From ModRef 2014 to ModRef 2024: Ten years of CP models for solving differential cryptanalysis problems

Christine Solnon, CITI, INSA Lyon / INRIA

Collaboration with F. Delobel, P. Derbez, D. Gerault, A. Gontier, P. Lafourcade, L. Libralesso, M. Minier, C. Prud'homme, L. Rouquette

From ModRef 2014 to ModRef 2024

Differential cryptanalysis of symmetric block ciphers

- 2 First CP model for Step1 (ModRef 2014)
- 3 Second CP model for Step1 (CP 2016)
- 4) Third CP model for Step1 (AIJ 2020)
- 5 Integration with Step2
- 6 Automatic model generation (CP 2021 and Indocrypt 2023)

Conclusion

Symmetric Ciphers

- Same secret key K used for encryption and decryption
 → D_K = E_K⁻¹
- Plaintext and ciphertext are split into blocks
 Typically: 1 block = 4 × 4 bytes = 128 bits

Symmetric **Block** Ciphers

- Same secret key K used for encryption and decryption
 → D_K = E_K⁻¹
- Plaintext and ciphertext are split into blocks
 Typically: 1 block = 4 × 4 bytes = 128 bits

AES-128: Advanced Encryption Standard with 128-bit keys

~ Standard block cipher since 2001

Initialization:

•
$$X_0 = ARK(X, K)$$

• $K_0 = K$

For each round $i \in [0, r-1]$:

•
$$SX_i = SB(X_i)$$

•
$$Y_i = SR(SX_i)$$

•
$$Z_i = MC(Y_i)$$

•
$$X_{i+1} = ARK(Z_i, K_{i+1})$$

with $K_{i+1} = KS(K_i)$

Return X_r

Cryptanalysis

Goal: Analyse ciphers to detect weaknesses

Confidentiality: Is it possible to retrieve the plaintext (under some given attack conditions)?

This must be done for each new cipher...

...and new ciphers are designed every year!

Examples of symmetric block ciphers:

AES, Craft, Deoxys, Gift, Midori, Present, Skinny, Simon, Speck, ...

Differential Cryptanalysis [BS91]

How to inject differences with eXclusive OR (XOR)?

- Notation: ⊕ = XOR operator (i.e., 0 ⊕ 0 = 1 ⊕ 1 = 0 and 0 ⊕ 1 = 1 ⊕ 0 = 1)
 → Extended to bitstrings (e.g., 00110 ⊕ 01101 = 01011)
- To inject a difference at bit k of bitstring M, XOR M with bitstring with only one '1' at position k

Differential cryptanalysis exploits differences to recover the key:

- Let $\delta X = X \oplus X'$ be an input plaintext difference
- Let $\delta Y = E_{\mathcal{K}}(X) \oplus E_{\mathcal{K}}(X')$ be the output difference
- The cipher is weak if $\exists \delta X$ and δY such that $Pr[\delta Y|\delta X] >> 2^{-|K|} \rightarrow$ Key recovery in $\mathcal{O}(1/Pr[\delta Y|\delta X])$

[[]BS91] E. Biham and A. Shamir: Differential cryptoanalysis of feal and n-hash. In EUROCRYPT 1991

Related-Key Attack [Bih93]

Inject differences in texts and keys:

- Let $\delta X = X \oplus X'$ be an input plaintext difference
- Let $\delta K = K \oplus K'$ be an input key difference
- Let $\delta Y = E_{\mathcal{K}}(X) \oplus E_{\mathcal{K}'}(X')$ be the output difference
- The cipher is weak if $\exists \delta X, \delta K$, and δY such that $Pr[\delta Y|\delta X, \delta K] >> 2^{-|K|} \\ \rightsquigarrow$ Key recovery in $\mathcal{O}(1/Pr[\delta Y|\delta X, \delta K])$

[[]Bih93] E. Biham: New types of cryptoanalytic attacks using related keys. In EUROCRYPT 1993

Related-Key Attack [Bih93]

Inject differences in texts and keys:

- Let $\delta X = X \oplus X'$ be an input plaintext difference
- Let $\delta K = K \oplus K'$ be an input key difference
- Let $\delta Y = E_{\mathcal{K}}(X) \oplus E_{\mathcal{K}'}(X')$ be the output difference
- The cipher is weak if $\exists \delta X, \delta K$, and δY such that $Pr[\delta Y|\delta X, \delta K] >> 2^{-|K|} \rightarrow$ Key recovery in $\mathcal{O}(1/Pr[\delta Y|\delta X, \delta K])$

Differential Characteristic:

Plaintext and key differences for each round of the ciphering process

Goal:

Compute a differential characteristic the probability of which is maximal

[Bih93] E. Biham: New types of cryptoanalytic attacks using related keys. In EUROCRYPT 1993

Notations for bytes (during ciphering):

- *K_{i,j,k}* = byte at column *j* and row *k* of subkey at round *i*
- X_{*i*,*j*,*k*} = byte at column *j* and row *k* of text at round *i*
- Same for $SX_{i,j,k}$, $Y_{i,j,k}$, ...
- \rightsquigarrow Every byte has a value in [0,255]

Notations for bytes (during ciphering):

- *K_{i,j,k}* = byte at column *j* and row *k* of subkey at round *i*
- X_{*i*,*j*,*k*} = byte at column *j* and row *k* of text at round *i*
- Same for $SX_{i,j,k}$, $Y_{i,j,k}$, ...

 \rightsquigarrow Every byte has a value in [0, 255]

Notations for differential bytes (in differential characteristics):

•
$$\delta K_{i,j,k} = K_{i,j,k} \oplus K'_{i,j,k}$$

•
$$\delta X_{i,j,k} = X_{i,j,k} \oplus X'_{i,j,k}$$

• Same for
$$\delta SX_{i,j,k}, \delta Y_{i,j,k}, \dots$$

 \rightsquigarrow Every differential byte has a value in [0, 255]

SB operator for ciphering:

$$SX_{i,j,k} = s(X_{i,j,k})$$

where $s: [0, 255] \rightarrow [0, 255]$ is a bijection defined by a look-up table

SB constraint for differential characteristic:

$$(\delta X_{i,j,k}, \delta SX_{i,j,k}) \in T_{sbox}$$

where $T_{sbox} = \{(a \oplus a', s(a) \oplus s(a')) \mid a, a' \in [0, 255]\}$

SR operator for ciphering:

$$Y_{i,j,k} = SX_{i,j,(k+j)\%4}$$

~ Simple byte shifting

SR constraint for differential characteristic:

$$\delta Y_{i,j,k} = \delta S X_{i,j,(k+j)\%4}$$

MC operator for ciphering:

$$\begin{array}{rcl} Z_{i,j,k} & = & M_{j,0} \otimes Y_{i,0,k} \\ & \oplus & M_{j,1} \otimes Y_{i,1,k} \\ & \oplus & M_{j,2} \otimes Y_{i,2,k} \\ & \oplus & M_{j,3} \otimes Y_{i,3,k} \end{array}$$

