pipeline

+
irace
+

MiniZinc toolchain

CP solvers: OR-Tools, Chuffed,...

SAT solvers: Kissat, Lingeling,...

SMT solvers: Z3, Yices,...

MIP solvers: CPLEX, Gurobi

Problem description

● Graded instances (for a single solver)

○ non-trivial but solvable by a solver
Akgün, Dang, Miguel, Salamon, Stone. Instance generation via instance generators. CP2019

● Discriminating instances (for a pair of solvers)

○ exhibit pronounce difference in performance between two solvers.
Akgun, Dang, Miguel, Salamon, Spracklen & Stone. Discriminating instance generation from
abstract specifications: A case study with CP and MIP. CPAIOR2020

21

22

Graded instances:

● valid instances that can be solved within [n1, n2] seconds, where n1 and n2 are pre-defined.

● example application: generate instances with varying degrees of difficulty

23

Graded instances:

● valid instances that can be solved within [n1, n2] seconds, where n1 and n2 are pre-defined.

● example application: generate instances with varying degrees of difficulty

○ Athanor: a high-level constraint-based local search solver

■ Attieh, Dang, Jefferson, Miguel & Nightingale. Athanor: high-level local search over abstract

constraint specifications in Essence, IJCAI 2019

■ small instances for testing & debugging.

■ non-trivial instances for gaining insights on how the solver works, and for improving it.

■ a large instance set for parameter tuning.

https://research-repository.st-andrews.ac.uk/handle/10023/18415
https://research-repository.st-andrews.ac.uk/handle/10023/18415

24

Graded instances:

● valid instances that can be solved within [n1, n2] seconds, where n1 and n2 are pre-defined.

● example application: generate instances with varying degrees of difficulty

○ Automated generation of streamliners for constraint models

■ Spracklen, Dang, Agkun & Miguel. Automatic streamlining for constrained optimisation, CP2019

■ Spracklen, Dang, Agkun & Miguel. Towards Portfolios of Streamlined Constraint Models: A Case

Study with the Balanced Academic Curriculum Problem, ModRef 2020

■ streamliners: constraints added to a model to speed up the solving process.

■ automated searching and training a robust portfolio of streamliners

● needs a large set of non-trivial, but not too difficult instances for the training

● plus a set of more challenging instances for evaluation.

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=IS6YSBkAAAAJ&sortby=pubdate&citation_for_view=IS6YSBkAAAAJ:p__nRnzSRKYC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=IS6YSBkAAAAJ&sortby=pubdate&citation_for_view=IS6YSBkAAAAJ:gsN89kCJA0AC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=IS6YSBkAAAAJ&sortby=pubdate&citation_for_view=IS6YSBkAAAAJ:gsN89kCJA0AC

25

Discriminating instances:
● valid instances that are:

○ easy for one solver (the favoured solver) while being difficult for another solver (the base solver).

● example application: gaining insights into strengths and weakness of each solver

26

Discriminating instances:
● valid instances that are:

○ easy for one solver (the favoured solver) while being difficult for another solver (the base solver).

● example application: gaining insights into strengths and weakness of each solver
○ case study (Akgun, Dang, Miguel, Salamon, Spracklen & Stone, 2020):

■ chuffed (CP solver) and CPLEX (MIP solver)

27

Discriminating instances:
● valid instances that are:

○ easy for one solver (the favoured solver) while being difficult for another solver (the base solver).

● example application: gaining insights into strengths and weakness of each solver
○ case study (Akgun, Dang, Miguel, Salamon, Spracklen & Stone, 2020):

■ chuffed (CP solver) and CPLEX (MIP solver)

28

Discriminating instances:
● valid instances that are:

○ easy for one solver (the favoured solver) while being difficult for another solver (the base solver).

● example application: gaining insights into strengths and weakness of each solver
○ case study (Akgun, Dang, Miguel, Salamon, Spracklen & Stone, 2020):

■ chuffed (CP solver) and CPLEX (MIP solver)

has
efficient linear

formulation

is a classical
CP problem

A study on the MiniZinc Challenges
● MiniZinc Challenges: https://www.minizinc.org/challenge.html

○ an annual competition series (2008-present) for benchmarking constraint solving technologies
○ various solving paradigms: CP, SAT, SMT, MIP & hybrid (via MiniZinc backends).

29

https://www.minizinc.org/challenge.html

A study on the MiniZinc Challenges
● MiniZinc Challenges: https://www.minizinc.org/challenge.html

○ an annual competition series (2008-present) for benchmarking constraint solving technologies
○ various solving paradigms: CP, SAT, SMT, MIP & hybrid (via MiniZinc backends).

