KU LEUVEN

Efficient Modeling of Half-reified global constraints

Ignace Bleukx, Hélène Verhaeghe, Dimos Tsouros, Tias Guns

European Research Counci Established by the European Commission

Modeling systems

Modeling with global constraints AllDiff ferent (x, y, z) Modeling system AllDiff ferent (x, y, z)

+ Easy for modeler

4

Efficient Modeling of Half-reified global constraints

Reified constraints

"Reification relates the truth value of a constraint to a Boolean variable"

Full-reification: $b \leftrightarrow AllDiffferent(x, y, z)$

Reified constraints

"Reification relates the truth value of a constraint to a Boolean variable"

Full-reification: $b \leftrightarrow AllDiffferent(x, y, z)$

But… Full reification is hard! Requires to assert the negation of the constraint if b is False.

E.g., $\neg Circuit(x, y, z)$

Half-reified constraints

- Full reification can be "overkill"
	- \circ b \Leftrightarrow AllDifferent(x, y, z)
- Often only need half-reification
	- \circ b \rightarrow AllDifferent(x, y, z)
- Easy to derive half-reified propagators!

Half Reification and Flattening

Thibaut Feydy¹, Zoltan Somogyi¹, and Peter J. Stuckey¹

National ICT Australia and the University of Melbourne, Victoria, Australia {tfeydy,zs,pjs}@csse.unimelb.edu.au

Half-reified constraints

- Full reification can be "overkill"
	- \circ b \Leftrightarrow AllDifferent(x, y, z)
- Often only need half-reification
	- \circ b \rightarrow AllDifferent(x, y, z)
- Easy to derive half-reified propagators!

$$
\forall v \in \mathcal{V} : f_{b \to G(\mathcal{V})}(\mathcal{D})[v] = \begin{cases} f_{G(\mathcal{V})}(\mathcal{D})[v] & \text{if } \mathcal{D}[b] = \{true\} \\ \mathcal{D}[v] & \text{otherwise} \end{cases}
$$

$$
f_{b \to G(\mathcal{V})}(\mathcal{D})[b] = \begin{cases} \mathcal{D}[b] \setminus \{true\} & \text{if } f_{G(\mathcal{V})}(\mathcal{D}) \text{ is a false domain} \\ \mathcal{D}[b] & \text{otherwise} \end{cases}
$$

Half Reification and Flattening

Thibaut Feydy¹, Zoltan Somogyi¹, and Peter J. Stuckey¹

National ICT Australia and the University of Melbourne, Victoria, Australia {tfeydy,zs,pjs}@csse.unimelb.edu.au

Modeling system $b \rightarrow (x \neq y \land x \neq y \land y \neq z)$ Decomposing reified gobal constraints $b \rightarrow AllDiffferent(x, y, z)$ OR-Tools Gecode JaCoP iZplus CP Optimizer

Why should you care about half-reified global constraints?

Many applications

- Max-CSP solving
- Incremental solving
- Assumption-based solving
- MUS-computation
- Flattening [by modeling languages]
- \ldots

Maximize $\left.\rule{0.3cm}{.0cm}\right\}$ $_{w_{\mathcal{C}}}\cdot b_{\mathcal{C}}$ st. $\overline{b_c} \rightarrow c$ $\forall c \in C$

 $b \rightarrow AllDifferent(x, y, z)$

 $b \rightarrow AllDifferent(x, y, z)$

 $b \rightarrow (AllDifferent(x', y', z') \land x = x' \land y = y' \land z = z')$

 $b \rightarrow AllDiffferent(x, y, z)$

 $b \rightarrow (AllDifferent(x', y', z') \land x = x' \land y = y' \land z = z')$

All Different $(x', y', z') \wedge (b \rightarrow (x = x' \wedge y = y' \wedge z = z'))$

AllDifferent(x',y',z') \wedge (b \rightarrow (x = x' \wedge y = y' \wedge z = z'))

When h is True: AllDifferent $(x', y', z') \wedge x = x' \wedge y = y' \wedge z = z'$ $Alblifferent(x, y, z)$

When b is False: $Alblifferent(x', y', z') \wedge True$

AllDifferent(x',y',z') \wedge (b \rightarrow (x = x' \wedge y = y' \wedge z = z'))

When h is True: AllDifferent $(x', y', z') \wedge x = x' \wedge y = y' \wedge z = z'$ $Alblifferent(x, y, z)$

When b is False: $Alblifferent(x', y', z') \wedge True$

+ No decomposition

- Extra variables in model

- Worse propagation compared to native solver support

Special case: functional constraints

 $b \rightarrow Min(v, X)$

 $Min(v', X) \wedge (b \rightarrow v = v')$

When b is True: $Min(v', X) \wedge v = v'$ $Min(v, X)$

When b is False: $Min(v', X)$

Same propagation strength as native support!

Special case: functional constraints

 $b \rightarrow Min(v, X)$

 $Min(v', X) \wedge (b \rightarrow v = v')$

When b is True: $Min(v', X) \wedge v = v'$ $Min(v, X)$

When b is False: $Min(v', X)$

Same propagation strength as native support!

Also works for full-reification!

Implemented in most modeling systems!

On the reification of global constraints

Nicolas Beldiceanu · Mats Carlsson · Pierre Flener · **Justin Pearson**

So…. Does it work?

- Max-CSP benchmarks with different global constraints:
	- Room-assignment: AllDifferent
	- Multi-TSP: Circuit
	- RCPSP: Cumulative
- Tested on:
	- OR-Tools
	- Gecode
	- Choco
- Through the CPMpy modeling system

Conclusions

- . Reformulation with auxiliary variables is much faster compared to decomposing
- Competitive with solver-native approaches

Conclusions

- Reformulation with auxiliary variables is much faster compared to decomposing
- Competitive with solver-native approaches
- . Easy to implement!

Enable support for half-reified global constraints for ANY CP-solver

Next steps

- Compare with state-of-the-art Max-CSP solvers
- Evaluate flattening use-cases?
- Minimize auxiliary variables for non-functional constraints