Where *M* is a given 4×4 matrix, and \otimes is a finite field multiplication operator

MC constraint for differential characteristic:

$$\begin{array}{rcl} \delta Z_{i,j,k} & = & M_{j,0} \otimes \delta \, Y_{i,0,k} \\ \oplus & M_{j,1} \otimes \delta \, Y_{i,1,k} \\ \oplus & M_{j,2} \otimes \delta \, Y_{i,2,k} \\ \oplus & M_{j,3} \otimes \delta \, Y_{i,3,k} \end{array}$$

Because
$$(a \otimes b) \oplus (a \otimes b') = a \otimes (b \oplus b')$$

ARK constraint for differential characteristic:

• $\delta X_{0,j,k} = \delta K_{0,j,k} \oplus \delta X_{j,k}$ • $\delta X_{i+1,j,k} = \delta K_{i,j,k} \oplus \delta Z_{i,j,k}$

ARK operator for ciphering:

•
$$X_{0,j,k} = K_{0,j,k} \oplus X_{j,k}$$

•
$$X_{i+1,j,k} = K_{i+1,j,k} \oplus Z_{i,j,k}$$

because
$$(a \oplus b) \oplus (a' \oplus b') = (a \oplus a') \oplus (b \oplus b')$$

KS operator for ciphering:

• Row 0:
$$K_{i+1,j,0} = SK_{i,(j+1)\%4,3} \oplus K_{i,j,0}$$

where $SK_{i,j,3} = s(K_{i,j,3})$

• Row
$$k > 0$$
:
 $K_{i+1,j,k} = K_{i+1,j,k-1} \oplus K_{i,j,k}$

KS constraint for differential characteristic:

• Row 0: $\delta \mathcal{K}_{i+1,j,0} = \delta S \mathcal{K}_{i,(j+1)\%4,3} \oplus \delta \mathcal{K}_{i,j,0}$ where $(\delta \mathcal{K}_{i,j,3}, \delta S \mathcal{K}_{i,j,3}) \in T_{sbox}$

• Row
$$k > 0$$
: $\delta K_{i+1,j,k} = \delta K_{i+1,j,k-1} \oplus \delta K_{i,j,k}$

Full model for computing differential characteristics for AES-128

- SB: $\forall i \in [0, r-1], \forall j, k \in [0, 3], (\delta X_{i,j,k}, \delta S X_{i,j,k}) \in T_{sbox}$
- SR: $\forall i \in [0, r-1], \forall j, k \in [0, 3], \delta Y_{i,j,k} = \delta SX_{i,j,(k+j)\%4}$
- MC:

 $\forall i \in [0, r-2], \forall j, k \in [0, 3], \delta Z_{i,j,k} = M_{j,0} \otimes \delta Y_{i,0,k} \oplus M_{j,1} \otimes \delta Y_{i,1,k} \oplus M_{j,2} \otimes \delta Y_{i,2,k} \oplus M_{j,3} \otimes \delta Y_{i,3,k}$

ARK:

•
$$\forall j, k \in [0, 3], \delta X_{0,j,k} = \delta K_{0,j,k} \oplus \delta X_{j,k}$$

• $\forall i \in [0, r - 1], \forall j, k \in [0, 3], \delta X_{i+1,j,k} = \delta K_{i,j,k} \oplus \delta Z_{i,j,k}$

SK:

•
$$\forall i \in [0, r-1], \forall j \in [0, 3], \delta K_{i+1, j, 0} = \delta S K_{i, (j+1)\%4, 3} \oplus \delta K_{i, j, 0}$$

• $\forall i \in [0, r-1], \forall j \in [0, 3], (\delta K_{i, j, 3}, \delta S K_{i, j, 3}) \in T_{sbox}$
• $\forall i \in [0, r-1], \forall j \in [0, 3], \forall k \in [1, 3], \delta K_{i+1, j, k} = \delta K_{i+1, j, k-1} \oplus \delta K_{i, j, k}$

How to transform this model into a CP model?

• Introduce a table for the ternary XOR relation: $T_{\oplus} = \{(a, b, a \oplus b) \mid a, b \in [0, 255]\}$

Decompose MC into relations of smaller arity

Full model for computing differential characteristics for AES-128

- SB: $\forall i \in [0, r-1], \forall j, k \in [0, 3], (\delta X_{i,j,k}, \delta S X_{i,j,k}) \in T_{sbox}$
- SR: $\forall i \in [0, r-1], \forall j, k \in [0, 3], \delta Y_{i,j,k} = \delta SX_{i,j,(k+j)\%4}$
- MC:

 $\forall i \in [0, r-2], \forall j, k \in [0, 3], \delta Z_{i,j,k} = M_{j,0} \otimes \delta Y_{i,0,k} \oplus M_{j,1} \otimes \delta Y_{i,1,k} \oplus M_{j,2} \otimes \delta Y_{i,2,k} \oplus M_{j,3} \otimes \delta Y_{i,3,k}$

ARK:

•
$$\forall j, k \in [0, 3], \delta X_{0,j,k} = \delta K_{0,j,k} \oplus \delta X_{j,k}$$

• $\forall i \in [0, r-1], \forall j, k \in [0, 3], \delta X_{i+1,j,k} = \delta K_{i,j,k} \oplus \delta Z_{i,j,k}$

SK:

•
$$\forall i \in [0, r-1], \forall j \in [0, 3], \delta K_{i+1, j, 0} = \delta S K_{i, (j+1)\%4, 3} \oplus \delta K_{i, j, 0}$$

• $\forall i \in [0, r-1], \forall j \in [0, 3], (\delta K_{i, j, 3}, \delta S K_{i, j, 3}) \in T_{sbox}$
• $\forall i \in [0, r-1], \forall j \in [0, 3], \forall k \in [1, 3], \delta K_{i+1, j, k} = \delta K_{i+1, j, k-1} \oplus \delta K_{i, j, k}$

How to transform this model into a CP model?

