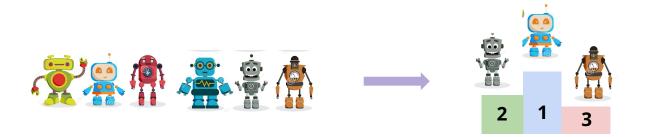


A portfolio-based analysis method for competition results

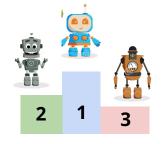
Nguyen Dang University of St Andrews, UK nttd@st-andrews.ac.uk



A portfolio-based analysis method for competition results

/ˈpɛŋgwɪn/ Nguyen University of St Andrews, UK nttd@st-andrews.ac.uk

- Competitions are useful resources for comparing performance of different solving approaches
 - MiniZinc Challenges, SAT competition series, Internal Planning competitions,...


- Competitions are useful resources for comparing performance of different solving approaches
 - MiniZinc Challenges, SAT competition series, Internal Planning competitions,...
- Typical competition setting:
 - A set of benchmark instances (from different problems)
 - Competition ranking: based on *average performance across all instances*

- Competitions are useful resources for comparing performance of different solving approaches
 - MiniZinc Challenges, SAT competition series, Internal Planning competitions,...
- Typical competition setting:
 - A set of benchmark instances (from different problems)
 - Competition ranking: based on *average performance across all instances*

• **Competition ranking**: based on *average performance across all instances*

• **Competition ranking**: based on *average performance across all instances*

- **Portfolio-based analysis**: provide additional insights into complementary strengths among solvers
 - Step 1: finding the smallest portfolio that can achieve the best possible performance

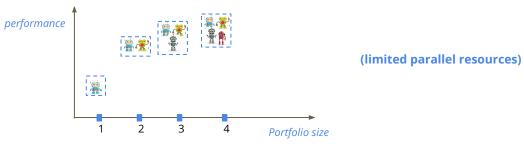
(infinite parallel resources)

• **Competition ranking**: based on *average performance across all instances*

- **Portfolio-based analysis**: provide additional insights into complementary strengths among solvers
 - Step 1: finding the smallest portfolio that can achieve the best possible performance

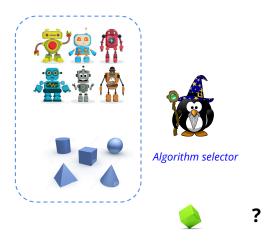
(infinite parallel resources)

• Step 2: trade-off between portfolio sizes and performance

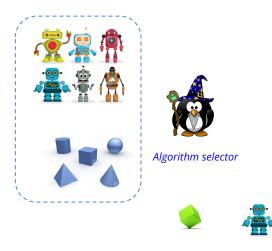

• **Competition ranking**: based on *average performance across all instances*

- **Portfolio-based analysis:** provide additional insights into complementary strengths among solvers
 - Step 1: finding the smallest portfolio that can achieve the best possible performance

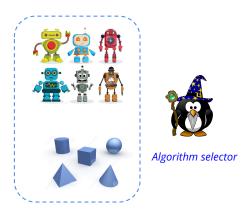
(infinite parallel resources)


• Step 2: trade-off between portfolio sizes and performance

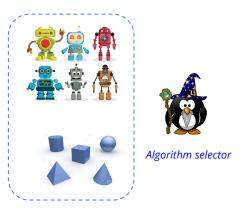
• Step 3: solver importance from a portfolio viewpoint using Shapley values (*Fréchette et al 2016*)

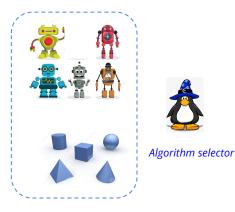


- Sparkle SAT challenge 2018 (Luo & Hoos, https://ada.liacs.nl/events/sparkle-sat-18/)
- Sparkle Planning challenge 2019 (Luo, Vallati & Hoos, https://ada.liacs.nl/events/sparkle-planning-19/)
- Competition ranking:
 - based on marginal contribution to performance of an algorithm selector built on a portfolio of all participating solvers.

