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Symmetric Ciphers

Plaintext X

Encryption EK

Ciphertext EK (X)

Decryption DK

Plaintext DK (EK (X)) = X

Secret key K

Same secret key K used for encryption and decryption
 DK = E−1

K

Plaintext and ciphertext are split into blocks
 Typically: 1 block = 4× 4 bytes = 128 bits
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AES-128: Advanced Encryption Standard with 128-bit keys
 Standard block cipher since 2001

Operations applied at each round i ∈ [0, r − 1] for AES-128:

Key K = K0
(4×4 bytes)

KS

KS
Subkey Ki+1

ARK

XiPlaintext X
(4×4 bytes)

ARK

SB

SXi

SR MC

(i 6=r−1)

Yi Zi Xr = AESK (X)

Ciphertext

Initialization:

X0 = ARK (X ,K )

K0 = K

For each round i ∈ [0, r −1]:

SXi = SB(Xi )

Yi = SR(SXi )

Zi = MC(Yi )

Xi+1 = ARK (Zi ,Ki+1)
with Ki+1 = KS(Ki )

Return Xr
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Cryptanalysis

Goal: Analyse ciphers to detect weaknesses

Confidentiality: Is it possible to retrieve the plaintext (under some given attack conditions)?

This must be done for each new cipher...
...and new ciphers are designed every year!

Examples of symmetric block ciphers:

AES, Craft, Deoxys, Gift, Midori, Present, Skinny, Simon, Speck, ...
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Differential Cryptanalysis [BS91]

How to inject differences with eXclusive OR (XOR)?

Notation: ⊕ = XOR operator (i.e., 0⊕ 0 = 1⊕ 1 = 0 and 0⊕ 1 = 1⊕ 0 = 1)
 Extended to bitstrings (e.g., 00110⊕ 01101 = 01011)

To inject a difference at bit k of bitstring M, XOR M with bitstring with only one ’1’ at position k

Differential cryptanalysis exploits differences to
recover the key:

Let δX = X ⊕ X ′ be an input plaintext difference

Let δY = EK (X )⊕ EK (X ′) be the output difference

The cipher is weak if ∃ δX and δY such that
Pr [δY |δX ] >> 2−|K |

 Key recovery in O(1/Pr [δY |δX ])

[BS91] E. Biham and A. Shamir: Differential cryptoanalysis of feal and n-hash. In EUROCRYPT 1991
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Related-Key Attack [Bih93]

Inject differences in texts and keys:

Let δX = X ⊕ X ′ be an input plaintext difference

Let δK = K ⊕ K ′ be an input key difference

Let δY = EK (X )⊕ EK ′(X ′) be the output difference

The cipher is weak if ∃ δX , δK , and δY such that
Pr [δY |δX , δK ] >> 2−|K |

 Key recovery in O(1/Pr [δY |δX , δK ])

Differential Characteristic:
Plaintext and key differences for each round of the ciphering process

Goal:
Compute a differential characteristic the probability of which is maximal

[Bih93] E. Biham: New types of cryptoanalytic attacks using related keys. In EUROCRYPT 1993
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Example: Differential Characteristic for AES-128
Key K = K0
(4×4 bytes)

KS

KS
Subkey Ki+1

ARK

Xi

Plaintext X
(4×4 bytes)

ARK

SB

SXi

SR MC

(i 6=r−1)

Yi Zi Xr = AESK (X)

Ciphertext

Notations for bytes (during ciphering):

Ki,j,k = byte at column j and row k of
subkey at round i
Xi,j,k = byte at column j and row k of
text at round i
Same for SXi,j,k ,Yi,j,k , ...

 Every byte has a value in [0,255]

xxx
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Example: Differential Characteristic for AES-128
δK0 = K0 ⊕ K ′0

KS

KS
δKi+1 = Ki+1 ⊕ K ′i+1

ARK

δXi = Xi ⊕ X ′iδXi = Xi ⊕ X ′i

δX = X ⊕ X ′

ARK

SB

δSXi = SXi ⊕ SX ′i

SR MC

(i 6=r−1)

δYi = Yi ⊕ Y ′i δZi = Zi ⊕ Z ′i δXr = Xr ⊕ X ′r

Notations for bytes (during ciphering):

Ki,j,k = byte at column j and row k of
subkey at round i
Xi,j,k = byte at column j and row k of
text at round i
Same for SXi,j,k ,Yi,j,k , ...

 Every byte has a value in [0,255]

xxx

Notations for differential bytes (in differential
characteristics):

δKi,j,k = Ki,j,k ⊕ K ′i,j,k
δXi,j,k = Xi,j,k ⊕ X ′i,j,k
Same for δSXi,j,k , δYi,j,k , ...