- Introduce a table for the ternary XOR relation: $T_{\oplus} = \{(a, b, a \oplus b) \mid a, b \in [0, 255]\}$
- Decompose MC into relations of smaller arity

CP model for computing differential characteristics for AES-128

• SB:
$$\forall i \in [0, r-1], \forall j, k \in [0, 3], (\delta X_{i,j,k}, \delta S X_{i,j,k}) \in T_{sbox}$$

• SR: $\forall i \in [0, r-1], \forall j, k \in [0, 3], \delta Y_{i,j,k} = \delta S X_{i,j,(k+j)\%4}$
• MC: $\forall i \in [0, r-2], \forall j, k \in [0, 3],$
• $(\delta Y_{i,x,k}, A_x) \in T_x$ where $T_x = \{(y, y \otimes M_x) \mid y \in [0, 255]\}$ $\forall x \in \{(j, 0), (j, 1), (j, 2), (j, 3)\}$
• $(A_{j,0}, A_{j,1}, B) \in T_{\oplus}$
• $(A_{j,2}, A_{j,3}, C) \in T_{\oplus}$
• $(B, C, \delta Z_{i,j,k}) \in T_{\oplus}$
• $\langle i \in [0, r-1], \forall j, k \in [0, 3], (\delta X_{i+1,j,k}, \delta X_{j,k}) \in T_{\oplus}$
• $\forall i \in [0, r-1], \forall j, k \in [0, 3], (\delta K_{i+1,j,k}, \delta K_{i,j,k}, \delta Z_{i,j,k}) \in T_{\oplus}$
• $\forall i \in [0, r-1], \forall j \in [0, 3], (\delta K_{i+1,j,0}, \delta S K_{i,(j+1)\%4,3}, \delta K_{i,j,0}) \in T_{\oplus}$
• $\forall i \in [0, r-1], \forall j \in [0, 3], (\delta K_{i+1,j,k}, \delta S K_{i,j,3}) \in T_{sbox}$
• $\forall i \in [0, r-1], \forall j \in [0, 3], \forall k \in [1, 3], (\delta K_{i+1,j,k}, \delta K_{i+1,j,k-1}, \delta K_{i,j,k}) \in T_{\oplus}$

Probability of a differential characteristic

ARK, SR, MC: output differences are computed from input differences with probability 1

• SB: probability of observing an output difference δ_{out} given an input difference δ_{in}

• When
$$\delta_{in} = \delta_{out} = 0$$
: $p(\delta_{out}|\delta_{in}) = 1$

• Otherwise: $p(\delta_{out}|\delta_{in}) \in \{0, 2^{-7}, 2^{-6}\}$

→ Introduce a variable $P_{\delta A}$ for each differential byte that passes through *SB* (in red) → Relate $P_{\delta A}$ with δA and δSA : (δA , δSA , $P_{\delta A}$) ∈ T_{sbox} where

 $T_{sbox} = \{(\delta_{in}, \delta_{out}, \log_2(p(\delta_{out}|\delta_{in}))) \mid \delta_{in}, \delta_{out} \in [0, 255], p(\delta_{out}|\delta_{in} > 0\}$

CP model for computing maximal differential characteristics for AES-128

- Maximize $\sum_{i,j,k} P_{\delta X_{i,j,k}} + \sum_{i,j} P_{\delta K_{i,j,3}}$
- SB: $\forall i \in [0, r-1], \forall j, k \in [0,3], (\delta X_{i,j,k}, \delta S X_{i,j,k}, P_{\delta X_{i,j,k}}) \in T_{sbox}$
- SR: $\forall i \in [0, r-1], \forall j, k \in [0, 3], \delta Y_{i,j,k} = \delta SX_{i,j,(k+j)\%4}$
- MC: $\forall i \in [0, r-2], \forall j, k \in [0, 3],$
 - $(\delta Y_{i,x,k}, A_x) \in T_x$ where $T_x = \{(y, y \otimes M_x) \mid y \in [0, 255]\} \quad \forall x \in \{(j, 0), (j, 1), (j, 2), (j, 3)\}$
 - $(A_{j,0}, A_{j,1}, B) \in T_{\oplus}$
 - $(A_{j,2}, A_{j,3}, C) \in T_{\oplus}$
 - $(B, C, \delta Z_{i,j,k}) \in T_{\oplus}$
- ARK:
 - $\forall j, k \in [0, 3], (\delta X_{0,j,k}, \delta K_{0,j,k}, \delta X_{j,k}) \in T_{\oplus}$
 - $\forall i \in [0, r-1], \forall j, k \in [0, 3], (\delta X_{i+1, j, k}, \delta K_{i, j, k}, \delta Z_{i, j, k}) \in T_{\oplus}$

SK:

- $\forall i \in [0, r-1], \forall j \in [0, 3], (\delta K_{i+1,j,0}, \delta S K_{i,(j+1)\%4,3}, \delta K_{i,j,0}) \in T_{\oplus}$
- $\forall i \in [0, r-1], \forall j \in [0, 3], (\delta K_{i,j,3}, \delta S K_{i,j,3}, P_{\delta K_{i,j,3}}) \in T_{sbox}$
- $\forall i \in [0, r-1], \forall j \in [0, 3], \forall k \in [1, 3], (\delta K_{i+1, j, k}, \delta K_{i+1, j, k-1}, \delta K_{i, j, k}) \in T_{\oplus}$

Two step solving process [Knu95]

Step 1: Compute an optimal Truncated Differential Characteristic (TDC)

Each differential byte δB = B ⊕ B' is abstracted to a boolean ΔB
 → ΔB = 0 if B = B'; ΔB = 1 if B ≠ B'

• Minimise the number of boolean variables $\Delta X_{i,j,k}$ and $\Delta K_{i,j,3}$ set to 1:

- If $\delta X_{i,j,k} = 0$ then $\delta S X_{i,j,k} = 0$ and $p(\delta S X_{i,j,k} | \delta X_{i,j,k}) = 1$
- Otherwise $p(\delta SX_{i,j,k}) | \delta X_{i,j,k}) \in \{0, 2^{-7}, 2^{-6}\}$

[Knu95] L. Knudsen: Truncated and higher order differentials. In Fast Software Encryption 1995

Two step solving process [Knu95]

Step 1: Compute an optimal Truncated Differential Characteristic (TDC)

- Each differential byte $\delta B = B \oplus B'$ is abstracted to a boolean ΔB $\rightarrow \Delta B = 0$ if B = B': $\Delta B = 1$ if $B \neq B'$
- Minimise the number of boolean variables $\Delta X_{i,i,k}$ and $\Delta K_{i,i,3}$ set to 1:
 - If $\delta X_{i,j,k} = 0$ then $\delta S X_{i,j,k} = 0$ and $p(\delta S X_{i,j,k} | \delta X_{i,j,k}) = 1$ Otherwise $p(\delta S X_{i,j,k}) | \delta X_{i,j,k}) \in \{0, 2^{-7}, 2^{-6}\}$

[Knu95] L. Knudsen: Truncated and higher order differentials. In Fast Software Encryption 1995

Two step solving process [Knu95]

Step 1: Compute an optimal Truncated Differential Characteristic (TDC)