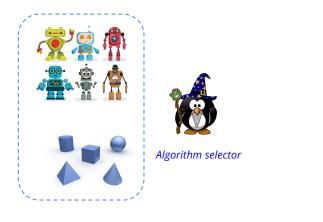


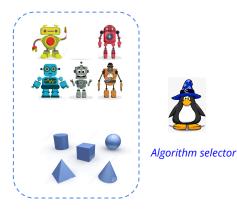
- Sparkle SAT challenge 2018 (Luo & Hoos, https://ada.liacs.nl/events/sparkle-sat-18/)
- Sparkle Planning challenge 2019 (Luo, Vallati & Hoos, https://ada.liacs.nl/events/sparkle-planning-19/)
- Competition ranking:
 - based on marginal contribution to performance of an algorithm selector built on a portfolio of all participating solvers.



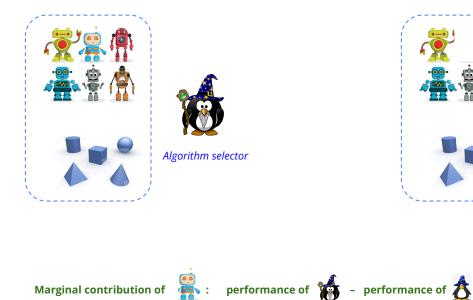

- Sparkle SAT challenge 2018 (Luo & Hoos, https://ada.liacs.nl/events/sparkle-sat-18/)
- Sparkle Planning challenge 2019 (Luo, Vallati & Hoos, https://ada.liacs.nl/events/sparkle-planning-19/)
- Competition ranking:
 - based on marginal contribution to performance of an algorithm selector built on a portfolio of all participating solvers.

- Sparkle SAT challenge 2018 (Luo & Hoos, <u>https://ada.liacs.nl/events/sparkle-sat-18/</u>)
- Sparkle Planning challenge 2019 (Luo, Vallati & Hoos, https://ada.liacs.nl/events/sparkle-planning-19/)
- Competition ranking:
 - based on marginal contribution to performance of an algorithm selector built on a portfolio of all participating solvers.

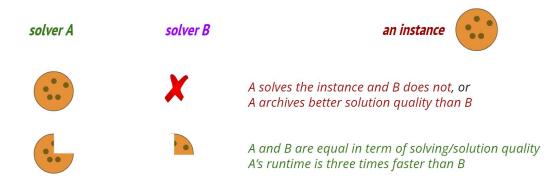




- Sparkle SAT challenge 2018 (Luo & Hoos, https://ada.liacs.nl/events/sparkle-sat-18/)
- Sparkle Planning challenge 2019 (Luo, Vallati & Hoos, https://ada.liacs.nl/events/sparkle-planning-19/)
- Competition ranking:
 - based on marginal contribution to performance of an algorithm selector built on a portfolio of all participating solvers.



- Sparkle SAT challenge 2018 (Luo & Hoos, <u>https://ada.liacs.nl/events/sparkle-sat-18/</u>)
- Sparkle Planning challenge 2019 (Luo, Vallati & Hoos, https://ada.liacs.nl/events/sparkle-planning-19/)
- Competition ranking:
 - based on marginal contribution to performance of an algorithm selector built on a portfolio of all participating solvers.