 Every differential byte has a value in [0,255]

xxx
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Example: Differential Characteristic for AES-128
δK0 = K0 ⊕ K ′0

KS

KS
δKi+1 = Ki+1 ⊕ K ′i+1

ARK

δXi = Xi ⊕ X ′iδXi = Xi ⊕ X ′i

δX = X ⊕ X ′

ARK

SBSB

δSXi = SXi ⊕ SX ′i

SR MC

(i 6=r−1)

δYi = Yi ⊕ Y ′i δZi = Zi ⊕ Z ′i δXr = Xr ⊕ X ′r

SB operator for ciphering:

SXi,j,k = s(Xi,j,k )

where s : [0,255]→ [0,255] is a bijection
defined by a look-up table

xxx

SB constraint for differential characteristic:

(δXi,j,k , δSXi,j,k ) ∈ Tsbox

where Tsbox = {(a⊕ a′, s(a)⊕ s(a′)) | a,a′ ∈ [0,255]}

xxx
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Example: Differential Characteristic for AES-128
δK0 = K0 ⊕ K ′0

KS

KS
δKi+1 = Ki+1 ⊕ K ′i+1

ARK

δXi = Xi ⊕ X ′iδXi = Xi ⊕ X ′i

δX = X ⊕ X ′

ARK

SB

δSXi = SXi ⊕ SX ′i

SRSR MC

(i 6=r−1)

δYi = Yi ⊕ Y ′i δZi = Zi ⊕ Z ′i δXr = Xr ⊕ X ′r

SR operator for ciphering:

Yi,j,k = SXi,j,(k+j)%4

 Simple byte shifting

xxx

SR constraint for differential characteristic:

δYi,j,k = δSXi,j,(k+j)%4
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Example: Differential Characteristic for AES-128
δK0 = K0 ⊕ K ′0

KS

KS
δKi+1 = Ki+1 ⊕ K ′i+1

ARK

δXi = Xi ⊕ X ′iδXi = Xi ⊕ X ′i

δX = X ⊕ X ′

ARK

SB

δSXi = SXi ⊕ SX ′i

SR MCMC

(i 6=r−1)

δYi = Yi ⊕ Y ′i δZi = Zi ⊕ Z ′i δXr = Xr ⊕ X ′r

MC operator for ciphering:

Zi,j,k = Mj,0 ⊗ Yi,0,k

⊕ Mj,1 ⊗ Yi,1,k

⊕ Mj,2 ⊗ Yi,2,k

⊕ Mj,3 ⊗ Yi,3,k

Where M is a given 4× 4 matrix, and ⊗ is
a finite field multiplication operator

xxx

MC constraint for differential characteristic:

δZi,j,k = Mj,0 ⊗ δYi,0,k

⊕ Mj,1 ⊗ δYi,1,k

⊕ Mj,2 ⊗ δYi,2,k

⊕ Mj,3 ⊗ δYi,3,k

Because (a⊗ b)⊕ (a⊗ b′) = a⊗ (b ⊕ b′)

xxx
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Example: Differential Characteristic for AES-128
δK0 = K0 ⊕ K ′0

KS

KS
δKi+1 = Ki+1 ⊕ K ′i+1

ARK

δXi = Xi ⊕ X ′iδXi = Xi ⊕ X ′i

δX = X ⊕ X ′

ARK

SB

δSXi = SXi ⊕ SX ′i

SR MC

(i 6=r−1)

δYi = Yi ⊕ Y ′i δZi = Zi ⊕ Z ′i δXr = Xr ⊕ X ′r

KS operator for ciphering:

Row 0:
Ki+1,j,0 = SKi,(j+1)%4,3 ⊕ Ki,j,0
where SKi,j,3 = s(Ki,j,3)

Row k > 0:
Ki+1,j,k = Ki+1,j,k−1 ⊕ Ki,j,k

xxx

KS constraint for differential characteristic:

Row 0:
δKi+1,j,0 = δSKi,(j+1)%4,3 ⊕ δKi,j,0
where (δKi,j,3, δSKi,j,3) ∈ Tsbox

Row k > 0: δKi+1,j,k = δKi+1,j,k−1 ⊕ δKi,j,k

xxx
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Full model for computing differential characteristics for AES-128

SB: ∀i ∈ [0, r − 1],∀j , k ∈ [0,3], (δXi,j,k , δSXi,j,k ) ∈ Tsbox

SR: ∀i ∈ [0, r − 1],∀j , k ∈ [0,3], δYi,j,k = δSXi,j,(k+j)%4

MC:
∀i ∈ [0, r −2],∀j , k ∈ [0,3], δZi,j,k = Mj,0⊗ δYi,0,k ⊕Mj,1⊗ δYi,1,k ⊕Mj,2⊗ δYi,2,k ⊕Mj,3⊗ δYi,3,k

ARK:
∀j , k ∈ [0,3], δX0,j,k = δK0,j,k ⊕ δXj,k
∀i ∈ [0, r − 1],∀j , k ∈ [0,3], δXi+1,j,k = δKi,j,k ⊕ δZi,j,k

SK:
∀i ∈ [0, r − 1],∀j ∈ [0,3], δKi+1,j,0 = δSKi,(j+1)%4,3 ⊕ δKi,j,0
∀i ∈ [0, r − 1],∀j ∈ [0,3], (δKi,j,3, δSKi,j,3) ∈ Tsbox
∀i ∈ [0, r − 1],∀j ∈ [0,3],∀k ∈ [1,3], δKi+1,j,k = δKi+1,j,k−1 ⊕ δKi,j,k

How to transform this model into a CP model?