○ Benchmark instances:
■ 100 new instances each year (20 problems, 5 instances/problem)
■ Desirable properties:

● not too easy but solvable by at least one participating solver.
● not inadvertently favouring one solver over another.

30

https://www.minizinc.org/challenge.html

A study on the MiniZinc Challenges
● MiniZinc Challenges: https://www.minizinc.org/challenge.html

○ an annual competition series (2008-present) for benchmarking constraint solving technologies
○ various solving paradigms: CP, SAT, SMT, MIP & hybrid (via MiniZinc backends).

○ Benchmark instances:
■ 100 new instances each year (20 problems, 5 instances/problem)
■ Desirable properties:

● not too easy but solvable by at least one participating solver.
● not inadvertently favouring one solver over another.

○ Sources:
■ Benchmark libraries
■ Submitted by participants

31

“In order to collect good benchmarks each entrant is strongly encouraged to submit one or two MiniZinc 2.3.1
models, making use of only the global constraints included in the MiniZinc 2.3.1 library, as well as some
(preferably 20) instance files for each model. The instances should range from easy (about a minute) to hard
(about 15 minutes) if possible. In addition, the submitter should provide one "toy" instance for testing purposes.”

https://www.minizinc.org/challenge.html

A study on the MiniZinc Challenges
● Dang, Akgün, Espasa, Miguel, and Nightingale (2022) A Framework for Generating Informative Benchmark

Instances, CP2022.

● We use AutoIG for:

○ Automatically generating a large number of benchmark instances with the desired properties.

○ Gaining more detailed insights into solver performance than just a ranking

■ seeing how solver performance varies across different problems.

■ revealing cases where a solver is weak or even faulty.

■ revealing parts of the instance space where a generally weak solver performs well

relative to others.

32

A study on the MiniZinc Challenges
(selected) Problems:

● Multi-Agent Collaborative Construction problem (MACC, Lam et al 2020): a multi-agent planning problem
● Carpet Cutting problem (Schutt, Stuckey & Verden, 2011): a packing problem
● Mario problem: a routing problem
● Resource Availability Cost Problem (RACP, Kreter et al 2018): a scheduling problem
● Lot-sizing problem (Houndji et al 2014, Ullah & Parveen 2010): a production scheduling problem

33

A study on the MiniZinc Challenges
(selected) Problems:

● Multi-Agent Collaborative Construction problem (MACC, Lam et al 2020): a multi-agent planning problem
● Carpet Cutting problem (Schutt, Stuckey & Verden, 2011): a packing problem
● Mario problem: a routing problem
● Resource Availability Cost Problem (RACP, Kreter et al 2018): a scheduling problem
● Lot-sizing problem (Houndji et al 2014, Ullah & Parveen 2010): a production scheduling problem

(selected) Solvers:

● OR-Tools (Google): a hybrid solver (CP + SAT + linear programming)
● Picat-SAT (Zhou & Kjellerstrand 2017): a SAT compiler, with Kissat (Biere et al 2021) as underlying solver.
● Chuffed (Chu et al 2018): a learning CP solver
● Yuck (Marte 2021): a local-search constraint solver

34

1st place

2nd placenon-participants

1st place in local search category
but very low overall ranking (last/second-to-last)

A study on the MiniZinc Challenges
Experiment 1: generate instances with desired properties using gradedness criteria.

Desired properties:
● Not too easy but solvable by at least one participating solver
● not inadvertently favouring one solver over another

35

A study on the MiniZinc Challenges
Experiment 1: generate instances with desired properties using gradedness criteria.

Desired properties:
● Not too easy but solvable by at least one participating solver
● not inadvertently favouring one solver over another

Our method (for a given problem):
● For each solver k, apply AutoIG to find a set of valid & graded instances Sk
● Combined instance set S: randomly select 50 instances from each Sk
● Evaluate all solvers on all instances in S.

36

graded = solved within [10s, 1200s]
● decision problem: a solution found or unsatisfiability proved
● optimisation problem:

○ unsatisfiability/optimality proved (non local-search)
○ optimal solution found (local-search)

A study on the MiniZinc Challenges
Experiment 1: generate instances with desired properties using gradedness criteria.

37

#graded instances found

A study on the MiniZinc Challenges
Experiment 1: generate instances with desired properties using gradedness criteria.

38

#graded instances found

A study on the MiniZinc Challenges
Experiment 1: generate instances with desired properties using gradedness criteria.

