
Constraint Models 
for Relaxed Klondike 
Variants
Nguyen Dang1, Ian P. Gent1, Peter Nightingale2, Felix Ulrich-Oltean2, Jack Waller1

1 School of Computer Science, University of St Andrews, UK

2 Department of Computer Science, University of York, UK

ModRef 2024 (Girona)



2/20

What is Klondike Solitaire?
• Single player partial information 

patience card game

• Most popular solitaire variant, thanks to 
Windows Solitaire

• A challenging search problem, even in 
the thoughtful variant (location of all 
cards are known)

• Best winnability estimates obtained 
empirically

• We focus only on thoughtful Klondike 
variants

Foundations

Tableau

Stock & Waste

Face down



3/20

DFS in thoughtful Klondike
• The previous best winnability estimates were found 

using the Solvitaire solver

• Uses Depth First Search alongside optimisations such 
as dominances and transposition tables

• Executes quickly for most instances:

 ~82% of instances execute in < 1 second

 ~90% of instances execute in < 8 seconds

• Performs poorly when there are multiple near-
solutions, none of which can be converted to a full 
solution

• Constraint solving has not been successfully achieved 
for the full game of Klondike

• Our approach was to instead focus on finding 
unsolvable instances using constraint programming

80.00%

82.00%

84.00%

86.00%

88.00%

90.00%

92.00%

94.00%

96.00%

98.00%

100.00%

0 600 1,200 1,800 2,400 3,000 3,600

P
e
rc

a
n

ta
g
e
 o

f 
in

st
a
n

ce
s 

S
o
lv

it
a
ir

e
 s

o
lv

e
d

Timeout (seconds)

Timeout (s) vs Percantage of instances Solvitaire 

solved

Generated from the execution of Solvitaire’s first 10,000 

randomly generated instances of deal-3 Klondike on the 

Cirrus HPC system



4/20

Blocking Set
• Our models prove impossibility by contradiction: finding a 

card which must move before itself

• Specifically, we find a Blocking Set: a set of cards Sb where 
each member cannot move until at least one member of Sb has 
moved

• Such layouts can be found without significant search thanks 
to two rules of Klondike:

 A face-down tableau card can only be moved or built on after 
the card directly covering it has been moved

 Cards can only be built to one card on the foundation (except 
for Aces) and two cards on the tableau (except for Kings)

• A simple blocking set can be found by identifying a set of 
tableau cards St in the initial layout which cover all of the 
cards which members of St could be built to

Examples of Blocking Sets



5/20

Unblocked Artifact
• Our initial constraint models attempted to directly find blocking sets, 

with a satisfiable instance implying the Klondike layout was 
unwinnable

• Whilst attempting to create a negation of the above model as an adjunct 
to a full Klondike solver, we found an alternate approach

• We search for an Unblocked Artifact: a model which is only 
unsatisfiable when a blocking set is present
 For each card, we assign a stage (time step) when its first move can occur

 If one card’s first move depends on another’s, we assert it must occur at a later 
stage

• This allows for the effective search for impossible layouts through the 
propagation of bounds on stages



6/20

Relaxed Klondike Variants
• To reduce the search needed to find impossible layouts, we designed 

relaxed variants of thoughtful Klondike with a smaller search space

• All of our relaxed variants have the property that any winning game of 
regular Klondike gives a winning sequence of moves in the relaxation

 If we prove a layout of a relaxed variant unsolvable, we have proved the same 
layout unsolvable in regular Klondike

 Conversely, the presence of a winning sequence of moves for a layout in a 
relaxation does not prove that the same layout is winnable in regular Klondike

• Klondike variants have been used to reduce search before:

 Solvitaire uses “streamliners” – variants which impose extra rules, where a 
winning layout in the streamliner is a winning layout in the regular variant

 Bjarnason, Tadepalli & Fern (2007) use a different relaxed variant, which removes 
delete effects from actions