Introduce a table for the ternary XOR relation: T⊕ = {(a,b,a⊕ b) | a,b ∈ [0,255]}

Decompose MC into relations of smaller arity
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CP model for computing differential characteristics for AES-128

SB: ∀i ∈ [0, r − 1],∀j , k ∈ [0,3], (δXi,j,k , δSXi,j,k ) ∈ Tsbox

SR: ∀i ∈ [0, r − 1],∀j , k ∈ [0,3], δYi,j,k = δSXi,j,(k+j)%4

MC: ∀i ∈ [0, r − 2],∀j , k ∈ [0,3],

(δYi,x,k ,Ax ) ∈ Tx where Tx = {(y , y ⊗Mx ) | y ∈ [0,255]} ∀x ∈ {(j ,0), (j ,1), (j ,2), (j ,3)}
(Aj,0,Aj,1,B) ∈ T⊕
(Aj,2,Aj,3,C) ∈ T⊕
(B,C, δZi,j,k ) ∈ T⊕

ARK:
∀j , k ∈ [0,3], (δX0,j,k , δK0,j,k , δXj,k ) ∈ T⊕
∀i ∈ [0, r − 1],∀j , k ∈ [0,3], (δXi+1,j,k , δKi,j,k , δZi,j,k ) ∈ T⊕

SK:
∀i ∈ [0, r − 1],∀j ∈ [0,3], (δKi+1,j,0, δSKi,(j+1)%4,3, δKi,j,0) ∈ T⊕
∀i ∈ [0, r − 1],∀j ∈ [0,3], (δKi,j,3, δSKi,j,3) ∈ Tsbox
∀i ∈ [0, r − 1],∀j ∈ [0,3],∀k ∈ [1,3], (δKi+1,j,k , δKi+1,j,k−1, δKi,j,k ) ∈ T⊕
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Probability of a differential characteristic
δK

KS

KS
δKi+1

ARK

δXiδX

ARK

SB

δSXi

SR MC

(i 6=r−1)

δYi δZi δXr

ARK, SR, MC: output differences are computed from input differences with probability 1

SB: probability of observing an output difference δout given an input difference δin

When δin = δout = 0: p(δout |δin) = 1
Otherwise: p(δout |δin) ∈ {0,2−7,2−6}

 Introduce a variable PδA for each differential byte that passes through SB (in red)
 Relate PδA with δA and δSA: (δA, δSA,PδA) ∈ Tsbox where

Tsbox = {(δin, δout , log2(p(δout |δin))) | δin, δout ∈ [0,255],p(δout |δin > 0}
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CP model for computing maximal differential characteristics for AES-128

Maximize
∑

i,j,k PδXi,j,k +
∑

i,j PδKi,j,3

SB: ∀i ∈ [0, r − 1],∀j , k ∈ [0,3], (δXi,j,k , δSXi,j,k ,PδXi,j,k ) ∈ Tsbox

SR: ∀i ∈ [0, r − 1],∀j , k ∈ [0,3], δYi,j,k = δSXi,j,(k+j)%4

MC: ∀i ∈ [0, r − 2],∀j , k ∈ [0,3],

(δYi,x,k ,Ax ) ∈ Tx where Tx = {(y , y ⊗Mx ) | y ∈ [0,255]} ∀x ∈ {(j ,0), (j ,1), (j ,2), (j ,3)}
(Aj,0,Aj,1,B) ∈ T⊕
(Aj,2,Aj,3,C) ∈ T⊕
(B,C, δZi,j,k ) ∈ T⊕

ARK:
∀j , k ∈ [0,3], (δX0,j,k , δK0,j,k , δXj,k ) ∈ T⊕
∀i ∈ [0, r − 1],∀j , k ∈ [0,3], (δXi+1,j,k , δKi,j,k , δZi,j,k ) ∈ T⊕

SK:
∀i ∈ [0, r − 1],∀j ∈ [0,3], (δKi+1,j,0, δSKi,(j+1)%4,3, δKi,j,0) ∈ T⊕
∀i ∈ [0, r − 1],∀j ∈ [0,3], (δKi,j,3, δSKi,j,3,PδKi,j,3 ) ∈ Tsbox
∀i ∈ [0, r − 1],∀j ∈ [0,3],∀k ∈ [1,3], (δKi+1,j,k , δKi+1,j,k−1, δKi,j,k ) ∈ T⊕
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Two step solving process [Knu95]

Step 1: Compute an optimal Truncated Differential Characteristic (TDC)

Each differential byte δB = B ⊕ B′ is abstracted to a boolean ∆B
 ∆B = 0 if B = B′; ∆B = 1 if B 6= B′

Minimise the number of boolean variables ∆Xi,j,k and ∆Ki,j,3 set to 1:
If δXi,j,k = 0 then δSXi,j,k = 0 and p(δSXi,j,k |δXi,j,k ) = 1
Otherwise p(δSXi,j,k )|δXi,j,k ) ∈ {0,2−7,2−6}

∆K0

KS

KS
∆Ki+1

ARK

∆Xi∆X

ARK

SB

∆SXi

SR MC
(i 6=r−1)

∆Yi ∆Zi ∆Xr

[Knu95] L. Knudsen: Truncated and higher order differentials. In Fast Software Encryption 1995
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Two step solving process [Knu95]

Step 1: Compute an optimal Truncated Differential Characteristic (TDC)

Each differential byte δB = B ⊕ B′ is abstracted to a boolean ∆B
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Minimise the number of boolean variables ∆Xi,j,k and ∆Ki,j,3 set to 1:
If δXi,j,k = 0 then δSXi,j,k = 0 and p(δSXi,j,k |δXi,j,k ) = 1
Otherwise p(δSXi,j,k )|δXi,j,k ) ∈ {0,2−7,2−6}

Step 2: Use the optimal TDC to tighten domains

For each boolean ∆B: If ∆B = 0 then set δB to 0; otherwise set the domain of δB to [1,255]

If no solution: The TDC is byte-inconsistent
If there are solutions: Search for the differential characteristic with maximal probability

[Knu95] L. Knudsen: Truncated and higher order differentials. In Fast Software Encryption 1995
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Overview of the complete process