39

#graded instances found

Conjecture 1: Solver performance can vary significantly when solving instances drawn from the same instance space.

A study on the MiniZinc Challenges
Experiment 1: generate instances with desired properties using gradedness criteria.

40

#graded instances found

A study on the MiniZinc Challenges
Experiment 1: generate instances with desired properties using gradedness criteria.

41

#graded instances found

A study on the MiniZinc Challenges
Experiment 1: generate instances with desired properties using gradedness criteria.

42

#graded instances found

Conjecture 2: For the same solver, some problems are easier/more challenging than others.

A study on the MiniZinc Challenges
Experiment 1: generate instances with desired properties using gradedness criteria.

43

#graded instances found
Run status frequency

Conjecture 1: Solver performance can vary significantly when solving instances drawn from the same instance space.

A study on the MiniZinc Challenges
Experiment 1: generate instances with desired properties using gradedness criteria.

44

#graded instances found very few graded instances for both
OR-Tools and Yuck

Conjecture 1: Solver performance can vary significantly when solving instances drawn from the same instance space.

A study on the MiniZinc Challenges
Experiment 1: generate instances with desired properties using gradedness criteria.

45

#graded instances found
majority of instances are too easy for OR-Tools

majority of instances are too difficult for Yuck
very few graded instances for both
OR-Tools and Yuck

Conjecture 1: Solver performance can vary significantly when solving instances drawn from the same instance space.

A study on the MiniZinc Challenges
Experiment 1: generate instances with desired properties using gradedness criteria.

46

#graded instances found

Conjecture 2: For the same solver, some problems are easier/more challenging than others.

A study on the MiniZinc Challenges
Experiment 1: generate instances with desired properties using gradedness criteria.

47

Solving time distribution on graded instances

Carpet-cutting, Mario and RACP are mostly easy for OR-Tools (but AutoIG did find challenging RACP instances!)

MACC and Lot-Sizing exhibit a good diversity of difficulties for OR-Tools (and for other solvers)

A study on the MiniZinc Challenges
Experiment 1: generate instances with desired properties using gradedness criteria.

48

MiniZinc scores on the combined graded instance set

A study on the MiniZinc Challenges
Experiment 1: generate instances with desired properties using gradedness criteria.

49

MiniZinc scores on the combined graded instance set

Some rankings are swapped:
● RACP:

 OR-Tools ↔ Chuffed
 Picat ↔ Yuck

● Lot-sizing: Picat ↔ Chuffed

The overall rankings are quite similar!

A study on the MiniZinc Challenges
Experiment 1: generate instances with desired properties using gradedness criteria.

50

MiniZinc scores on the combined graded instance set

Yuck is completely dominated by all other solvers Not really!

Next experiment: generating discriminating instances for OR-Tools vs Yuck

A study on the MiniZinc Challenges
Experiment 2: generate discriminating instances
for OR-Tools and Yuck

51

#discriminating instances

Score distribution of the favoured solver
on discriminating instances

score ∈ (0.5, 1]
score=1: maximum discriminating power

A study on the MiniZinc Challenges
Experiment 2: generate discriminating instances
for OR-Tools and Yuck

52

#discriminating instances

Score distribution of the favoured solver
on discriminating instances

score ∈ (0.5, 1]
score=1: maximum discriminating power

Carpet-cutting & Mario:
Yuck is completely dominated by OR-Tools

A study on the MiniZinc Challenges
Experiment 2: generate discriminating instances
for OR-Tools and Yuck

53

#discriminating instances

Score distribution of the favoured solver
on discriminating instances

score ∈ (0.5, 1]
score=1: maximum discriminating power

MACC, RACP & Lot-sizing:
Yuck can offer good complementary strengths to OR-Tools

A study on the MiniZinc Challenges
Experiment 3: generate discriminating instances
for OR-Tools and Picat

54

#discriminating instances

Score distribution of the favoured solver
on discriminating instances

A study on the MiniZinc Challenges
Experiment 2: generate discriminating instances
for OR-Tools and Yuck

55

#discriminating instances

Score distribution of the favoured solver
on discriminating instances

score ∈ (0.5, 1]
score=1: maximum discriminating power

AutoIG: https://github.com/stacs-cp/AutoIG

Future works

● Improving the diversity of instances generated.
○ Diversity in term of solver performance.
○ Diversity in term of instance features.

● Visualisation and post analysis on the generated instances.

● Generating instances that are close to real-world data.

● (cross-domain) instance features

56

https://github.com/stacs-cp/AutoIG