Algorithm selector

- an annual competition series (2008-present) for benchmarking constraint solving technologies
- *various solving paradigms*: CP, SAT, SMT, MIP & hybrid
- 100 instances each year (20 problems, 5 instances/problem)

- an annual competition series (2008-present) for benchmarking constraint solving technologies
- *various solving paradigms*: CP, SAT, SMT, MIP & hybrid
- 100 instances each year (20 problems, 5 instances/problem)
- Competition ranking
 - MiniZinc scoring method
 - measure relative performance for a pair of solvers
 - takes into account both *running time* and *solution quality*

- an annual competition series (2008-present) for benchmarking constraint solving technologies
- *various solving paradigms*: CP, SAT, SMT, MIP & hybrid
- 100 instances each year (20 problems, 5 instances/problem)
- Competition ranking
 - MiniZinc scoring method
 - measure relative performance for a pair of solvers
 - takes into account both running time and solution quality

- an annual competition series (2008-present) for benchmarking constraint solving technologies
- *various solving paradigms*: CP, SAT, SMT, MIP & hybrid
- 100 instances each year (20 problems, 5 instances/problem)

Competition ranking

- MiniZinc scoring method
 - measure relative performance for a pair of solvers
 - takes into account both *running time* and *solution quality*
- Borda counting system: produces a single score for each solver across all instances
 - For *every* pair of solvers, calculate MiniZinc scores on each instance.
 - Overall score of each solver: average MiniZinc scores across all instances.

- an annual competition series (2008-present) for benchmarking constraint solving technologies
- *various solving paradigms*: CP, SAT, SMT, MIP & hybrid
- 100 instances each year (20 problems, 5 instances/problem)

• Competition ranking

- MiniZinc scoring method
 - measure relative performance for a pair of solvers
 - takes into account both *running time* and *solution quality*
- Borda counting system: produces a single score for each solver across all instances
 - For *every* pair of solvers, calculate MiniZinc scores on each instance.
 - Overall score of each solver: average MiniZinc scores across all instances.

Non-participant solvers

• Do not enter the competitions, but are used for computing the Borda scores.

MiniZinc Challenge 2021 Results

Entrants

The entrants for this year (with their descriptions, when provided):

- Choco 4 (description). A Java FD solver.
- flatzingo (description).
- iZplus (description).
- JaCoP (description). A Java FD solver.
- Mistral-2.0 (description).
- OR-Tools (description).
- OscaR/CBLS (description). A constraint-based local search solver written in Scala.
- PicatSAT (description).
- SICStus Prolog (description). A Prolog development environment with a FD constraint programming module.
- Yuck (description). A local search solver written in Scala.

In addition, the challenge organisers entered the following FlatZinc and MiniZinc implementations:

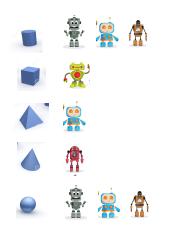
- Chuffed (description). A C++ FD solver using lazy clause generation.
- Geas (description). A C++ lazy clause generation solver with an OCaml FlatZinc frontend.
- Gecode (description). A C++ FD solver.
- MZN/Cbc (description). Translates to MILP, uses Cbc version 2.10.5.
- MZN/CPLEX (description). Translates to MILP, uses IBM ILOG CPLEX Optimizer version 20.10.
- MZN/Gurobi. Translates to MILP, uses Gurobi version 9.1.2.
- sunny-cp⁻ (description). A variant of sunny-cp only using the 2020 portfolio CPLEX, Gecode, JaCoP, iZplus, OR-Tools, Picat, SICStus Prolog, Yuck.
- sunny-cp (description). A multi-threaded CP portfolio solver using a 2020 portfolio of CP and MIP solvers incl. Chuffed, Gecode.

participants

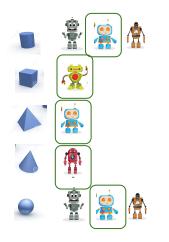
non-participants

• **Competition ranking**: based on *average performance across all instances*

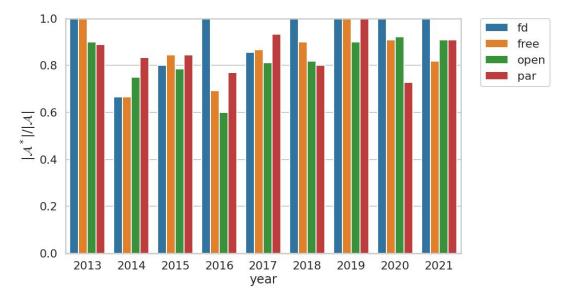
- **Portfolio-based analysis**: provide additional insights into complementary strengths among solvers
 - Step 1: finding the smallest portfolio that can achieve the best possible performance