1 Initialize pmax to 0

2 Search for a TDC that minimizes v =
∑

i,j,k ∆Xi,j,k +
∑

i,j ∆Ki,j,3 (Step1opt)

3 If 2−6∗v < 2−|K | then Stop (the cipher is indistinguishable from random)

4 Enumerate all TDCs s.t. v =
∑

i,j,k ∆Xi,j,k +
∑

i,j ∆Ki,j,3 (Step1enum)

For each TDC, search for a maximal differential characteristic (Step2)
 Update pmax if a greater probability is found

5 If pmax < 2−6∗(v+1) then increment v and go to (3)

6 return pmax and the corresponding differential characteristic
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Existing dedicated approaches for Step1

[BN10]: Branch & Bound

|K | = 128: Several days of CPU time
|K | = 192: Several weeks of CPU time

[FJP13]: Dynamic Programming

|K | = 128: 30mn of CPU time (on 12 cores)
... but memory complexity in O(232) = 60 GB
Cannot be extended to |K | = 192 or 256

In both cases: Difficult and time-consuming programming work

Checking the correctness of the program is not straightforward
Nothing is said about Step 2

[BN10] Biryukov, Nikolic: Automatic search for related-key differential characteristics in byte-oriented block ciphers: Appli-
cation to AES, camellia, khazad and others. In Advances in Cryptology 2010

[FJP13] Fouque, Jean, Peyrin: Structural evaluation of AES and chosen-key distinguisher of 9-round AES-128. In CRYPTO
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From ModRef 2014 to ModRef 2024

1 Differential cryptanalysis of symmetric block ciphers

2 First CP model for Step1 (ModRef 2014)

3 Second CP model for Step1 (CP 2016)

4 Third CP model for Step1 (AIJ 2020)

5 Integration with Step2

6 Automatic model generation (CP 2021 and Indocrypt 2023)
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δK0 = K0 ⊕ K ′0

KS

KS
δKi+1 = Ki+1 ⊕ K ′i+1

ARK

δXi = Xi ⊕ X ′i

δX = X ⊕ X ′

ARK

SB

δSXi = SXi ⊕ SX ′i

SR MC

(i 6=r−1)

δYi = Yi ⊕ Y ′i δZi = Zi ⊕ Z ′i δXr = Xr ⊕ X ′r

Byte var. for differential characteristics:

δKi,j,k = Ki,j,k ⊕ K ′i,j,k
δXi,j,k = Xi,j,k ⊕ X ′i,j,k
Same for δSXi,j,k , δYi,j,k , ...

 Domain = [0,255]
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∆K0

KS

KS
∆Ki+1

ARK

∆Xi

∆X

ARK

SB

∆SXi

SR MC

(i 6=r−1)

∆Yi ∆Zi ∆Xr

Byte var. for differential characteristics:

δKi,j,k = Ki,j,k ⊕ K ′i,j,k
δXi,j,k = Xi,j,k ⊕ X ′i,j,k
Same for δSXi,j,k , δYi,j,k , ...

 Domain = [0,255]

Boolean variables for TDC:
∆Ki,j,k = 0 if Ki,j,k = K ′i,j,k ; 1 otherwise
∆Xi,j,k = 0 if Xi,j,k = X ′i,j,k ; 1 otherwise
Same for ∆SXi,j,k ,∆Yi,j,k , ...

 Domain = {0,1}
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∆K0

KS

KS
∆Ki+1

ARK

∆Xi

∆X

ARK

SBSB

∆SXi

SR MC

(i 6=r−1)

∆Yi ∆Zi ∆Xr

SB constraint for differential characteristics:

(δXi,j,k , δSXi,j,k ,PδXi,j,k ) ∈ Tsbox

where Tsbox = {(δin, δout ,− log2(p(δout |δin)))}

either δin = δout = 0 and p(δout |δin) = 1

or δin 6= 0, δout 6= 0 and
p(δout |δin) ∈ {2−6,2−7}

SB constraint for TDC:

∆SXi,j,k = ∆Xi,j,k
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KS

KS
∆Ki+1

ARK

∆Xi

∆X

ARK

SB

∆SXi

SRSR MC

(i 6=r−1)

∆Yi ∆Zi ∆Xr

SR constraint for differential characteristics:

δYi,j,k = δSXi,j,(k+j)%4

SR constraint for TDC:

∆Yi,j,k = ∆SXi,j,(k+j)%4
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∆K0

KS

KS
∆Ki+1

ARK

∆Xi

∆X

ARK

SB

∆SXi

SR MCMC

(i 6=r−1)

∆Yi ∆Zi ∆Xr

MC constraint for differential characteristics:

δZi,j,k = Mj,0 ⊗ δYi,0,k

⊕ Mj,1 ⊗ δYi,1,k

⊕ Mj,2 ⊗ δYi,2,k

⊕ Mj,3 ⊗ δYi,3,k

MDS property:
3∑

j=0

(δYi,j,k 6= 0) + (δZi,j,k 6= 0) ∈ {0,5,6,7,8}

MC constraint for TDC:
3∑

j=0

∆Yi,j,k + ∆Zi,j,k ∈ {0,5,6,7,8}
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∆K0

KS

KS
∆Ki+1

ARKARK

∆Xi

∆X

ARKARK

SB

∆SXi

SR MC

(i 6=r−1)

