

Towards Understanding Differences Between Modelling Pipelines: a Modelers Perspective

Csobán Balogh, Ruth Hoffmann and Joan Espasa

ModRef 2024, University of Girona

What and why?

From a (single) users perspective:

- Investigate the capabilities of constraint programming pipelines
- Investigate the difference in languages
- Comparing MiniZinc and Savile Row

How?

- Create as close to equivalent models as possible
- Using MiniZinc and Essence' (not Essence)
- Compare over the same solver (Chuffed)
- Compare over equivalent(ish) optimisation levels
- 6 Models from different problem classes
 - 1 Quasigroup Completion, (no exciting differences)
 - 2 Wordpress Problem (no exciting differences)
 - **3** Rotating Rostering Problem (no exciting differences)
 - 4 Travelling Tournament Problem with Predefined Values
 - 5 Multi-Skilled Project Scheduling Problem
 - 6 Capacitated Vehicle Routing Problem with Time Windows
- Use pre-existing instances and some generated ones

regular (MZn) vs forAll (SR)

Traveling Tournament Problem with Predefined Venues

- at most three consecutive away or home games
- MZn regular asserts that a sequence of variables take a value from a finite automaton
 - E' forAll checking that there are not four consecutive assignments

circuit (MZn)

Capacitated Vehicle Routing problem with Time Windows, Service Times and Pickup and Deliveries

- circuit is used to ensure the vehicle delivery routes do not take sub-tours in their route and visits each location uniquely for optimisation
- MZn A circuit is such that the cell value of an array points to the index of the next number, and this forms a circuit that continues around
 - E' https://github.com/MiniZinc/libminizinc/blob/ master/share/minizinc/std/fzn_circuit.mzn

Set Variables

Multi-Skilled Project Scheduling Problem

- Sets of skills, workers etc. (each assigned an integer)
- MZn Variables which are a set
 - E' Occurrence representation of the integers/elements

letting (MZn)

Multi-Skilled Project Scheduling Problem

letting creates variables within constraints

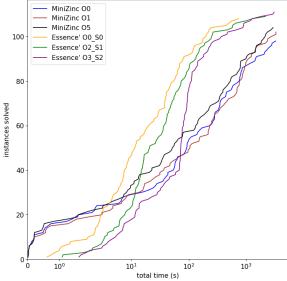
```
      let { set of int: WTasks = 
        { i | i in Tasks where exists (k in has_skills [j])(rr[k, i] > 0) } 
        } in ... 
        let { set of int: TWorkers = 
            { j | j in Workers where exists (k in has_skills [j])(rr[k, i] > 0) } 
        } 
        in ...
```

R Hoffmann

Understanding Differences Between Modelling Pipelines

cumulative (MZn)

Multi-Skilled Project Scheduling Problem


- Determines whether set of tasks with start times, durations, and resource requirements, never exceed the global resource bound at any time
- MZn Determines if a cumulative resource usage is within bounds
 - E' https://github.com/MiniZinc/libminizinc/blob/
 master/share/minizinc/std/fzn_cumulative.mzn

Intro	Language Differences	Results	Future&Take Away
00		●0	00

Results

			E'			MZn	
Problem	#	O0S0	02S1	O3S2	O0	01	O5
Quasigroup	43	41	42	41	40	39	40
Quasigroup Occ.	43	41	41	42	32	37	38
Wordpress	9	6	6	6	6	6	6
Wordpress Symm.	9	4	4	6	4	4	4
TTPPV	20	3	3	3	3	3	3
MSPSP	6	6	6	6	6	6	6
CVRPTW	5	0	0	0	0	0	0
Rostering	7	7	7	7	7	7	7

Intro 00	Language Differences	Results ○●	Future&Take Awa 00
	Chuffed MiniZinc	vs Essence' Total Time	

R Hoffmann

ModRef 2024

Understanding Differences Between Modelling Pipelines

Future/Ongoing Work

- Compare to other frameworks, such as CPMpy, picat
- Widen the field of users/do a more proper user study
- Analyse the different framework stages in more detail
- Compare over different solvers

Take Away

- MZn allows better (expert) modeler control
- MZn provides a slightly more expressive language due to the facilities for code organization and reusability
 - SR provides a solid set of default settings
 - SR has a more consistent performance profile

Thank you!

O ruthhoffmann

www.st-andrews.ac.uk/computer-science/people/rh347/

🗹 rh347@st-andrews.ac.uk