• Step 2: trade-off between portfolio sizes and performance

• Step 3: solver importance from a portfolio viewpoint using Shapley values



A minimum set cover problem



A minimum set cover problem

Ratio of solvers needed to achieve the best possible performance (participants only)

Performance of participant solvers is often highly complementary

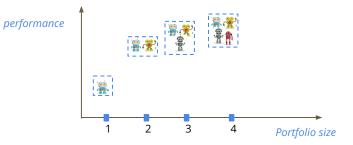
Ratio of solvers needed to achieve the best possible performance

track = fdtrack = free 1.0 0.8 $|V|_{*}^{0.6}$ 0.2 0.0 2013 2014 2015 2016 2018 2019 2020 2021 2013 2014 2015 2016 2017 2018 2019 2020 2017 2021 participants track = opentrack = parnon participants 1.0 0.8 $\frac{|V|}{|V|}_{*}^{0.6}$ 0.2 0.0 2013 2014 2015 2016 2017 2018 2019 2020 2021 2013 2014 2015 2016 2017 2018 2019 2020 2021

(non-participants included)

Many solvers are completely dominated by others.

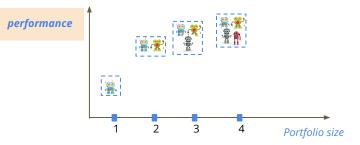
However, in most cases, participants and non-participants are well complementary to each other.


• **Competition ranking**: based on *average performance across all instances*

- **Portfolio-based analysis**: provide additional insights into complementary strengths among solvers
 - Step 1: finding the smallest portfolio that can achieve the best possible performance

• Step 2: trade-off between portfolio sizes and performance

• Step 3: solver importance from a portfolio viewpoint using Shapley values


• **Competition ranking**: based on *average performance across all instances*

- **Portfolio-based analysis**: provide additional insights into complementary strengths among solvers
 - Step 1: finding the smallest portfolio that can achieve the best possible performance

• Step 2: trade-off between portfolio sizes and performance

• Step 3: solver importance from a portfolio viewpoint using Shapley values

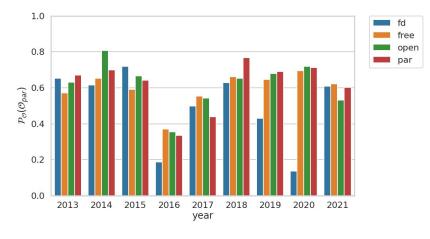
Measuring performance of a portfolio

- The Virtual Best Solver (VBS) of a portfolio: for each instance, take the best performing solver.
- The Oracle (O): the VBS of a portfolio that include *all participant & non-participant solvers*.
- The Participant-Oracle (O_{par}) : the VBS of a portfolio that include *all participant solvers*.

Measuring performance of a portfolio

- The Virtual Best Solver (VBS) of a portfolio: for each instance, take the best performing solver.
- The Oracle (O): the VBS of a portfolio that include *all participant & non-participant solvers*.
- The Participant-Oracle (O_{par}) : the VBS of a portfolio that include *all participant solvers*.
- Performance of a *portfolio A w.r.t the Oracle O*:

 $\mathcal{P}_{\mathcal{O}}(\mathcal{A}) = \frac{score(\mathcal{VBS}(\mathcal{A}))}{score(\mathcal{O})} \underbrace{ \text{total MiniZinc scores of the pair of VBS(A) and O across all instances}}_{score(\mathcal{O})} \underbrace{ \text{total MiniZinc scores of the pair of VBS(A) and O across all instances}}_{score(\mathcal{O})} \underbrace{ \text{score}(\mathcal{O})}_{score(\mathcal{O})} \underbrace{ \text{score}(\mathcal{O})}_{sc$


