
Automatic Feature Learning for Essence:
A Case Study on Car Sequencing

Alessio Pellegrino,1 Özgür Akgün,2 Nguyen Dang,2

Zeynep Kiziltan,1 Ian Miguel 2

1Dept. of Computer Science and Engineering, University of Bologna, Italy
2School of Computer Science, University of St Andrews, Scotland

ModRef 2024

1 / 17

Introduction

▶ Essence is a high-level language designed to abstract problem
modelling using a blend of natural language and discrete
mathematics. This abstraction addresses the challenging
nature of problem modelling.

▶ Conjure is a software that, given an Essence model, produces
a portfolio of Essence’ models.

▶ Hard to choose the best Essence’ model and solver for an
instance.

▶ Automatic Algorithm Selection (AAS) aims to select the best
algorithm (Essence’ model + solver) for a problem instance
from a portfolio of algorithms.

▶ Our contribution is in automatic feature extraction for AAS
starting from Essence instances.

▶ We focus on a specific combinatorial problem: Car sequencing.

2 / 17

Full Picture

Essence model

+ instance
Conjure

Saville row

SolverEssence'
 model

Algorithm

Solution

Essence' model 1, Essence' model 2,
...

+ Instance

Solver 1, Solver 2, ...

AAS

Feature
Extraction

Machine
Learning

3 / 17

Feature Generation for AAS

▶ State-of-the-art
▶ Feature extraction processes require running the instance for a

few seconds.
▶ Only concerns the low-level representation.
▶ Example: fzn2feat (ACM SAC, 2014).

▶ Our proposal
▶ Extract the features from a high-level representation.

▶ Faster (no need to execute nor translate the instance).
▶ Allows to exploit high-level properties.

▶ Automatic learning of feature directly catered to the task.

4 / 17

How?
▶ Use a NN to learn features.

▶ Language Model: a BERT-like architecture for problem
representation.

▶ Use the learnt features to predict the algorithm to use.

Competitive
algorithm output

Language
model

Learnt features

Linear
layer

Linear output

Neural network

Language
model

Learnt features p(algorithm1)

p(algorithmn)

Linear
layer

Sigmoid
activation
function

Linear output

Neural network

ML-based
algorithm
selector

Best algorithm
Essence
instance

Essence
instance Best algorithm

Best algorithm
output

p(algorithm1)

 .
 .
 .

p(algorithmn)

SoftMax
activation
function

 .
 .
 .

▶ Two approaches
▶ Entirely NN-based.
▶ Hybrid of NN and ML-based algorithm selector.

5 / 17

Entirely NN-based Approach

Language
model

Learnt features

Linear
layer

Linear output

Neural network

Essence
instance Best algorithm

Best algorithm
output

p(algorithm1)

 .
 .
 .

p(algorithmn)

SoftMax
activation
function

▶ The model takes as input the text of the instance.

▶ Trained to predict the best algorithm for an instance.

▶ A language model produces features for a linear layer which
outputs a probability for each algorithm.

▶ The highest the probability, the more likely is the algorithm to
be the best-performing one.
▶ All probabilities sum to one.

6 / 17

Hybrid Approach

Competitive
algorithm output

Language
model

Learnt features p(algorithm1)

p(algorithmn)

Linear
layer

Sigmoid
activation
function

Linear output

Neural network

ML-based
algorithm
selector

Best algorithm
Essence
instance

 .
 .
 .

▶ The model takes as input the text of the instance.
▶ The network is trained to predict ”competitive” algorithms.

▶ Competitive = takes less than 10 seconds or less than twice
the time of the best algorithm .

▶ A language model produces features for a linear layer which
outputs a probability for each algorithm
▶ Probabilities are independent.

▶ After the network is trained, we extract the features by
combining the output of the language model and the output
of the linear layer.

7 / 17

Car Sequencing Problem

▶ Involves scheduling cars in an assembly line.

▶ Optional features must be evenly distributed to avoid
overloading any station.

▶ Ensure station capacities are not exceeded.

▶ 10,214 total instances
generated using
AutoIGa

▶ Three Essence’
models.