- Each differential byte $\delta B = B \oplus B'$ is abstracted to a boolean ΔB $\rightsquigarrow \Delta B = 0$ if B = B'; $\Delta B = 1$ if $B \neq B'$
- Minimise the number of boolean variables $\Delta X_{i,i,k}$ and $\Delta K_{i,i,3}$ set to 1:
 - If $\delta X_{i,j,k} = 0$ then $\delta S X_{i,j,k} = 0$ and $p(\delta S X_{i,j,k} | \delta X_{i,j,k}) = 1$ Otherwise $p(\delta S X_{i,j,k}) | \delta X_{i,j,k}) \in \{0, 2^{-7}, 2^{-6}\}$

Step 2: Use the optimal TDC to tighten domains

- For each boolean ΔB : If $\Delta B = 0$ then set δB to 0; otherwise set the domain of δB to [1, 255]
 - If no solution: The TDC is byte-inconsistent
 - If there are solutions: Search for the differential characteristic with maximal probability

[Knu95] L. Knudsen: Truncated and higher order differentials. In Fast Software Encryption 1995

Overview of the complete process

Initialize p_{max} to 0

3 Search for a TDC that minimizes $v = \sum_{i,j,k} \Delta X_{i,j,k} + \sum_{i,j} \Delta K_{i,j,3}$

(Step1opt)

3 If $2^{-6*\nu} < 2^{-|K|}$ then Stop (the cipher is indistinguishable from random)

- **Output** Enumerate all TDCs s.t. $v = \sum_{i,j,k} \Delta X_{i,j,k} + \sum_{i,j} \Delta K_{i,j,3}$
 - For each TDC, search for a maximal differential characteristic
 → Update p_{max} if a greater probability is found
- **5** If $p_{max} < 2^{-6*(v+1)}$ then increment v and go to (3)
- **o** return p_{max} and the corresponding differential characteristic

(Step1enum) (Step2)

Existing dedicated approaches for Step1

[BN10]: Branch & Bound

- |K| = 128: Several days of CPU time
- |K| = 192: Several weeks of CPU time

[FJP13]: Dynamic Programming

- |K| = 128: 30mn of CPU time (on 12 cores)
 ... but memory complexity in *O*(2³²) = 60 GB
- Cannot be extended to |K| = 192 or 256

In both cases: Difficult and time-consuming programming work

- Checking the correctness of the program is not straightforward
- Nothing is said about Step 2

[BN10] Biryukov, Nikolic: Automatic search for related-key differential characteristics in byte-oriented block ciphers: Application to AES, camellia, khazad and others. In Advances in Cryptology 2010
 [FJP13] Fouque, Jean, Peyrin: Structural evaluation of AES and chosen-key distinguisher of 9-round AES-128. In CRYPTO

From ModRef 2014 to ModRef 2024

Pirst CP model for Step1 (ModRef 2014)

- Second CP model for Step1 (CP 2016)
- 4) Third CP model for Step1 (AIJ 2020)
- 5 Integration with Step2
- 6 Automatic model generation (CP 2021 and Indocrypt 2023)

Conclusion

Byte var. for differential characteristics:

- $\delta K_{i,j,k} = K_{i,j,k} \oplus K'_{i,j,k}$
- $\delta X_{i,j,k} = X_{i,j,k} \oplus X'_{i,j,k}$
- Same for $\delta SX_{i,j,k}, \delta Y_{i,j,k}, \dots$

→ Domain = [0, 255]

Byte var. for differential characteristics:

- $\delta K_{i,j,k} = K_{i,j,k} \oplus K'_{i,j,k}$
- $\delta X_{i,j,k} = X_{i,j,k} \oplus X'_{i,j,k}$
- Same for $\delta SX_{i,j,k}, \delta Y_{i,j,k}, \dots$

→ Domain = [0, 255]

Boolean variables for TDC:

- $\Delta K_{i,j,k} = 0$ if $K_{i,j,k} = K'_{i,j,k}$; 1 otherwise
- $\Delta X_{i,j,k} = 0$ if $X_{i,j,k} = X'_{i,j,k}$; 1 otherwise

• Same for
$$\Delta SX_{i,j,k}, \Delta Y_{i,j,k}, \dots$$

 \rightsquigarrow Domain = $\{0, 1\}$

SB constraint for differential characteristics:

$$(\delta X_{i,j,k}, \delta SX_{i,j,k}, P_{\delta X_{i,j,k}}) \in T_{sbox}$$

where $T_{sbox} = \{(\delta_{in}, \delta_{out}, -\log_2(p(\delta_{out}|\delta_{in})))\}$

- either $\delta_{in} = \delta_{out} = 0$ and $p(\delta_{out}|\delta_{in}) = 1$
- or $\delta_{in} \neq 0$, $\delta_{out} \neq 0$ and $p(\delta_{out}|\delta_{in}) \in \{2^{-6}, 2^{-7}\}$

SB constraint for TDC:

$$\Delta SX_{i,j,k} = \Delta X_{i,j,k}$$

SR constraint for differential characteristics:

 $\delta Y_{i,j,k} = \delta S X_{i,j,(k+j)\%4}$

SR constraint for TDC: $\Delta Y_{i,j,k} = \Delta S X_{i,j,(k+j)\%4}$

MC constraint for differential characteristics:

$$\begin{array}{lll} \delta Z_{i,j,k} & = & M_{j,0} \otimes \delta Y_{i,0,k} \\ \oplus & M_{j,1} \otimes \delta Y_{i,1,k} \\ \oplus & M_{j,2} \otimes \delta Y_{i,2,k} \\ \oplus & M_{j,3} \otimes \delta Y_{i,3,k} \end{array}$$

MC constraint for TDC:

$$\sum_{j=0}^{3} \Delta Y_{i,j,k} + \Delta Z_{i,j,k} \in \{0, 5, 6, 7, 8\}$$

MDS property:

$$\sum_{j=0}^{3} (\delta Y_{i,j,k}
eq 0) + (\delta Z_{i,j,k}
eq 0) \in \{0, 5, 6, 7, 8\}$$

ARK constraint for differential characteristics:

•
$$\delta X_{0,j,k} = \delta K_{0,j,k} \oplus \delta X_{j,k}$$

•
$$\delta X_{i+1,j,k} = \delta K_{i,j,k} \oplus \delta Z_{i,j,k}$$

XOR at the byte level:

- $\bullet \ 0 \oplus 0 = 0$
- $0 \oplus x = x, \forall x \in [1, 255]$
- $x \oplus 0 = x, \forall x \in [1, 255]$
- *x* ⊕ *x* = 0, ∀*x* ∈ [1, 255]
- $x \oplus y \neq 0, \forall x, y \in [1, 255]$ if $x \neq y$

ARK constraint for TDC:

•
$$\Delta X_{0,j,k} + \Delta K_{0,j,k} + \Delta X_{j,k} \neq 1$$

•
$$\Delta X_{i+1,j,k} + \Delta K_{i+1,j,k} + \Delta Z_{i,j,k} \neq 1$$

 $egin{array}{lll} \Delta B_1 &= \Delta B_2 \oplus \Delta B_3 \mbox{ at the boolean level:} \ (\Delta B_1, \Delta B_2, \Delta B_3) \in \{ & (0, & 0, & 0), \ & (0, & 1, & 1), \ & (1, & 0, & 1), \ & (1, & 1, & 0), \ & (1, & 1, & 1) \} \end{array}$