∆Yi ∆Zi ∆Xr

ARK constraint for differential characteristics:
δX0,j,k = δK0,j,k ⊕ δXj,k

δXi+1,j,k = δKi,j,k ⊕ δZi,j,k

XOR at the byte level:
0⊕ 0 = 0
0⊕ x = x ,∀x ∈ [1,255]

x ⊕ 0 = x ,∀x ∈ [1,255]

x ⊕ x = 0,∀x ∈ [1,255]

x ⊕ y 6= 0,∀x , y ∈ [1,255] if x 6= y

ARK constraint for TDC:
∆X0,j,k + ∆K0,j,k + ∆Xj,k 6= 1
∆Xi+1,j,k + ∆Ki+1,j,k + ∆Zi,j,k 6= 1

∆B1 = ∆B2 ⊕∆B3 at the boolean level:

(∆B1,∆B2,∆B3) ∈ { (0, 0, 0),
(0, 1, 1),
(1, 0, 1),
(1, 1, 0),
(1, 1, 1)}
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∆K0

KS

KS
∆Ki+1

ARK

∆Xi

∆X

ARK

SB

∆SXi

SR MC

(i 6=r−1)

∆Yi ∆Zi ∆Xr

KS constraint for differential characteristics:

δKi+1,j,0 = δSKi,(j+1)%4,3 ⊕ δKi,j,0

(δKi,j,3, δSKi,j,3,PKi,j,3 ) ∈ Tsbox

δKi+1,j,k = δKi+1,j,k−1 ⊕ δKi,j,k

KS constraint for TDC:

∆Ki+1,j,0 + ∆SKi,(j+1)%4,3 + ∆Ki,j,0 6= 1

∆SKi,j,3 = ∆Ki,j,3

∆Ki+1,j,k + ∆Ki+1,j,k−1 + ∆Ki,j,k 6= 1
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First CP model for Step1 [MSR14]

Objective function: v =
∑

i,j,k ∆Xi,j,k +
∑

i,j ∆Ki,j,3

SB: ∀i ∈ [0, r − 1],∀j , k ∈ [0,3],∆Xi,j,k = ∆SXi,j,k

SR: ∀i ∈ [0, r − 1],∀j , k ∈ [0,3],∆Yi,j,k = ∆SXi,j,(k+j)%4

MC: ∀i ∈ [0, r − 2],∀j , k ∈ [0,3],
∑3

j=0 ∆Yi,j,k + ∆Zi,j,k ∈ {0,5,6,7,8}
ARK:

∀j , k ∈ [0,3],∆X0,j,k + ∆K0,j,k + ∆Xj,k 6= 1
∀i ∈ [0, r − 1],∀j , k ∈ [0,3],∆Xi+1,j,k + ∆Ki,j,k + ∆Zi,j,k 6= 1

SK:
∀i ∈ [0, r − 1],∀j ∈ [0,3],∆Ki+1,j,0 + ∆SKi,(j+1)%4,3 + ∆Ki,j,0 6= 1
∀i ∈ [0, r − 1],∀j ∈ [0,3],∆Ki,j,3 = ∆SKi,j,3
∀i ∈ [0, r − 1],∀j ∈ [0,3],∀k ∈ [1,3],∆Ki+1,j,k + ∆Ki+1,j,k−1 + ∆Ki,j,k 6= 1

Ordering heuristics:

First choose variables that occur in the objective function
First assign them to 0

[MSR14] M. Minier, C. Solnon, J. Reboul: Solving a Symmetric Key Cryptographic Problem with CP. In ModRef 2014
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Experimental results for enumerating all TDCs for AES-128

r v Byte Bool. Gecode Choco 4 Chuffed
sol. sol. Time CP Time CP Time CP

3 2 0 0 0.0 9e1 0.0 4e1 0.0 5e1

3 3 0 5e2 0.1 2e3 0.4 2e3 0.0 7e2

3 4 0 5e3 1.3 2e4 1.8 1e4 0.2 5e3

3 5 2 2e4 6.0 6e4 5.1 5e4 0.9 2e4

4 8 0 0 0.2 2e4 0.6 1e4 0.3 8e3

4 9 0 2e4 7.1 1e5 5.4 7e4 1.4 4e4

4 10 0 6e6 - - 1161.2 2e7 113.5 6e6

4 11 0 9e7 - - - - 1974.5 9e7

4 12 2 - - - - - - -

r = Number of rounds
v = Number of differences that pass through SB (active S-boxes)
CP = number of choice points in the search tree
 Chuffed explores less choice points and is faster

Problem of this first model: Most TDCs can’t be concretised to differential characteristics
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From ModRef 2014 to ModRef 2024

1 Differential cryptanalysis of symmetric block ciphers

2 First CP model for Step1 (ModRef 2014)

3 Second CP model for Step1 (CP 2016)

4 Third CP model for Step1 (AIJ 2020)

5 Integration with Step2

6 Automatic model generation (CP 2021 and Indocrypt 2023)

7 Conclusion
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New variables to model byte equalities [GMS16]

What’s wrong with the first CP model?
XOR constraints do not propagate equality relationships at the byte level

Example:

At byte level: (δa⊕ δb ⊕ δc = 0) ∧ (δa = δb)⇒ (δc = 0)

At Boolean level: ∆a + ∆b + ∆c 6= 1 ∧ (∆a = ∆b) 6⇒ (∆c = 0)

New variables and constraints to model byte equalities:

For each couple of differential bytes (δA, δB): diff δA,δB = 1⇔ δA 6= δB
Symmetry: diff δA,δB = diff δB,δA

Transitivity: diff δA,δB + diff δB,δC + diff δA,δC 6= 1
Relation with ∆ variables: diff δA,δB + ∆A + ∆B 6= 1