▶ Four solvers: Cplex,
Kissat, Or-tools,
Chuffed.

ahttps://arxiv.org/abs/2205.14753

105 106 107 108

Time

M3-OR-Tools

M3-Kissat

M3-Chuffed

M3-CPLEX

M2-OR-Tools

M2-Kissat

M2-Chuffed

M2-CPLEX

M1-OR-Tools

M1-Kissat

M1-Chuffed

M1-CPLEX

VBS

105 106 107 108

Time

M3-OR-Tools

M2-OR-Tools

M1-OR-Tools

M3-Kissat

M2-Kissat

M1-Kissat

M3-CPLEX

M2-CPLEX

M1-CPLEX

M3-Chuffed

M2-Chuffed

M1-Chuffed

VBS

8 / 17

Experimental Evaluation

▶ Single best (SBS): best algorithm in the portfolio.

▶ Virtual best (VB): best time combining all algorithms in the
portfolio.

▶ Our goal: Beat SBS, get as close as possible to VB.
▶ Compared approaches:

▶ Entirely NN-based.
▶ Autofolio (state-of-the-art AAS, JAIR 2015) with fzn2feat or

hybrid features.
▶ Kmeans with a given solver per cluster with fzn2feat or hybrid

features.
▶ Static ordering with competitive hybrid output.

9 / 17

Results - Entirely NN-based Approach

▶ Worse than SBS.
▶ Why?

▶ Error rate (how much a wrong prediction is worth) cannot be
changed from one algorithm to the next.

▶ For the NN, choosing an algorithm which is 10% slower than
the best yields the same error as choosing an algorithm 3 times
slower.

▶ Updating NN weights (backpropagation) relies on the error
rate.

▶ Sample weights: each weight modifies the error generated by a
wrong prediction.

▶ But sample weights make the training of a NN unstable.

10 / 17

Results - Hybrid Approach

105 106 107

Time

VBS

NN-Autofolio

fzn2feat-Autofolio

NN-Kmeans

fzn2feat-Kmeans

NN-SBS

M2-Chuffed

NN-WS

Training set

104 105 106

Time

VBS

NN-Autofolio

fzn2feat-Autofolio

fzn2feat-Kmeans

NN-Kmeans

NN-SBS

M2-Chuffed

NN-WS

Validation set

104 105 106

Time

VBS

fzn2feat-Kmeans

NN-Kmeans

fzn2feat-Autofolio

NN-Autofolio

NN-SBS

NN-WS

M2-Chuffed

Test set

▶ PAR10 scores of different approaches across 10 folds. The
mean score of SBS is shown with the red line.

11 / 17

Results - Autofolio

106 107

Time

NN-Autofolio

fzn2feat-Autofolio

fzn2feat-Autofolio-Smac

M2-Chuffed

NN-Autofolio-Smac

training set

105 106

Time

NN-Autofolio

fzn2feat-Autofolio

fzn2feat-Autofolio-Smac

NN-Autofolio-Smac

M2-Chuffed

Validation set

105 106

Time

fzn2feat-Autofolio-Smac

fzn2feat-Autofolio

NN-Autofolio

NN-Autofolio-Smac

M2-Chuffed

Test set

▶ PAR10 scores of Autofolio (tuned with SMAC or not) across
10 folds. The mean score of SBS is shown with the red line.

12 / 17

Feature Extraction Cost

Median Mean Max Min
fzn2feat 6.71 5.38 33.68 0.80
NN 0.02 0.02 0.38 0.02

▶ Statistics to compute a feature vector in seconds across all the
instances.

13 / 17

Summary of Results

Good News

▶ It works.

▶ It is fast.

Bad News

▶ Results have high variability.

▶ Even though with Kmeans
results are slightly better
than Fzn2Feat, with
Autofolio they are a lot
worse.

14 / 17

Further Improvements
▶ A possible approach is to reimagine the NN-based approach

and take advantage of the high number of features.
▶ We also could keep the current mixed approach, reduce the

number of features and fix their representation (e.g. put them
into a 0 - 1 range).

105 2 × 105 3 × 105 4 × 105 6 × 105

Time

fzn2feat-autofolio-smac

new-autofolio-smac-dnn

dnn-autofolio-smac

M2-Chuffed

First 6 folds of Autofolio with smac enabled

▶ Some early results using only 100 features (”new”) instead of
783.

15 / 17

Future Work

▶ Expand the research on more models.

▶ Improve performances.

▶ Try to have a single NN to produce features for
all Essence models.

16 / 17

Thank You

Questions?

17 / 17

	Introduction
	The full picture
	Feature Generation for automatic algorithm selection
	How?
	Instances landscape
	Future Work