17/42

KS constraint for differential characteristics:

- $\delta K_{i+1,j,0} = \delta S K_{i,(j+1)\%4,3} \oplus \delta K_{i,j,0}$
- $(\delta K_{i,j,3}, \delta S K_{i,j,3}, P_{K_{i,j,3}}) \in T_{sbox}$
- $\delta K_{i+1,j,k} = \delta K_{i+1,j,k-1} \oplus \delta K_{i,j,k}$

KS constraint for TDC:

• $\Delta \mathcal{K}_{i+1,j,0} + \Delta \mathcal{S} \mathcal{K}_{i,(j+1)\%4,3} + \Delta \mathcal{K}_{i,j,0} \neq 1$

•
$$\Delta SK_{i,j,3} = \Delta K_{i,j,3}$$

•
$$\Delta K_{i+1,j,k} + \Delta K_{i+1,j,k-1} + \Delta K_{i,j,k} \neq 1$$

First CP model for Step1 [MSR14]

• Objective function:
$$v = \sum_{i,j,k} \Delta X_{i,j,k} + \sum_{i,j} \Delta K_{i,j,3}$$

• SB: $\forall i \in [0, r - 1], \forall j, k \in [0, 3], \Delta X_{i,j,k} = \Delta S X_{i,j,k}$
• SR: $\forall i \in [0, r - 1], \forall j, k \in [0, 3], \Delta Y_{i,j,k} = \Delta S X_{i,j,(k+j)\%4}$
• MC: $\forall i \in [0, r - 2], \forall j, k \in [0, 3], \sum_{j=0}^{3} \Delta Y_{i,j,k} + \Delta Z_{i,j,k} \in \{0, 5, 6, 7, 8\}$
• ARK:
• $\forall j, k \in [0, 3], \Delta X_{0,j,k} + \Delta K_{0,j,k} + \Delta X_{j,k} \neq 1$
• $\forall i \in [0, r - 1], \forall j, k \in [0, 3], \Delta X_{i+1,j,k} + \Delta K_{i,j,k} + \Delta Z_{i,j,k} \neq 1$
• SK:
• $\forall i \in [0, r - 1], \forall j \in [0, 3], \Delta K_{i+1,j,0} + \Delta S K_{i,(j+1)\%4,3} + \Delta K_{i,j,0} \neq 1$
• $\forall i \in [0, r - 1], \forall j \in [0, 3], \Delta K_{i,j,3} = \Delta S K_{i,j,3}$
• $\forall i \in [0, r - 1], \forall j \in [0, 3], \forall k \in [1, 3], \Delta K_{i+1,j,k} + \Delta K_{i+1,j,k-1} + \Delta K_{i,j,k} \neq 1$

Ordering heuristics:

- First choose variables that occur in the objective function
- First assign them to 0

[MSR14] M. Minier, C. Solnon, J. Reboul: Solving a Symmetric Key Cryptographic Problem with CP. In ModRef 2014

Experimental results for enumerating all TDCs for AES-128

r	V	Byte	Bool.	Gecode		Choco 4		Chuff	ed
		sol.	sol.	Time	CP	Time	CP	Time	CP
3	2	0	0	0.0	9 <i>e</i> ¹	0.0	4 <i>e</i> ¹	0.0	5 <i>e</i> ¹
3	3	0	5 <i>e</i> ²	0.1	2 <i>e</i> ³	0.4	2 <i>e</i> ³	0.0	7 <i>e</i> ²
3	4	0	5 <i>e</i> ³	1.3	$2e^{4}$	1.8	1 <i>e</i> 4	0.2	5 <i>e</i> ³
3	5	2	2 <i>e</i> 4	6.0	6 <i>e</i> 4	5.1	5 <i>e</i> 4	0.9	2 <i>e</i> 4
4	8	0	0	0.2	2 <i>e</i> 4	0.6	1 <i>e</i> ⁴	0.3	8 <i>e</i> ³
4	9	0	2 <i>e</i> 4	7.1	1 <i>e</i> ⁵	5.4	7 <i>e</i> 4	1.4	4 <i>e</i> ⁴
4	10	0	6 <i>e</i> ⁶	-	-	1161.2	$2e^{7}$	113.5	6 <i>e</i> ⁶
4	11	0	9 <i>e</i> ⁷	-	-	-	-	1974.5	9 <i>e</i> ⁷
4	12	2	-	-	-	-	-	-	-

- r = Number of rounds
- *v* = Number of differences that pass through SB (active S-boxes)
- CP = number of choice points in the search tree
 - \rightsquigarrow Chuffed explores less choice points and is faster

Problem of this first model: Most TDCs can't be concretised to differential characteristics

From ModRef 2014 to ModRef 2024

Differential cryptanalysis of symmetric block ciphers

2) First CP model for Step1 (ModRef 2014)

Second CP model for Step1 (CP 2016)

- 4) Third CP model for Step1 (AIJ 2020)
- 5 Integration with Step2
- 6 Automatic model generation (CP 2021 and Indocrypt 2023)

Conclusion

New variables to model byte equalities [GMS16]

What's wrong with the first CP model?

XOR constraints do not propagate equality relationships at the byte level

Example:

- At byte level: $(\delta a \oplus \delta b \oplus \delta c = 0) \land (\delta a = \delta b) \Rightarrow (\delta c = 0)$
- At Boolean level: $\Delta a + \Delta b + \Delta c \neq 1 \land (\Delta a = \Delta b) \Rightarrow (\Delta c = 0)$

New variables and constraints to model byte equalities:

- For each couple of differential bytes ($\delta A, \delta B$): diff_{$\delta A, \delta B$} = 1 $\Leftrightarrow \delta A \neq \delta B$
- Symmetry: $diff_{\delta A, \delta B} = diff_{\delta B, \delta A}$
- Transitivity: $diff_{\delta A, \delta B} + diff_{\delta B, \delta C} + diff_{\delta A, \delta C} \neq 1$
- Relation with Δ variables: $diff_{\delta A, \delta B} + \Delta A + \Delta B \neq 1$

Too expensive (and useless) to maintain all relationships

 \rightsquigarrow Limit to byte couples in a same row of a same group ($\delta K, \delta Y$, and δZ)

Definition of XOR in the first CP model: $\Delta B_1 + \Delta B_2 + \Delta B_3 \neq 1$

Can we strengthen it by exploiting byte equalities? Yes, because: $\Delta B_1 = 0 \Leftrightarrow \delta B_2 = \delta B_3$