 $\mathcal{P}_{\mathcal{O}}(\mathcal{A}) \leq 1$

Measuring performance of a portfolio

- The Virtual Best Solver (VBS) of a portfolio: for each instance, take the best performing solver.
- The Oracle (O): the VBS of a portfolio that include all participant & non-participant solvers.
- The Participant-Oracle (O_{par}) : the VBS of a portfolio that include *all participant solvers*.
- Performance of a *portfolio A w.r.t the Oracle O*:

 $\mathcal{P}_{\mathcal{O}}(\mathcal{A}) = \frac{score(\mathcal{VBS}(\mathcal{A}))}{score(\mathcal{O})} \leftarrow total \text{ MiniZinc scores of the pair of VBS(A) and O across all instances}$

 $\mathcal{P}_{\mathcal{O}}(\mathcal{A}) \leq 1$

Performance of the Participant-Oracle w.r.t the Oracle

(link)

Best subset of solvers per portfolio size (participants only)

$\mathcal{P}_{\mathcal{O}_{par}}(\mathcal{A})$	\mathcal{A}				
	year: 2019, track: free				
36.1%	or-tools,				
55.6%	or-tools, picatsat				
67.4%	or-tools, picatsat, sicstus				
79.2%	or-tools, picatsat, sicstus, yuck				
91.5%	or-tools, picatsat, sicstus, yuck, izplus				
96.2%	or-tools, picatsat, sicstus, yuck, izplus, jacop				
98.2%	or-tools, picatsat, sicstus, yuck, izplus, jacop, concrete				
99.5%	or-tools, picatsat, sicstus, yuck, izplus, jacop, concrete, oscarcbls				
100%	or-tools, picatsat, sicstus, yuck, izplus, jacop, concrete, oscarcbls, choco				
	year: 2020, track: free				
59.7%	or-tools,				
71.7%	or-tools, flatzingo				
81.0%	or-tools, flatzingo, sicstus				
90.2%	or-tools, flatzingo, sicstus, mistral				
94.0%	or-tools, flatzingo, sicstus, mistral, oscarcbls				
96.9%	or-tools, flatzingo, sicstus, mistral, oscarcbls, picatsat				
98.2%	or-tools, flatzingo, sicstus, mistral, oscarcbls, picatsat, choco				
99.4%	or-tools, flatzingo, sicstus, mistral, oscarcbls, picatsat, choco, jacop				
99.8%	or-tools, flatzingo, sicstus, mistral, oscarcbls, picatsat, choco, jacop, optimathsat-int				
100%	or-tools, flatzingo, sicstus, mistral, oscarcbls, picatsat, choco, jacop, optimathsat-int, yuck				
10.007	year: 2021, track: free				
49.8%	or-tools-cp-sat,				
62.0%	or-tools-cp-sat, yuck				
75.6%	or-tools-cp-sat, yuck, picatsat				
82.9%	or-tools-cp-sat, yuck, picatsat, choco-4-10-7				
88.5%	or-tools-cp-sat, yuck, picatsat, choco-4-10-7, jacop				
92.1%	or-tools-cp-sat, yuck, picatsat, choco-4-10-7, jacop, coin-or-cbc				
95.6%	or-tools-cp-sat, yuck, picatsat, choco-4-10-7, jacop, coin-or-cbc, izplus				
97.6%	or-tools-cp-sat, yuck, picatsat, choco-4-10-7, jacop, coin-or-cbc, izplus, mistral-2.0				
100%	or-tools-cp-sat, yuck, picatsat, choco-4-10-7, jacop, coin-or-cbc, izplus, mistral-2.0, flatzingo				

Best subset of solvers per portfolio size (participants only)