7/20

Our relaxations
• All variants share the same 
relaxations to the tableau 
and foundation:
 Once a card is in the foundation, 

the next card of the same suit can 
be foundation-built at any time

 Once a card is available to be 
tableau-built upon, it remains 
available with one key exception – 
two cards cannot be tableau-built 
onto the same card at the same 
time

Foundations

Tableau

Stock & Waste

Face down



8/20

Tableau

Exclusion principle

Foundation



9/20

Modelling These Relaxations
• Our relaxations allow us to model these variants by 
expressing three stages for each card:
 When it first moves
 When it is available on the foundation
 When it is available on the tableau

• This allows us to place constraints on stages to enforce the rules 
of the relaxed variant, such as:
 Face-down cards are only available on the tableau after the card 

above them has first moved
 Non-King stock cards can only be available on the tableau after one 

of the cards that it can be moved to is available on the tableau
 Non-Ace cards can only be available on the foundation after the card 

one rank lower of the same suit is available on the foundation



10/20

Our relaxed variants
• We created three relaxed variants, which only differ in 
how they treat cards in the stock:
 Our Strict variant enforces the standard stock rules of deal-n 

Klondike

 A Partial Relaxation allows any card at a multiple of n to be 
available at the start of the game. However, all other stock cards 
are only available after either the stock card directly above has 
been moved, or any lower stock card has been moved

 A Total Relaxation places no constraints on when a stock card 
can be moved, provided there is somewhere legal to move it 
(equivalent to deal-1 Klondike)



11/20

Results

• All solvers were evaluated on the same 10,000 layouts (the first 10,000 randomly generated 
layouts from the Solvitaire experiment set)

• Proving 13% of layouts as unwinnable greatly improves on all previous approaches without 
exhaustive state-based search (next best 8.56%)

* Solvitaire proved some deal-1 layouts winnable by proving winnability in deal-3, therefore an 
accurate mean time for deal-1 Solvitaire was not acquired



12/20

Improving Solvitaire winnability 
estimates
• On the 1,000,000 layouts Solvitaire explored for 

Klondike, Solvitaire did not finish execution on 
all:
 157 layouts for deal-3
 1,145 layouts for deal-1

• Our models were able to prove some of Solvitaire’s 
unresolved layouts impossible:
 63 layouts for deal-3 (in ≤ 213s of CPU time per layout)
 522 layouts for deal-1 (in ≤ 4s of CPU time per layout)
 Solvitaire failed on each of these instances after hours of 

CPU time search

• This is the first time deal-1 Klondike has been 
estimated with a 95% confidence interval of less 
than 0.1%

Improvement of the 95% confidence 

interval of the winnability of deal-3 

and deal-1 Klondike from that reported 

by Solvitaire



13/20

Scheduling Solvers
• As our above results show that our models can prove 

unwinnability quickly in many cases, we explored building a 
schedule that combines the complementary strengths of our 
models with Solvitaire in a portfolio of algorithms 

• Our portfolio includes three incomplete solvers (run quickly but 
cannot prove one of winnability or unwinnability) with the 
complete Solvitaire solver:
 Unwinnable targeting:

 Strict

 Partial relaxation

 Winnable targeting:

 Streamlined version of Solvitaire – always builds cards to the foundation if 
possible and collapses suit symmetry (the transposition table will only use the 
colour and rank of a card when comparing tableau states for symmetry)



14/20

Baseline “Naïve” Schedules
• We created several Naïve schedules as a baseline for our other 

schedules

• As the incomplete solvers typically execute quickly, a naïve 
schedule will first run an incomplete solver followed by the 
complete Solvitaire solver

• If the incomplete solver returns a conclusive result, Solvitaire 
is not run



15/20

Constraint-Based Schedules
• We also view the scheduling task as an optimisation 
problem, and train a schedule using a constraint model:
 Given a training instance set I, a portfolio of n algorithms 

A = {a1, a2, …, an} and a cutoff time T (the time limit for each 
instance)