New definition of XOR: Replace $\Delta B_1 + \Delta B_2 + \Delta B_3 \neq 1$ with

$$(\textit{diff}_{\delta B_1,\delta B_2} = \Delta B_3) \land (\textit{diff}_{\delta B_1,\delta B_3} = \Delta B_2) \land (\textit{diff}_{\delta B_2,\delta B_3} = \Delta B_1)$$

~> Every XOR constraint "removes" 3 Boolean variables

Propagation of MDS between different columns

MDS also holds when XORing different columns of δY and δZ :

 $\begin{array}{l} \forall i_1, i_2 \in [0, r-2], \forall k_1, k_2 \in [0, 3], \text{ we have:} \\ \sum_{j=0}^3 (\delta Y_{i_1, j, k_1} \oplus \delta Y_{i_2, j, k_2} \neq 0) + (\delta Z_{i_1, j, k_1} \oplus \delta Z_{i_2, j, k_2} \neq 0) \in \{0, 5, 6, 7, 8\} \end{array}$

New constraints to propagate MDS between different columns:

$$\begin{array}{l} \forall i_1, i_2 \in [0, r-2], \forall k_1, k_2 \in [0, 3], \\ \sum_{j=0}^{3} \textit{diff}_{\delta Y_{i_1, j, k_1}, \delta Y_{i_2, j, k_2}} + \textit{diff}_{\delta Z_{i_1, j, k_1}, \delta Z_{i_2, j, k_2}} \in \{0, 5, 6, 7, 8\} \end{array}$$

Propagation of ARK at the byte level

ARK implies the following equations: $\forall i_1, i_2 \in [0, r-2], \forall j, k_1, k_2 \in [0, 3]$:

$$\begin{split} \delta \mathcal{K}_{i_1+1,j,k_1} \oplus \delta \mathcal{Z}_{i_1,j,k_1} &= \delta \mathcal{X}_{i_1+1,j,k_1} \text{ and } \delta \mathcal{K}_{i_2+1,j,k_2} \oplus \delta \mathcal{Z}_{i_2,j,k_2} &= \delta \mathcal{X}_{i_2+1,j,k_2} \\ \text{By xoring these two equations, we infer that:} \\ (\delta \mathcal{K}_{i_1+1,j,k_1} \neq \delta \mathcal{K}_{i_2+1,j,k_2}) + (\delta \mathcal{Z}_{i_1,j,k_1} \neq \delta \mathcal{Z}_{i_2,j,k_2}) + (\delta \mathcal{X}_{i_1+1,j,k_1} \neq \delta \mathcal{X}_{i_2+1,j,k_2}) \neq 1 \end{split}$$

Corresponding constraint: $\forall i_1, i_2 \in [0, r-2], \forall j, k_1, k_2 \in [0, 3]$:

$$\begin{array}{l} \text{diff}_{\delta K_{i_1+1,j,k_1},\delta K_{i_2+1,j,k_2}} + \text{diff}_{\delta Z_{i_1,j,k_1},\delta Z_{i_2,j,k_2}} + \Delta X_{i_1+1,j,k_1} + \Delta X_{i_2+1,j,k_2} \neq 1 \\ \text{(because } (\Delta X_{i_1+1,j,k_1} + \Delta X_{i_2+1,j,k_2} = 1) \Rightarrow (\delta X_{i_1+1,j,k_1} \neq \delta X_{i_2+1,j,k_2})) \end{array}$$

Experimental results [GMS16]

		Step1-opt		Step	o1-enum
K	r	V *	t	# T	t
128	3	5	4	4	6
128	4	12	21	8	74
128	5	17	44	1113	32340
192	3	1	3	15	16
192	4	4	8	4	12
192	5	5	14	2	13
192	6	10	34	6	65
192	7	13	72	4	98
192	8	18	205	8	752
192	9	24	2527	240	43359
192	10	27	3715	27548	> 2 weeks
256	3	1	3	33	39
256	4	3	8	14	38
256	5	3	13	4	21
256	6	5	25	3	29
256	7	5	48	1	22
256	8	10	61	3	76
256	9	15	172	16	705
256	10	16	236	4	385
256	11	20	488	4	705
256	12	20	625	4	1228
256	13	24	1621	4	1910
256	14	24	2179	4	1722

- MiniZinc model solved with Picat-SAT
- |K| = size of key (in bits)
- r = number of rounds \rightsquigarrow Stop when $p_{max} \ge 2^{|K|}$
- *v** = objective function value
- t = time in seconds
- #T = number of TDCs

One instance is still out of reach!

From ModRef 2014 to ModRef 2024

Differential cryptanalysis of symmetric block ciphers

- 2) First CP model for Step1 (ModRef 2014)
- 3 Second CP model for Step1 (CP 2016)

Third CP model for Step1 (AIJ 2020)

- 5) Integration with Step2
- 6 Automatic model generation (CP 2021 and Indocrypt 2023)

Conclusion

Generation of new XOR equations [GMLS20]

What's wrong with the second model? Example coming from KS:

Let $A = K_{0,0,3}$, $B = K_{1,0,2}$, $C = K_{1,0,3}$, $D = K_{2,0,1}$, $E = K_{2,0,2}$, $F = K_{2,0,3}$. We have: $(\delta A \oplus \delta B \oplus \delta C = 0) \land (\delta B \oplus \delta D \oplus \delta E = 0) \land (\delta C \oplus \delta E \oplus \delta F = 0)$

- At the byte level, $\delta D = \delta F = 0 \Rightarrow \delta A = 0$
- At the Boolean level, $\Delta D = \Delta F = 0 \Rightarrow \Delta A = 0$

dea: Generate new XOR constraints to tighten the abstraction

From $\delta A_1 \oplus \ldots \oplus \delta A_n = 0$ and $\delta B_1 \oplus \ldots \oplus \delta B_m = 0$, we generate: $\bigoplus_{C \in \{A_1, \ldots, A_n\} \cup \{B_1, \ldots, B_m\} \setminus \{A_1, \ldots, A_n\} \cap \{B_1, \ldots, B_m\}} \delta C = 0$

Example:

 $(\delta A \oplus \delta B \oplus \delta C = 0) \land (\delta B \oplus \delta D \oplus \delta E = 0) \Rightarrow (\delta A \oplus \delta C \oplus \delta D \oplus \delta E = 0)$ $(\delta A \oplus \delta C \oplus \delta D \oplus \delta E = 0) \land (\delta C \oplus \delta E \oplus \delta F = 0) \Rightarrow (\delta A \oplus \delta D \oplus \delta F = 0)$

• At the Boolean level, $\Delta D = \Delta F = 0 \Rightarrow \Delta A = 0$

[[]GMLS20] Gerault, Lafourcade, Minier, Solnon: Computing AES related-key differential characteristics with CP. In AIJ 2020

Generation of new XOR equations [GMLS20]

What's wrong with the second model? Example coming from KS:

Let $A = K_{0,0,3}$, $B = K_{1,0,2}$, $C = K_{1,0,3}$, $D = K_{2,0,1}$, $E = K_{2,0,2}$, $F = K_{2,0,3}$. We have: $(\delta A \oplus \delta B \oplus \delta C = 0) \land (\delta B \oplus \delta D \oplus \delta E = 0) \land (\delta C \oplus \delta E \oplus \delta F = 0)$

- At the byte level, $\delta D = \delta F = 0 \Rightarrow \delta A = 0$
- At the Boolean level, $\Delta D = \Delta F = 0 \Rightarrow \Delta A = 0$

Idea: Generate new XOR constraints to tighten the abstraction

From $\delta A_1 \oplus \ldots \oplus \delta A_n = 0$ and $\delta B_1 \oplus \ldots \oplus \delta B_m = 0$, we generate: $\bigoplus_{C \in \{A_1, \ldots, A_n\} \cup \{B_1, \ldots, B_m\} \setminus \{A_1, \ldots, A_n\} \cap \{B_1, \ldots, B_m\}} \delta C = 0$

Example:

$$(\delta A \oplus \delta B \oplus \delta C = 0) \land (\delta B \oplus \delta D \oplus \delta E = 0) \Rightarrow (\delta A \oplus \delta C \oplus \delta D \oplus \delta E = 0)$$
$$(\delta A \oplus \delta C \oplus \delta D \oplus \delta E = 0) \land (\delta C \oplus \delta E \oplus \delta F = 0) \Rightarrow (\delta A \oplus \delta D \oplus \delta F = 0)$$

• At the Boolean level, $\Delta D = \Delta F = 0 \Rightarrow \Delta A = 0$

[[]GMLS20] Gerault, Lafourcade, Minier, Solnon: Computing AES related-key differential characteristics with CP. In AIJ 2020

Generation of new XOR equations (2/2)

Number of new equations for AES128:

- *r* = 4: 988
- *r* = 5: 16332
- r = 6: CPU time exceeds one hour

Number of new equations when limiting the size to 4:

	AES128	AES192	AES256
# Initial eq.	144	168	192
# new eq. with 3 bytes	122	168	144
# new eq. with 4 bytes	1104	1696	1256

- CPU time always smaller than 0.1s
- Proof of completeness by Jérémie Detrey

Experimental comparison of models 2 and 3

	Step1-opt				Step1-enum				
	Model 2		Model 3		Model 2		Model 3		
	V *	t	V *	t	# T	t	#T	t	
AES-128-4	12	21	12	14	8	74	8	38	
AES-128-5	17	44	17	33	1113	32340	1113	22869	
AES-192-4	4	8	4	5	4	12	4	7	
AES-192-5	5	14	5	8	2	13	2	9	
AES-192-6	10	34	10	18	6	65	6	45	
AES-192-7	13	72	13	37	4	98	4	66	
AES-192-8	18	205	18	73	8	752	8	333	
AES-192-9	24	2527	24	520	240	43359	240	13524	
AES-192-10	27	3715	29	3285	27548	-	602	216120	
AES-256-4	3	8	3	7	14	38	14	25	
AES-256-5	3	13	3	8	4	21	4	15	
AES-256-6	5	25	5	17	3	29	3	20	
AES-256-7	5	48	5	47	1	22	1	15	
AES-256-8	10	61	10	49	3	76	3	52	
AES-256-9	15	172	15	106	16	705	16	430	
AES-256-10	16	236	16	112	4	385	4	224	
AES-256-11	20	488	20	286	4	705	4	312	
AES-256-12	20	625	20	140	4	1228	4	463	
AES-256-13	24	1621	24	822	4	1910	4	597	
AES-256-14	24	2179	24	682	4	1722	4	607	

From ModRef 2014 to ModRef 2024

- Differential cryptanalysis of symmetric block ciphers
- 2 First CP model for Step1 (ModRef 2014)
- 3) Second CP model for Step1 (CP 2016)
- 4) Third CP model for Step1 (AIJ 2020)
- Integration with Step2
- Automatic model generation (CP 2021 and Indocrypt 2023)
- Conclusion

Overview of the complete process (recall)

Initialize p_{max} to 0

3 Search for a TDC that minimizes $v = \sum_{i,j,k} \Delta X_{i,j,k} + \sum_{i,j} \Delta K_{i,j,3}$

(Step1opt)

3 If $2^{-6*\nu} < 2^{-|K|}$ then Stop (the cipher is indistinguishable from random)

- **Output** Enumerate all TDCs s.t. $v = \sum_{i,j,k} \Delta X_{i,j,k} + \sum_{i,j} \Delta K_{i,j,3}$
 - For each TDC, search for a maximal differential characteristic
 → Update p_{max} if a greater probability is found
- **(**) If $p_{max} < 2^{-6*(v+1)}$ then increment *v* and go to (3)
- **o** return p_{max} and the corresponding differential characteristic

(Step1enum) (Step2)

Time for solving Step2 with Choco 3

	#Bool. sol.	#Byte sol.	р	<i>t</i> ₂	$\frac{t_2}{\#Bool. sol}$
AES-128-4	8	8	2 ⁻⁷⁵	40	5
AES-128-5	1113	97	2^{-105}	235086	211.2
AES-192-4	4	4	2 ⁻²⁴	13	3.3
AES-192-5	2	2	2 ⁻³⁰	11	5.5
AES-192-6	6	6	2^{-60}	35	5.8
AES-192-7	4	4	2^{-78}	46	11.5
AES-192-8	8	8	2^{-108}	119	14.9
AES-192-9	240	80	2^{-146}	35254	146.9
AES-192-10	602	202	2^{-176}	55310	91.9
AES-256-4	14	14	2 ⁻¹⁸	25	1.8
AES-256-5	4	4	2 ⁻¹⁸	12	3
AES-256-6	3	3	2 ⁻³⁰	11	3.7
AES-256-7	1	1	2 ⁻³⁰	9	8.8
AES-256-8	3	1	2^{-60}	19	6.3
AES-256-9	16	16	2 ⁻⁹²	457	28.6
AES-256-10	4	4	2 ⁻⁹⁸	160	40
AES-256-11	4	4	2^{-122}	178	44.5
AES-256-12	4	4	2^{-122}	237	59.3
AES-256-13	4	4	2 ⁻¹⁴⁶	244	61
AES-256-14	4	4	2 ⁻¹⁴⁶	302	75.5

Some instances are challenging!

Can we improve this?

