KU LEUVEN

Efficient Modeling of Half-reified global constraints

Ignace Bleukx, Hélène Verhaeghe, Dimos Tsouros, Tias Guns

European Research Council Established by the European Commission

Modeling systems

Modeling with global constraints

AllDifferent(x, y, z)

Modeling system

AllDifferent(x, y, z)

+ Easy for modeler

+ Fast propagation!

Efficient Modeling of Half-reified global constraints

Reified constraints

"Reification relates the truth value of a constraint to a Boolean variable"

Full-reification: $b \leftrightarrow AllDifferent(x, y, z)$

Reified constraints

"Reification relates the truth value of a constraint to a Boolean variable"

Full-reification: $b \leftrightarrow AllDifferent(x, y, z)$

But... Full reification is hard! Requires to assert the negation of the constraint if b is False.

E.g., \neg *Circuit*(*x*, *y*, *z*)

Half-reified constraints

- Full reification can be "overkill"
 - $b \Leftrightarrow AllDifferent(x, y, z)$
- Often only need half-reification
 - $\circ \quad b \to AllDifferent(x, y, z)$
- Easy to derive half-reified propagators!

Half Reification and Flattening

Thibaut Feydy¹, Zoltan Somogyi¹, and Peter J. Stuckey¹

National ICT Australia and the University of Melbourne, Victoria, Australia {tfeydy,zs,pjs}@csse.unimelb.edu.au

Half-reified constraints

- Full reification can be "overkill"
 - $b \Leftrightarrow AllDifferent(x, y, z)$
- Often only need half-reification
 - $\circ \quad b \to AllDifferent(x, y, z)$
- Easy to derive half-reified propagators!

$$\forall v \in \mathcal{V} : f_{b \to \mathrm{G}(\mathcal{V})}(\mathcal{D})[v] = \begin{cases} f_{\mathrm{G}(\mathcal{V})}(\mathcal{D})[v] & \text{if } \mathcal{D}[b] = \{true\} \\ \mathcal{D}[v] & \text{otherwise} \end{cases}$$

$$f_{b \to \mathrm{G}(\mathcal{V})}(\mathcal{D})[b] = \begin{cases} \mathcal{D}[b] \setminus \{true\} & \text{if } f_{\mathrm{G}(\mathcal{V})}(\mathcal{D}) \text{ is a false domain} \\ \mathcal{D}[b] & \text{otherwise} \end{cases}$$

Half Reification and Flattening

Thibaut Feydy¹, Zoltan Somogyi¹, and Peter J. Stuckey¹

National ICT Australia and the University of Melbourne, Victoria, Australia {tfeydy,zs,pjs}@csse.unimelb.edu.au

Decomposing reified gobal constraints OR-Tools Gecode JaCoP iZplus **CP** Optimizer $b \rightarrow AllDifferent(x, y, z)$ Modeling system $b \rightarrow (x \neq y \land x \neq y \land y \neq z)$

Why should you care about half-reified global constraints?

Many applications

- Max-CSP solving
- Incremental solving
- Assumption-based solving
- MUS-computation
- Flattening [by modeling languages]
- ...

 $\begin{array}{ll} \text{Maximize} \sum w_c \cdot b_c \\ \text{st.} & b_c \rightarrow c \quad \forall c \in C \end{array}$

 $b \rightarrow AllDifferent(x, y, z)$

 $b \rightarrow AllDifferent(x, y, z)$

 $b \rightarrow (AllDifferent(x', y', z') \land x = x' \land y = y' \land z = z')$

 $b \rightarrow AllDifferent(x, y, z)$

 $b \rightarrow (AllDifferent(x', y', z') \land x = x' \land y = y' \land z = z')$

 $AllDifferent(x', y', z') \land (b \to (x = x' \land y = y' \land z = z'))$

 $AllDifferent(x', y', z') \land (b \rightarrow (x = x' \land y = y' \land z = z'))$

When b is True: $AllDifferent(x', y', z') \land x = x' \land y = y' \land z = z'$ AllDifferent(x, y, z)

When b is False: AllDifferent(x', y', z') \land True

 $AllDifferent(x', y', z') \land (b \rightarrow (x = x' \land y = y' \land z = z'))$

When b is True: $AllDifferent(x', y', z') \land x = x' \land y = y' \land z = z'$ AllDifferent(x, y, z)

When b is False: $AllDifferent(x', y', z') \land True$

+ No decomposition

- Extra variables in model

- Worse propagation compared to native solver support

Special case: functional constraints

 $b \rightarrow Min(v, X)$

 $Min(v', X) \land (b \to v = v')$

When *b* is True: $Min(v', X) \land v = v'$ Min(v, X)

When *b* is False: Min(v', X)

Same propagation strength as native support!

Special case: functional constraints

 $b \rightarrow Min(v, X)$

 $Min(v', X) \land (b \to v = v')$

When *b* is True: $Min(v', X) \land v = v'$ Min(v, X)

When *b* is False: Min(v', X)

Same propagation strength as native support!

Also works for full-reification!

Implemented in most modeling systems!

On the reification of global constraints

Nicolas Beldiceanu · Mats Carlsson · Pierre Flener · Justin Pearson

So.... Does it work?

- Max-CSP benchmarks with different global constraints:
 - Room-assignment: AllDifferent
 - Multi-TSP: Circuit
 - RCPSP: Cumulative
- Tested on:
 - OR-Tools
 - Gecode
 - \circ Choco
- Through the CPMpy modeling system

Conclusions

- Reformulation with auxiliary variables is much faster compared to decomposing
- . Competitive with solver-native approaches

Conclusions

- Reformulation with auxiliary variables is much faster compared to decomposing
- . Competitive with solver-native approaches
- Easy to implement!

Enable support for half-reified global constraints for ANY CP-solver

Next steps

- Compare with state-of-the-art Max-CSP solvers
- Evaluate flattening use-cases?
- Minimize auxiliary variables for non-functional constraints