$\mathcal{P}_{\mathcal{O}_{par}}(\mathcal{A})$	${\mathcal A}$		
		year: 2019, track: free	
36.1%	or-tools,		
55.6%	or-tools.	picatsat	
67.4%		picatsat, sicstus	OR-Tools is a very strong solver
79.2%		picatsat, sicstus, yuck	
91.5%	or-tools,	picatsat, sicstus, yuck, izplus	
96.2%		picatsat, sicstus, yuck, izplus, jacop	
98.2%		picatsat, sicstus, yuck, izplus, jacop, concrete	
99.5%	or-tools,	picatsat, sicstus, yuck, izplus, jacop, concrete, oscarcbls	
100%	or-tools,	picatsat, sicstus, yuck, izplus, jacop, concrete, oscarcbls, choco	
		year: 2020, track: free	
59.7%	or-tools,		
71.7%	or-tools,	flatzingo	
81.0%	or-tools,	flatzingo, sicstus	
90.2%	or-tools,	flatzingo, sicstus, mistral	
94.0%		flatzingo, sicstus, mistral, oscarcbls	
96.9%	or-tools,	flatzingo, sicstus, mistral, oscarcbls, picatsat	
98.2%		flatzingo, sicstus, mistral, oscarcbls, picatsat, choco	
99.4%		flatzingo, sicstus, mistral, oscarcbls, picatsat, choco, jacop	
99.8%	or-tools,	flatzingo, sicstus, mistral, oscarcbls, picatsat, choco, jacop, optimathsat-int	
100%	or-tools,	flatzingo, sicstus, mistral, oscarcbls, picatsat, choco, jacop, optimathsat-int, yuck	
		year: 2021, track: free	
49.8%	or-tools-		
62.0%		cp-sat, yuck	
75.6%		cp-sat, yuck, picatsat	
82.9%		cp-sat, yuck, picatsat, choco-4-10-7	
88.5%		cp-sat, yuck, picatsat, choco-4-10-7, jacop	
92.1%	or-tools-	cp-sat, yuck, picatsat, choco-4-10-7, jacop, coin-or-cbc	
95.6%		cp-sat, yuck, picatsat, choco-4-10-7, jacop, coin-or-cbc, izplus	
97.6%		cp-sat, yuck, picatsat, choco-4-10-7, jacop, coin-or-cbc, izplus, mistral-2.0	_
100%	or-tools-	cp-sat, yuck, picatsat, choco-4-10-7, jacop, coin-or-cbc, izplus, mistral-2.0, flatzing	3
	< / /		

Best subset of solvers per portfolio size (participants only)

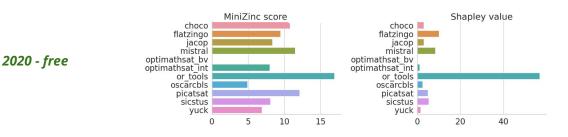
$\mathcal{P}_{\mathcal{O}_{par}}(\mathcal{A})$	\mathcal{A}	
	year: 2019, track: free	
36.1%	or-tools,	
55.6%	or-tools, picatsat	
67.4%	or-tools, picatsat, sicstus Solvers that look weak in a trad	itional competition ranking
79.2%	or-tools, picatsat, sicstus, yuck may actually be very well com	plementary to the winner.
91.5%	or-tools, picatsat, sicstus, yuck, izplus	
96.2%	or-tools, picatsat, sicstus, yuck, izplus, jacop	
98.2%	or-tools, picatsat, sicstus, yuck, izplus, jacop, concrete	
99.5%	or-tools, picatsat, sicstus, yuck, izplus, jacop, concrete, oscarcbls	
100%	or-tools, picatsat, sicstus, yuck, izplus, jacop, concrete, oscarcbls, choco	_
	year: 2020, track: free	
59.7%	or-tools, an tools, detaining 4 th place in competition ranking	
71.7%	or-tools, hatzingo	
81.0%	or-tools, flatzingo, sicstus	
90.2%	or-tools, flatzingo, sicstus, mistral	
94.0%	or-tools, flatzingo, sicstus, mistral, oscarcbls	
96.9%	or-tools, flatzingo, sicstus, mistral, oscarcbls, picatsat	
98.2%	or-tools, flatzingo, sicstus, mistral, oscarcbls, picatsat, choco	
99.4%	or-tools, flatzingo, sicstus, mistral, oscarcbls, picatsat, choco, jacop	
99.8%	or-tools, flatzingo, sicstus, mistral, oscarcbls, picatsat, choco, jacop, optimathsat-int	
100%	or-tools, flatzingo, sicstus, mistral, oscarcbls, picatsat, choco, jacop, optimathsat-int, yuck	_
10.00	year: 2021, track: free	
49.8%	or-tools-cp-sat, second-to-last in competition ranking	
62.0%	or-tools-cp-sat, yuck	
75.6%	or-tools-cp-sat, yuck, picatsat	
82.9%	or-tools-cp-sat, yuck, picatsat, choco-4-10-7	
88.5%	or-tools-cp-sat, yuck, picatsat, choco-4-10-7, jacop	
92.1%	or-tools-cp-sat, yuck, picatsat, choco-4-10-7, jacop, coin-or-cbc	
95.6%	or-tools-cp-sat, yuck, picatsat, choco-4-10-7, jacop, coin-or-cbc, izplus	
97.6%	or-tools-cp-sat, yuck, picatsat, choco-4-10-7, jacop, coin-or-cbc, izplus, mistral-2.0	
100%	or-tools-cp-sat, yuck, picatsat, choco-4-10-7, jacop, coin-or-cbc, izplus, mistral-2.0, flatzingo	

