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Introduction

▶ Essence is a high-level language designed to abstract problem
modelling using a blend of natural language and discrete
mathematics. This abstraction addresses the challenging
nature of problem modelling.

▶ Conjure is a software that, given an Essence model, produces
a portfolio of Essence’ models.

▶ Hard to choose the best Essence’ model and solver for an
instance.

▶ Automatic Algorithm Selection (AAS) aims to select the best
algorithm (Essence’ model + solver) for a problem instance
from a portfolio of algorithms.

▶ Our contribution is in automatic feature extraction for AAS
starting from Essence instances.

▶ We focus on a specific combinatorial problem: Car sequencing.
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Feature Generation for AAS

▶ State-of-the-art
▶ Feature extraction processes require running the instance for a

few seconds.
▶ Only concerns the low-level representation.
▶ Example: fzn2feat (ACM SAC, 2014).

▶ Our proposal
▶ Extract the features from a high-level representation.

▶ Faster (no need to execute nor translate the instance).
▶ Allows to exploit high-level properties.

▶ Automatic learning of feature directly catered to the task.
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How?
▶ Use a NN to learn features.

▶ Language Model: a BERT-like architecture for problem
representation.

▶ Use the learnt features to predict the algorithm to use.
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▶ Two approaches
▶ Entirely NN-based.
▶ Hybrid of NN and ML-based algorithm selector.
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Entirely NN-based Approach
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▶ The model takes as input the text of the instance.

▶ Trained to predict the best algorithm for an instance.

▶ A language model produces features for a linear layer which
outputs a probability for each algorithm.

▶ The highest the probability, the more likely is the algorithm to
be the best-performing one.
▶ All probabilities sum to one.

6 / 17



Hybrid Approach
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▶ The model takes as input the text of the instance.
▶ The network is trained to predict ”competitive” algorithms.

▶ Competitive = takes less than 10 seconds or less than twice
the time of the best algorithm .

▶ A language model produces features for a linear layer which
outputs a probability for each algorithm
▶ Probabilities are independent.

▶ After the network is trained, we extract the features by
combining the output of the language model and the output
of the linear layer.
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Car Sequencing Problem

▶ Involves scheduling cars in an assembly line.

▶ Optional features must be evenly distributed to avoid
overloading any station.

▶ Ensure station capacities are not exceeded.

▶ 10,214 total instances
generated using
AutoIGa

▶ Three Essence’
models.

▶ Four solvers: Cplex,
Kissat, Or-tools,
Chuffed.

ahttps://arxiv.org/abs/2205.14753
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Experimental Evaluation

▶ Single best (SBS): best algorithm in the portfolio.

▶ Virtual best (VB): best time combining all algorithms in the
portfolio.

▶ Our goal: Beat SBS, get as close as possible to VB.
▶ Compared approaches:

▶ Entirely NN-based.
▶ Autofolio (state-of-the-art AAS, JAIR 2015) with fzn2feat or

hybrid features.
▶ Kmeans with a given solver per cluster with fzn2feat or hybrid

features.
▶ Static ordering with competitive hybrid output.
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Results - Entirely NN-based Approach

▶ Worse than SBS.
▶ Why?

▶ Error rate (how much a wrong prediction is worth) cannot be
changed from one algorithm to the next.

▶ For the NN, choosing an algorithm which is 10% slower than
the best yields the same error as choosing an algorithm 3 times
slower.

▶ Updating NN weights (backpropagation) relies on the error
rate.

▶ Sample weights: each weight modifies the error generated by a
wrong prediction.

▶ But sample weights make the training of a NN unstable.
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Results - Hybrid Approach
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▶ PAR10 scores of different approaches across 10 folds. The
mean score of SBS is shown with the red line.
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Results - Autofolio
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▶ PAR10 scores of Autofolio (tuned with SMAC or not) across
10 folds. The mean score of SBS is shown with the red line.
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Feature Extraction Cost

Median Mean Max Min
fzn2feat 6.71 5.38 33.68 0.80
NN 0.02 0.02 0.38 0.02

▶ Statistics to compute a feature vector in seconds across all the
instances.
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Summary of Results

Good News

▶ It works.

▶ It is fast.

Bad News

▶ Results have high variability.

▶ Even though with Kmeans
results are slightly better
than Fzn2Feat, with
Autofolio they are a lot
worse.
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Further Improvements
▶ A possible approach is to reimagine the NN-based approach

and take advantage of the high number of features.
▶ We also could keep the current mixed approach, reduce the

number of features and fix their representation (e.g. put them
into a 0 - 1 range).
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▶ Some early results using only 100 features (”new”) instead of
783.
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Future Work

▶ Expand the research on more models.

▶ Improve performances.

▶ Try to have a single NN to produce features for
all Essence models.
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Thank You

Questions?
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