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Introduction

P Essence is a high-level language designed to abstract problem
modelling using a blend of natural language and discrete
mathematics. This abstraction addresses the challenging
nature of problem modelling.

» Conjure is a software that, given an Essence model, produces
a portfolio of Essence’ models.

» Hard to choose the best Essence’ model and solver for an
instance.

» Automatic Algorithm Selection (AAS) aims to select the best
algorithm (Essence’ model + solver) for a problem instance
from a portfolio of algorithms.

» Our contribution is in automatic feature extraction for AAS
starting from Essence instances.

» We focus on a specific combinatorial problem: Car sequencing.
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Full Picture
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Feature Generation for AAS

> State-of-the-art
» Feature extraction processes require running the instance for a
few seconds.
» Only concerns the low-level representation.
> Example: fzn2feat (ACM SAC, 2014).
» Our proposal
» Extract the features from a high-level representation.

> Faster (no need to execute nor translate the instance).
> Allows to exploit high-level properties.

> Automatic learning of feature directly catered to the task.
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How?

» Use a NN to learn features.
» Language Model: a BERT-like architecture for problem

representation.

P Use the learnt features to predict the algorithm to use.
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» Two approaches

» Entirely NN-based.
» Hybrid of NN and ML-based algorithm selector.
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Entirely NN-based Approach
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» The model takes as input the text of the instance.
» Trained to predict the best algorithm for an instance.

> A language model produces features for a linear layer which
outputs a probability for each algorithm.

P The highest the probability, the more likely is the algorithm to
be the best-performing one.

» All probabilities sum to one.
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Hybrid Approach
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> The model takes as input the text of the instance.
» The network is trained to predict " competitive” algorithms.

» Competitive = takes less than 10 seconds or less than twice
the time of the best algorithm .

» A language model produces features for a linear layer which
outputs a probability for each algorithm
> Probabilities are independent.
> After the network is trained, we extract the features by
combining the output of the language model and the output
of the linear layer.
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Car Sequencing Problem

» Involves scheduling cars in an assembly line.

» Optional features must be evenly distributed to avoid
overloading any station.

» Ensure station capacities are not exceeded.

» 10,214 total instances
generated using
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“https://arxiv.org/abs/2205.14753
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Experimental Evaluation

» Single best (SBS): best algorithm in the portfolio.

» Virtual best (VB): best time combining all algorithms in the
portfolio.

» Our goal: Beat SBS, get as close as possible to VB.
» Compared approaches:
> Entirely NN-based.
> Autofolio (state-of-the-art AAS, JAIR 2015) with fzn2feat or
hybrid features.
» Kmeans with a given solver per cluster with fzn2feat or hybrid
features.
» Static ordering with competitive hybrid output.
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Results - Entirely NN-based Approach

» Worse than SBS.
> Why?

» Error rate (how much a wrong prediction is worth) cannot be
changed from one algorithm to the next.

» For the NN, choosing an algorithm which is 10% slower than
the best yields the same error as choosing an algorithm 3 times
slower.

» Updating NN weights (backpropagation) relies on the error
rate.

» Sample weights: each weight modifies the error generated by a
wrong prediction.

» But sample weights make the training of a NN unstable.
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Results - Hybrid Approach
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> PAR10 scores of different approaches across 10 folds. The

mean score of SBS is shown with the red line.
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» PAR10 scores of Autofolio (tuned with SMAC or not) across

10 folds. The mean score of SBS is shown with the red line.
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Feature Extraction Cost

Median Mean Max Min
fzn2feat 6.71 5.38 33.68 0.80
NN 0.02 0.02 0.38 0.02

> Statistics to compute a feature vector in seconds across all the
instances.
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Summary of Results

Bad News

Good News > Results have high variability.
» Even though with Kmeans
> It works. results are slightly better
» It is fast. than Fzn2Feat, with
Autofolio they are a lot
worse.

14/17



Further Improvements

P A possible approach is to reimagine the NN-based approach
and take advantage of the high number of features.

» We also could keep the current mixed approach, reduce the
number of features and fix their representation (e.g. put them
into a 0 - 1 range).

First 6 folds of Autofolio with smac enabled
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» Some early results using only 100 features (" new”) instead of
783.
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Future Work

» Expand the research on more models.
» Improve performances.

» Try to have a single NN to produce features for
all Essence models.
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Thank You

Questions?
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