 Find an algorithm schedule S (sequence of algorithms chosen 
from A and the maximum solving time for each instance)

 As an incomplete algorithm may finish before the maximum 
solving time without providing a conclusive answer, we allocate 
the total leftover time to the last complete algorithm in the 
schedule, allowing for the full utilisation of T



16/20

PAR10 Optimisation Metric
• We wanted to optimise our schedules to minimise both 
runtime and the number of unsolved instances

• We therefore use the Penalised Average Runtime 
(PAR10) metric (the runtime of unsolved instances are 
counted as ten times the cutoff time)

• The constraint-based schedules minimise the sum of 
this metric over the training instance set



17/20

Repetition of solvers
• We observed that as Solvitaire solves some instances very quickly 

(<0.3s), it is sometimes beneficial to run Solvitaire first for a short 
duration, and re-run Solvitaire later with a larger timeout as the 
complete solver

• Our constraint model therefore allows algorithms to be repeated

• Due to practical reasons (limited computational resources) we limit the 
number of repetitions for each algorithm to two

A AB C

0.6s0.3s 1.8s 3.3s



18/20

Implementing the Constraint-Based 
schedule

• We use Essence Prime to model the training 
phase, using Savile Row with the Chuffed 
backend solver to solve the optimisation 
problem

• We find an optimal schedule for each cutoff 
time using the first 1,000 layouts of 
Solvitaire’s experiment set

• We evaluate all schedules on the following 
9,000 layouts of Solvitaire’s experiment set

GitHub link for the 

constraint model 

schedule, alongside a 

detailed explanation



19/20

Results
• X axis (same for both graphs):

 Cutoff time (seconds) from 1 to 120

• Y axes:

 Left - using PAR10 score (smaller is 
better)

 Right - Percentage of instances solved 
by each schedule (larger is better, note 
that the y-axis is reversed for visual 
effect)

 Both – log scale (base 10)



20/20

Summary
• We present a world-leading method for detecting unsolvable 

Klondike Solitaire layouts without an exhaustive state-based 
search

• We improve the previous best winnability estimates of deal-1 and 
deal-3 Klondike

• We demonstrate how our method can be used to complement other 
Klondike solvers in constraint-based schedules, resulting in 
improved performance

Thank you for your attention!



21/20

Full Unblocked Artifact results

Experimental results for Klondike using our models with different stock relaxations. The Partial relaxation and Strict 

models were run on deal-3 Klondike. The Total relaxation model was run on deal-1 Klondike. The first line for each 

Stock Rule gives the total, with breakdowns on result in the following two lines. Nodes is the mean nodes reported by 

Kissat. Mean times in seconds are given for Savile Row, Kissat solving, and their sum. The final column gives the 

maximum of total time for any layout. The layouts used were the first 10,000 randomly generated instances of Klondike 

from Solvitaire’s experimental set. Each model was written in Essence Prime, solved using SavileRow version 1.10.0 with 

minor changes, built using Graal JDK version 22.0.1, using Kissat version 3.1.1 as the backend solver, run on the Cirrus 

HPC system.


	Slide 1: Constraint Models for Relaxed Klondike Variants
	Slide 2: What is Klondike Solitaire?
	Slide 3: DFS in thoughtful Klondike
	Slide 4: Blocking Set
	Slide 5: Unblocked Artifact
	Slide 6: Relaxed Klondike Variants
	Slide 7: Our relaxations
	Slide 8: Exclusion principle
	Slide 9: Modelling These Relaxations
	Slide 10: Our relaxed variants
	Slide 11: Results
	Slide 12: Improving Solvitaire winnability estimates
	Slide 13: Scheduling Solvers
	Slide 14: Baseline “Naïve” Schedules
	Slide 15: Constraint-Based Schedules
	Slide 16: PAR10 Optimisation Metric
	Slide 17: Repetition of solvers
	Slide 18: Implementing the Constraint-Based schedule
	Slide 19: Results
	Slide 20: Summary
	Slide 21: Full Unblocked Artifact results