New two-step decomposition [GLMS20]

Problem with the existing decomposition:

- 3 instances (128-5, 192-9, and 192-10) have many Boolean solutions
- Step 2 is time consuming on these instances, even if each Boolean solution is processed rather quickly

New decomposition: Shift the frontier between Steps 1 and 2

- Modify the goal of Step1-enum:
 - Old goal = Enumerate all Boolean solutions
 - New goal = Only consider variables that pass through Sboxes
 - \rightarrow Enumerate all consistent assignments of $\Delta X_i[j][k]$ and $\Delta K_i[j][3]$

[[]GMLS20] Gerault, Lafourcade, Minier, Solnon: Computing AES related-key differential characteristics with CP. In AIJ 2020

Experimental results

	New	Step 1	1			
	# T	t ₁	# B	<i>t</i> ₂	$\frac{t_2}{\#T}$	$t_1 + t_2$
AES-128-4	1	8	1	13	12.6	35
AES-128-5	103	1409	27	52313	507.9	53755
AES-192-4	2	4	2	7	3.5	16
AES-192-5	1	4	1	4	3.8	16
AES-192-6	2	11	2	14	7.0	43
AES-192-7	1	17	1	7	7.4	61
AES-192-8	1	57	1	8	8.2	138
AES-192-9	3	386	3	109	36.3	1015
AES-192-10	7	13558	7	281	40.1	17124
AES-256-4	10	14	10	24	2.4	45
AES-256-5	4	10	4	15	3.8	33
AES-256-6	3	12	3	16	5.3	45
AES-256-7	1	8	1	7	7.4	62
AES-256-8	2	18	2	14	7.0	81
AES-256-9	4	63	4	69	17.3	238
AES-256-10	1	41	1	45	45.3	198
AES-256-11	1	77	1	28	27.8	391
AES-256-12	1	89	1	35	35.2	264
AES-256-13	1	140	1	46	46.0	1008
AES-256-14	1	97	1	35	34.8	814

All instances but 2 are solved in less than 1h

- AES-128-5 solved in less than 15h
- AES-192-10 solved in less than 5h

~ Clear improvement over [BN10] and [FJP13]

New results and attacks:

- AES-128-4: p_{max} = 2⁻⁷⁹, greater than the solution given in [BN10] and [FJP13] (2⁻⁸¹)
- AES-256-14: $p_{max} = 2^{-146}$, greater than the solution given in [BKN09] (2⁻¹⁵⁴)
- Improvement of related-key distinguisher and related-key differential attack on the full AES-256 by a factor 64

Related CP models

- Computation of differential characteristics for other ciphers: MIDORI [GL16], SKINNY [DDH+21], Rijndael [RGM+22]
- Other differential cryptanalysis problems: Boomerang attacks on SKINNY [DDV20], Rijndael [RMS24], Rectangle attacks on WARP [LMR22]

Designing models is usually quite easy, but designing efficient models is much harder!

Can we automatically generate them?

- [DDV20] Delaune, Derbez, Vavrille: Catching the Fastest Boomerangs: Application to SKINNY. In IACR transactions on symmetric cryptology 2020
- [DDH+21] Delaune, Derbez, Huynh, Minier, Mollimard, Prud'Homme: *Efficient methods to search for best differential char*acteristics on SKINNY. In Applied Cryptography and Network Security 2021
- [RGM+22] Rouquette, Gérault, Minier, Solnon: And rijndael? Automatic related-key differential analysis of Rijndael. In AfricaCrypt 2022
- [LMR22] Lallemand, Minier, Rouquette: Automatic search of rectangle attacks on feistel ciphers: application to WARP. In IACR Transactions on Symmetric Cryptology 2022
- [RMS24] Rouquette, Minier, Solnon: Automatic boomerang attacks search on Rijndael. In Mathematical Cryptology 2024

[[]GL16] Gérault, Lafourcade: Related-key cryptanalysis of MIDORI. In INDOCRYPT, 2016

From ModRef 2014 to ModRef 2024

- Differential cryptanalysis of symmetric block ciphers
- 2 First CP model for Step1 (ModRef 2014)
- 3 Second CP model for Step1 (CP 2016)
- 4 Third CP model for Step1 (AIJ 2020)
- 5 Integration with Step2
- Automatic model generation (CP 2021 and Indocrypt 2023)
- Conclusion

Overview of Tagada https://gitlab.com/tagada-framework/tagada

Input: Description of the cipher by means of a DAG

- Arcs connect operators to their parameters

~ Correctness tested with initialisation vectors

Output:

- MiniZinc model for computing TDCs (Step1-opt and Step1-enum) [LDL+21]
- Choco model for computing a maximal DC given a TDC (Step2) [DDG+23]

 [[]LDL+21] L. Libralesso, F. Delobel, P. Lafourcade, C. Solnon: Automatic generation of declarative models for differential cryptanalysis. In CP 2021
 [DDG+23] F. Delobel, P. Derbez, A. Gontier, L. Rouquette, C. Solnon: A CP-based Automatic Tool for Instantiating Truncated Differential Characteristics. In INDOCRYPT 2023

Generation of MiniZing models for computing TDCs

1: Automatic generation of a table constraint for each operator o

• Generate the table of all consistent boolean tuples using the executable function of o

2: Simplify the DAG

- Merge equal parameters
- Suppress constant and free parameters

3: Extend the DAG to tighten the abstraction

- Generate *diff* variables
- Generate new XORs

4: Generate a MiniZinc model from the DAG

- Declare a boolean variable for each parameter
- Post a constraint for each operator
- Declare an integer variable corresponding to the number of active S-boxes

Experimental results: Midori

Experimental results: AES

(See [LDL+21] for results on Skinny and Craft and [DDG+23] for Step2 results on Midori, Warp, Twine, Skinny, and Rijndael)

[[]LDL+21] L. Libralesso, F. Delobel, P. Lafourcade, C. Solnon: Automatic generation of declarative models for differential cryptanalysis. In CP 2021

[[]DDG+23] F. Delobel, P. Derbez, A. Gontier, L. Rouquette, C. Solnon: A CP-based Automatic Tool for Instantiating Truncated Differential Characteristics. In INDOCRYPT 2023

From ModRef 2014 to ModRef 2024

- Differential cryptanalysis of symmetric block ciphers
- 2 First CP model for Step1 (ModRef 2014)
- 3 Second CP model for Step1 (CP 2016)
- 4) Third CP model for Step1 (AIJ 2020)
- 5 Integration with Step2
- Automatic model generation (CP 2021 and Indocrypt 2023)

Conclusion

Conclusion

Differential cryptanalysis is a very nice application for CP

- Step1 is easy to model with MiniZinc or XCSP3
 - Advanced constraints must be added to tighten the abstraction
 - Tagada can automatically infer very efficient models from cipher specifications
 - SAT solvers are more efficient than CP solvers
- Step2: Table constraints allow us to easily model non linear operators

Further work: Extensions of Tagada

- Other attacks: Boomerang, related-tweak, ...
- Use dynamic programming to solve Step1
- Study variable and value ordering heuristics

Further work: Certification

Can we automatically build mathematical proofs?