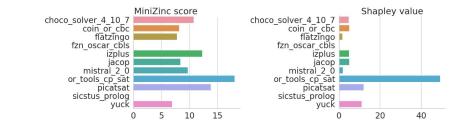
• **Competition ranking**: based on *average performance across all instances*

- **Portfolio-based analysis**: provide additional insights into complementary strengths among solvers
 - Step 1: finding the smallest portfolio that can achieve the best possible performance

Step 2: trade-off between portfolio sizes and performance

• Step 3: solver importance from a portfolio viewpoint using Shapley values

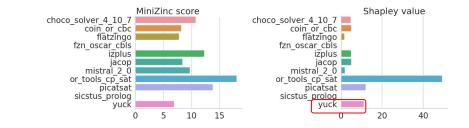



Step 3: solver importance from a portfolio viewpoint using Shapley values

- Shapley values: a concept in coalitional game theory
- Fréchette, A., Kotthoff, L., Michalak, T., Rahwan, T., Hoos, H. and Leyton-Brown, K. Using the shapley value to analyze algorithm portfolios. In Proceedings of the AAAI Conference on Artificial Intelligence, 2016
- Shapley values of a solver S in a portfolio A: total marginal contribution of S on all subsets of A (using the VBS)

Step 3: solver importance from a portfolio viewpoint using Shapley values

- Shapley values: a concept in coalitional game theory
- Fréchette, A., Kotthoff, L., Michalak, T., Rahwan, T., Hoos, H. and Leyton-Brown, K. Using the shapley value to analyze algorithm portfolios. In Proceedings of the AAAI Conference on Artificial Intelligence, 2016
- Shapley values of a solver S in a portfolio A: total marginal contribution of S on all subsets of A (using the VBS)



2021 - free

Step 3: solver importance from a portfolio viewpoint using Shapley values

- Shapley values: a concept in coalitional game theory
- Fréchette, A., Kotthoff, L., Michalak, T., Rahwan, T., Hoos, H. and Leyton-Brown, K. Using the shapley value to analyze algorithm portfolios. In Proceedings of the AAAI Conference on Artificial Intelligence, 2016
- Shapley values of a solver S in a portfolio A: total marginal contribution of S on all subsets of A (using the VBS)

2021 - free

Summary

- Traditional ranking method in competition settings is a good way to measure performance of solvers, but it does not necessarily reveal the full potential of a solver.
- An additional portfolio-based analysis can provide further insights on the complementary strengths of solvers
 - Code and data are available at: <u>https://github.com/ndangtt/portfolio-based-analysis</u>