Too expensive (and useless) to maintain all relationships
 Limit to byte couples in a same row of a same group (δK , δY , and δZ )

[GMS16] D. Gerault, M. Minier, C. Solnon: CP models for chosen key differential cryptanalysis. In CP 2016
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Revisiting the XOR constraint

Definition of XOR in the first CP model: ∆B1 + ∆B2 + ∆B3 6= 1

Can we strengthen it by exploiting byte equalities?
Yes, because: ∆B1 = 0⇔ δB2 = δB3

New definition of XOR: Replace ∆B1 + ∆B2 + ∆B3 6= 1 with

(diff δB1,δB2 = ∆B3) ∧ (diff δB1,δB3 = ∆B2) ∧ (diff δB2,δB3 = ∆B1)

 Every XOR constraint “removes” 3 Boolean variables
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Propagation of MDS between different columns

∆K0 KS

KS

∆SKi [j][3] ∆Ki+1

∆Xi∆X

ARK

ARKSB

∆SXi

SR

∆Yi

MC

∆Zi ∆Xr

SB

∆SXr

MDS also holds when XORing different columns of δY and δZ :

∀i1, i2 ∈ [0, r − 2],∀k1, k2 ∈ [0,3], we have:∑3
j=0(δYi1,j,k1 ⊕ δYi2,j,k2 6= 0) + (δZi1,j,k1 ⊕ δZi2,j,k2 6= 0) ∈ {0,5,6,7,8}

New constraints to propagate MDS between different columns:

∀i1, i2 ∈ [0, r − 2],∀k1, k2 ∈ [0,3],∑3
j=0 diff δYi1,j,k1 ,δYi2,j,k2

+ diff δZi1,j,k1 ,δZi2,j,k2
∈ {0,5,6,7,8}
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Propagation of ARK at the byte level

∆K0 KS

KS

∆SKi [j][3] ∆Ki+1

∆Xi∆X

ARK

ARKSB

∆SXi

SR

∆Yi

MC

∆Zi ∆Xr

SB

∆SXr

ARK implies the following equations: ∀i1, i2 ∈ [0, r − 2],∀j , k1, k2 ∈ [0,3]:

δKi1+1,j,k1 ⊕ δZi1,j,k1 = δXi1+1,j,k1 and δKi2+1,j,k2 ⊕ δZi2,j,k2 = δXi2+1,j,k2

By xoring these two equations, we infer that:
(δKi1+1,j,k1 6= δKi2+1,j,k2 ) + (δZi1,j,k1 6= δZi2,j,k2 ) + (δXi1+1,j,k1 6= δXi2+1,j,k2 ) 6= 1

Corresponding constraint: ∀i1, i2 ∈ [0, r − 2],∀j , k1, k2 ∈ [0,3]:

diff δKi1+1,j,k1 ,δKi2+1,j,k2
+ diff δZi1,j,k1 ,δZi2,j,k2

+ ∆Xi1+1,j,k1 + ∆Xi2+1,j,k2 6= 1
(because (∆Xi1+1,j,k1 + ∆Xi2+1,j,k2 = 1)⇒ (δXi1+1,j,k1 6= δXi2+1,j,k2 ))
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Experimental results [GMS16]
Step1-opt Step1-enum

|K | r v∗ t #T t
128 3 5 4 4 6
128 4 12 21 8 74
128 5 17 44 1113 32340
192 3 1 3 15 16
192 4 4 8 4 12
192 5 5 14 2 13
192 6 10 34 6 65
192 7 13 72 4 98
192 8 18 205 8 752
192 9 24 2527 240 43359
192 10 27 3715 27548 > 2 weeks
256 3 1 3 33 39
256 4 3 8 14 38
256 5 3 13 4 21
256 6 5 25 3 29
256 7 5 48 1 22
256 8 10 61 3 76
256 9 15 172 16 705
256 10 16 236 4 385
256 11 20 488 4 705
256 12 20 625 4 1228
256 13 24 1621 4 1910
256 14 24 2179 4 1722

MiniZinc model solved with Picat-SAT

|K | = size of key (in bits)

r = number of rounds
 Stop when pmax ≥ 2|K |

v∗ = objective function value

t = time in seconds

#T = number of TDCs

One instance is still out of reach!
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Generation of new XOR equations [GMLS20]

What’s wrong with the second model? Example coming from KS:

Let A = K0,0,3, B = K1,0,2, C = K1,0,3, D = K2,0,1, E = K2,0,2, F = K2,0,3. We have:
(δA⊕ δB ⊕ δC = 0) ∧ (δB ⊕ δD ⊕ δE = 0) ∧ (δC ⊕ δE ⊕ δF = 0)

At the byte level, δD = δF = 0⇒ δA = 0
At the Boolean level, ∆D = ∆F = 0 6⇒ ∆A = 0

Idea: Generate new XOR constraints to tighten the abstraction

From δA1 ⊕ . . .⊕ δAn = 0 and δB1 ⊕ . . .⊕ δBm = 0, we generate:⊕
C∈{A1,...,An}∪{B1,...,Bm}\{A1,...,An}∩{B1,...,Bm} δC = 0

Example:

(δA⊕ δB ⊕ δC = 0) ∧ (δB ⊕ δD ⊕ δE = 0)⇒ (δA⊕ δC ⊕ δD ⊕ δE = 0)
(δA⊕ δC ⊕ δD ⊕ δE = 0) ∧ (δC ⊕ δE ⊕ δF = 0)⇒ (δA⊕ δD ⊕ δF = 0)

