
Solving XCSP3 constraint problems

using tools from formal verification
Martin Mariusz Lester, University of Reading

1 / 21

Automated Program Verification
Does program P satisfy property φ?

We want a tool (computer program) to tell us the answer
with little or no human intervention.

Testing only catches errors in program execution paths
we test.

Verification should give us a higher degree of confidence
in program correctness.

Verification tools need to employ some kind of
automated reasoning.

2 / 21

Software Verification Competition (SV-
COMP)
Every year, TACAS runs the Software Verification
Competition
(SV-COMP).

ReachSafety track: Given a C program, can it violate an
assertion?

Nondeterminism used to model unknown values, such as
function arguments.

Programs may include assumptions about ranges of
variables.

3 / 21

Verification Techniques
Verification tools need to deal with sources of
unbounded behaviour:

Loops, dynamic memory allocation, recursion...

4 / 21

Verification Techniques
Verification tools need to deal with sources of
unbounded behaviour:

Loops, dynamic memory allocation, recursion...

But ultimately, need some kind of automated reasoning
or constraint solving:

Predicate abstraction
Abstract interpretation
Translation to automata
SAT/SMT solvers

How easily can we apply these techniques to constraint
problems?

5 / 21

Outline
Automated Program Verification

Verification Tools for Solving Constraint Problems

Implementation: xcsp2c and Exchequer

Is it worth it?

6 / 21

Constraint Programming
Many constraint programming languages available:

MiniZinc/FlatZinc — most popular;
Picat — high-level, more modern;
XCSP — "intermediate" format.

Many approaches available,
but usually some
combination of propagation, search and heuristics.

7 / 21

Constraint Programming using SAT
PicatSAT won:

1st place in XCSP3 Competition 2019;
2nd place in MiniZinc Challenge 2021.

SAT is now a leading solution method.

If we didn't have a SAT-based constraint solver,
how hard
would it be to prototype one?

8 / 21

CBMC (C Bounded Model Checker)
CBMC is a relatively mature software verification tool.

It translates execution of a C program into a giant SAT
instance and passes it to a SAT solver.

The instance is satisfiable only if the program can violate
an assertion. Possible outcomes:

Satisfiable: The solution to the SAT instance gives a
trace that leads to the assertion violation.

Unsatisfiable: Program cannot violate an assertion.

Timeout: Don't know.

We can view CBMC as a compiler from C to SAT. 9 / 21

Solving XCSP3 Problems with CBMC
XCSP3 is an XML format for encoding constraint
problems.

Idea is to generate a C program that:

declares all problem variables;
set variables nondeterministically;
assumes all constraints and asserts false.

Pass to CBMC and get back a solution.

10 / 21

Example: XCSP3 instance and C encoding
<instance format="XCSP3" type="CSP">

 <variables>

 <var id="x"> 1..10 </var>

 <var id="y"> 1..100 </var>

 </variables>

 <constraints>

 <intension>

 eq(y,mul(x,x))

 </intension>

 </constraints>

</instance>

int main() {

 int32_t x;

 __CPROVER_assume(((x >= 1) && (x <= 10)));

 __CPROVER_printf("XCSP2C SOLUTION: x = %d", x);

 int32_t y;

 __CPROVER_assume(((y >= 1) && (y <= 100)));

 __CPROVER_printf("XCSP2C SOLUTION: y = %d", y);

 __CPROVER_assume((y == (x * x)));

 assert(0); } 11 / 21

Implementation: xcsp2c and Exchequer
Prototype of transformation implemented in xcsp2c.

Solver Exchequer submitted to mini track of XCSP3
competition.

12 / 21

Is it worth it?

13 / 21

Performance
Hypothesis: Exchequer/xcsp2c is acceptable, but worse
than PicatSAT.

Obviously, the translation adds overhead not present in a
direct
translation.

We should not expect it to be better.

How much worse? Wait for XCSP3 Competition results
this week.

14 / 21

Insight gained
Found a bug in CBMC:

__CPROVER_assume(

 ((x1 == 0) && (x2 == 1))

 || ((x1 == 0) && (x2 == 2))

 || ((x1 == 1) && (x2 == 5))

 ...

);

Workaround:

{

 int32_t flag = 0;

 flag = flag || (x1 == 0) && (x2 == 1);

 flag = flag || (x1 == 0) && (x2 == 2);

 flag = flag || (x1 == 1) && (x2 == 5);

 __CPROVER_assume(flag);

}

15 / 21

Insight gained
For many benchmark problems with large extension
constraints,
CBMC spent much more time translating C
into SAT
than calling SAT solver.

The C code is essentially a "straight line" program.
It
should be simple to translate.

Is this because of short-circuiting?

 flag = flag || (x1 == 0) && (x2 == 1);

No. Same problem with bitwise operations:

 flag = flag | (x1 == 0) & (x2 == 1);

(Compare results of Verma and Yap.)
16 / 21

Insight gained
Problem: Normally, CBMC needs to compute bounds on
loops, so it knows how much to
unroll them.

To do this, it uses abstract interpretation on variables.

With many expressions with many variables, this
becomes slow.

17 / 21

Prototyping new techniques
Primary motivation was to develop an easy route to
prototyping already-implemented techniques from
software verification.

The same C translation can be used with multiple solvers,
but:

One motivation for XCSP3 was to provide a format that
retains high-level
structure of a constraint problem.

Translation for CBMC aimed to keep the translated code
as simple as
possible to keep the translation to SAT fast.

No use of arrays or functions.

18 / 21

Maintaining high-level structure
Many verification tools use predicate abstraction (or
similar)
to try to infer loop invariants or function
preconditions/postconditions.

If we have a group of XCSP3 constraints,
applied to
different variables,
may want to encode this as several
calls to a C function.

Similarly, may wish to encode XCSP3 array as C array.

But this will make the problem harder for other tools!

Also, XCSP3 encoding has often already removed some
useful structure
by "unrolling" constraint groups!

19 / 21

Conclusion
I have implemented a prototype translation from XCSP3
to C (xcsp2c)
and associated constraint solver
(Exchequer).

Benchmarking is ongoing.

Ideally, we want to use other verification tools
and
exploit their high-level reasoning.

But this may be difficult in practice.

20 / 21

Thanks for Listening

Any Questions?

21 / 21