At the Boolean level, ∆D = ∆F = 0⇒ ∆A = 0

[GMLS20] Gerault, Lafourcade, Minier, Solnon: Computing AES related-key differential characteristics with CP. In AIJ 2020
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Generation of new XOR equations (2/2)

Number of new equations for AES128:

r = 4: 988

r = 5: 16332

r = 6: CPU time exceeds one hour

Number of new equations when limiting the size to 4:

AES128 AES192 AES256
# Initial eq. 144 168 192
# new eq. with 3 bytes 122 168 144
# new eq. with 4 bytes 1104 1696 1256

CPU time always smaller than 0.1s

Proof of completeness by Jérémie Detrey
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Experimental comparison of models 2 and 3
Step1-opt Step1-enum

Model 2 Model 3 Model 2 Model 3
v∗ t v∗ t #T t #T t

AES-128-4 12 21 12 14 8 74 8 38
AES-128-5 17 44 17 33 1113 32340 1113 22869
AES-192-4 4 8 4 5 4 12 4 7
AES-192-5 5 14 5 8 2 13 2 9
AES-192-6 10 34 10 18 6 65 6 45
AES-192-7 13 72 13 37 4 98 4 66
AES-192-8 18 205 18 73 8 752 8 333
AES-192-9 24 2527 24 520 240 43359 240 13524
AES-192-10 27 3715 29 3285 27548 - 602 216120
AES-256-4 3 8 3 7 14 38 14 25
AES-256-5 3 13 3 8 4 21 4 15
AES-256-6 5 25 5 17 3 29 3 20
AES-256-7 5 48 5 47 1 22 1 15
AES-256-8 10 61 10 49 3 76 3 52
AES-256-9 15 172 15 106 16 705 16 430
AES-256-10 16 236 16 112 4 385 4 224
AES-256-11 20 488 20 286 4 705 4 312
AES-256-12 20 625 20 140 4 1228 4 463
AES-256-13 24 1621 24 822 4 1910 4 597
AES-256-14 24 2179 24 682 4 1722 4 607
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Overview of the complete process (recall)

1 Initialize pmax to 0

2 Search for a TDC that minimizes v =
∑

i,j,k ∆Xi,j,k +
∑

i,j ∆Ki,j,3 (Step1opt)

3 If 2−6∗v < 2−|K | then Stop (the cipher is indistinguishable from random)

4 Enumerate all TDCs s.t. v =
∑

i,j,k ∆Xi,j,k +
∑

i,j ∆Ki,j,3 (Step1enum)

For each TDC, search for a maximal differential characteristic (Step2)
 Update pmax if a greater probability is found

5 If pmax < 2−6∗(v+1) then increment v and go to (3)

6 return pmax and the corresponding differential characteristic
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Time for solving Step2 with Choco 3

#Bool. sol. #Byte sol. p t2 t2
#Bool. sol

AES-128-4 8 8 2−75 40 5
AES-128-5 1113 97 2−105 235086 211.2
AES-192-4 4 4 2−24 13 3.3
AES-192-5 2 2 2−30 11 5.5
AES-192-6 6 6 2−60 35 5.8
AES-192-7 4 4 2−78 46 11.5
AES-192-8 8 8 2−108 119 14.9
AES-192-9 240 80 2−146 35254 146.9
AES-192-10 602 202 2−176 55310 91.9
AES-256-4 14 14 2−18 25 1.8
AES-256-5 4 4 2−18 12 3
AES-256-6 3 3 2−30 11 3.7
AES-256-7 1 1 2−30 9 8.8
AES-256-8 3 1 2−60 19 6.3
AES-256-9 16 16 2−92 457 28.6
AES-256-10 4 4 2−98 160 40
AES-256-11 4 4 2−122 178 44.5
AES-256-12 4 4 2−122 237 59.3
AES-256-13 4 4 2−146 244 61
AES-256-14 4 4 2−146 302 75.5

Some instances are challenging!

Can we improve this?
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New two-step decomposition [GLMS20]

Problem with the existing decomposition:

3 instances (128-5, 192-9, and 192-10) have many Boolean solutions

Step 2 is time consuming on these instances, even if each Boolean solution is processed
rather quickly

New decomposition: Shift the frontier between Steps 1 and 2

Modify the goal of Step1-enum:

Old goal = Enumerate all Boolean solutions
New goal = Only consider variables that pass through Sboxes
 Enumerate all consistent assignments of ∆Xi [j][k ] and ∆Ki [j][3]

[GMLS20] Gerault, Lafourcade, Minier, Solnon: Computing AES related-key differential characteristics with CP. In AIJ 2020
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Experimental results
New Step 1 New Step 2
#T t1 #B t2 t2

#T t1 + t2
AES-128-4 1 8 1 13 12.6 35
AES-128-5 103 1409 27 52313 507.9 53755
AES-192-4 2 4 2 7 3.5 16
AES-192-5 1 4 1 4 3.8 16
AES-192-6 2 11 2 14 7.0 43
AES-192-7 1 17 1 7 7.4 61
AES-192-8 1 57 1 8 8.2 138
AES-192-9 3 386 3 109 36.3 1015
AES-192-10 7 13558 7 281 40.1 17124
AES-256-4 10 14 10 24 2.4 45
AES-256-5 4 10 4 15 3.8 33
AES-256-6 3 12 3 16 5.3 45
AES-256-7 1 8 1 7 7.4 62
AES-256-8 2 18 2 14 7.0 81
AES-256-9 4 63 4 69 17.3 238
AES-256-10 1 41 1 45 45.3 198
AES-256-11 1 77 1 28 27.8 391
AES-256-12 1 89 1 35 35.2 264
AES-256-13 1 140 1 46 46.0 1008
AES-256-14 1 97 1 35 34.8 814

All instances but 2 are solved in less than 1h

AES-128-5 solved in less than 15h

AES-192-10 solved in less than 5h

 Clear improvement over [BN10] and [FJP13]

New results and attacks:

AES-128-4: pmax = 2−79, greater than the
solution given in [BN10] and [FJP13] (2−81)

AES-256-14: pmax = 2−146, greater than the
solution given in [BKN09] (2−154)

Improvement of related-key distinguisher
and related-key differential attack on the full
AES-256 by a factor 64
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Related CP models

Computation of differential characteristics for other ciphers: MIDORI [GL16], SKINNY
[DDH+21], Rijndael [RGM+22]

Other differential cryptanalysis problems: Boomerang attacks on SKINNY [DDV20], Rijndael
[RMS24], Rectangle attacks on WARP [LMR22]

Designing models is usually quite easy, but designing efficient models is much harder!

Can we automatically generate them?

[GL16] Gérault, Lafourcade: Related-key cryptanalysis of MIDORI. In INDOCRYPT, 2016
[DDV20] Delaune, Derbez, Vavrille: Catching the Fastest Boomerangs: Application to SKINNY. In IACR transactions on

symmetric cryptology 2020
[DDH+21] Delaune, Derbez, Huynh, Minier, Mollimard, Prud’Homme: Efficient methods to search for best differential char-

acteristics on SKINNY. In Applied Cryptography and Network Security 2021
[RGM+22] Rouquette, Gérault, Minier, Solnon: And rijndael? Automatic related-key differential analysis of Rijndael. In

AfricaCrypt 2022
[LMR22] Lallemand, Minier, Rouquette: Automatic search of rectangle attacks on feistel ciphers: application to WARP. In

IACR Transactions on Symmetric Cryptology 2022
[RMS24] Rouquette, Minier, Solnon: Automatic boomerang attacks search on Rijndael. In Mathematical Cryptology 2024
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Overview of Tagada https://gitlab.com/tagada-framework/tagada

Input: Description of the cipher by means of a DAG

Vertices = Operators or Parameters (k -bit words)
 Executable functions associated with operators

Arcs connect operators to their parameters

 Correctness tested with initialisation vectors

SR2

... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...

................................................
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Output:

MiniZinc model for computing TDCs (Step1-opt and Step1-enum) [LDL+21]

Choco model for computing a maximal DC given a TDC (Step2) [DDG+23]

[LDL+21] L. Libralesso, F. Delobel, P. Lafourcade, C. Solnon: Automatic generation of declarative models for differential
cryptanalysis. In CP 2021

[DDG+23] F. Delobel, P. Derbez, A. Gontier, L. Rouquette, C. Solnon: A CP-based Automatic Tool for Instantiating Truncated
Differential Characteristics. In INDOCRYPT 2023
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Generation of MiniZing models for computing TDCs

1: Automatic generation of a table constraint for each operator o

Generate the table of all consistent boolean tuples using the executable function of o

2: Simplify the DAG

Merge equal parameters
Suppress constant and free parameters

3: Extend the DAG to tighten the abstraction

Generate diff variables
Generate new XORs

4: Generate a MiniZinc model from the DAG
Declare a boolean variable for each parameter
Post a constraint for each operator
Declare an integer variable corresponding to the number of active S-boxes
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Experimental results: Midori
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Experimental results: AES
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(See [LDL+21] for results on Skinny and Craft
and [DDG+23] for Step2 results on Midori, Warp, Twine, Skinny, and Rijndael)

[LDL+21] L. Libralesso, F. Delobel, P. Lafourcade, C. Solnon: Automatic generation of declarative models for differential
cryptanalysis. In CP 2021

[DDG+23] F. Delobel, P. Derbez, A. Gontier, L. Rouquette, C. Solnon: A CP-based Automatic Tool for Instantiating Truncated
Differential Characteristics. In INDOCRYPT 2023
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From ModRef 2014 to ModRef 2024

1 Differential cryptanalysis of symmetric block ciphers

2 First CP model for Step1 (ModRef 2014)

3 Second CP model for Step1 (CP 2016)

4 Third CP model for Step1 (AIJ 2020)

5 Integration with Step2

6 Automatic model generation (CP 2021 and Indocrypt 2023)

7 Conclusion
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Conclusion

Differential cryptanalysis is a very nice application for CP

Step1 is easy to model with MiniZinc or XCSP3

Advanced constraints must be added to tighten the abstraction
Tagada can automatically infer very efficient models from cipher specifications
SAT solvers are more efficient than CP solvers

Step2: Table constraints allow us to easily model non linear operators

Further work: Extensions of Tagada

Other attacks: Boomerang, related-tweak, ...

Use dynamic programming to solve Step1

Study variable and value ordering heuristics

Further work: Certification
Can we automatically build mathematical proofs?

42/42


	Differential cryptanalysis of symmetric block ciphers
	First CP model for Step1 (ModRef 2014)
	Second CP model for Step1 (CP 2016)
	Third CP model for Step1 (AIJ 2020)
	Integration with Step2
	Automatic model generation (CP 2021 and Indocrypt 2023)
	Conclusion

