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50 Years of Successes in Computer-Aided Mathematics

1976 Four-Color Theorem

1998 Kepler Conjecture

2014 Boolean Erdős discrepancy problem

2016 Boolean Pythagorean triples problem

2018 Schur Number Five

2019 Keller’s Conjecture

2021 Kaplansky’s Unit Conjecture

2022 Packing Number of Square Grid

2023 Empty Hexagon in Every 30 Points
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Breakthrough in SAT Solving in the Last 30 Years

Satisfiability (SAT) problem: Can a Boolean formula be satisfied?

mid ’90s: formulas solvable with thousands of variables and clauses
now: formulas solvable with millions of variables and clauses

Edmund Clarke: “a key
technology of the 21st century”
[Biere, Heule, vanMaaren, Walsh ’09/’21]

Donald Knuth: “evidently a killer app,
because it is key to the solution of so

many other problems” [Knuth ’15]
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Introduction: Abstraction

Not all constraints are easy to encode into propositional logic

▶ Abstraction and refinement

▶ Underapproximation

▶ Satisfiability modulo theories

Solution: Only encode a subset of the problem

▶ Skip the constraints that are hard to encode

▶ If the subset is UNSAT, the full problem is UNSAT

▶ If an assignment that satisfies the subset also satisfies the
full problem, then SAT

▶ Otherwise extend the subset (aka refinement)
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Hamiltonian Cycles: Two Constraints

Hamiltonian Cycle Problem (HCP):
Does there exist a cycle that visits all vertices exactly once?

Two constraints:

▶ Exactly two edges per vertex: easy cardinality constraints
▶ Exactly one cycle: hard to be compact and arc-consistent

▶ One option is to ignore the constraint: incremental SAT.
▶ Various encodings use O(|V |3). Too large for many graphs.
▶ Effective encodings are quasi-linear in the number of edges.
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Hamiltonian Cycles: Refinement

Only encode: Exactly two edges per vertex

▶ Problem: Solutions can consist of multiple cycles

▶ How to implement refinement for a multi-cycle solution?

Block at least one subcycle

▶ E.g., block the smallest cycle

▶ Only a small number of cycles
need to be blocked in practice

Constrain the cut edges

▶ At least 2 cut edges required

▶ Subcycles are an effective
heuristic to pick the cut
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Common Unfolding Multiple Boxes

(Un)folding boxes along unit lines of polyominoes only

▶ Earlier works (non-SAT): Area ∼ 90

▶ Earlier works (SAT full encoding): Area ∼ 40

▶ Our encoding (SAT abstraction): Area ∼ 180
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Common Unfolidng using Local Constraints [CADE’25]

1. Encode the existence of unfoldings as SAT formulas
2. Use efficient (local) under-approximations for encodings
3. UNSAT → no unfoldings exist
4. SAT → check satisfying assignments

Figure: Common unfolding of 3×3×13 and 3×5×9

Discrete Geometry 8 / 36



Introduction

Discrete Geometry

Orientation Variables and Symmetry

Empty Hexagon Number

Everywhere Unbalanced
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Points in General Position

A finite point set S in the plane is in general position if no
three points in S are on a line.
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Erdős–Szekeres Numbers

A k-gon (in S) is the vertex set of a convex k-gon

5-gon 6-gon

Theorem (Erdős & Szekeres 1935)

∀k ∈ N, ∃ a smallest integer g(k) such that every set of g(k)
points in general position contains a k-gon.

Is SAT solving suitable to answer such questions? Yes!
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Bounds for Small k

Clearly, it takes exactly three points in general position to have
a 3-gon (triangle)

Some sets of 4 points do not for a 4-gon:

How many points imply a 4-gon?
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Upperbound for 4-Gon: g(4) = 5 [Klein, 1932]

Happy ending problem
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Bound Results for 5-Gon and 6-Gon

g(5) = 9

▶ [Kalbfleisch & Stanton ’70]

g(6) = 17

▶ Computer-assisted
proof, 1500 CPU hours
[SzekeresPeters ’06]

▶ One CPU hour using a
SAT solver [Scheucher ’18]

▶ Only 10 seconds using
new encoding
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k-Holes

A k-hole (in S) is a k-gon containing no other points of S.

5-hole not a 6-hole

Let h(k) denote the smallest number of points that contain a
k-hole.

Erdős, 1970’s: For k fixed, does every sufficiently large point
set contain k-holes?
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k-Holes Overview

A k-hole (in S) is a k-gon containing no other points of S.

Erdős, 1970’s: For k fixed, does every sufficiently large point
set contain k-holes?

▶ 3 points ⇒ ∃ 3-hole

▶ 5 points ⇒ ∃ 4-hole

▶ 10 points ⇒ ∃ 5-hole [Harborth ’78]

▶ Arbitrarily large point sets with no 7-hole [Horton ’83]

Main open question: what about 6-hole?

▶ Lower bound of 30 [Overmars ’02]

▶ Sufficiently large point sets contain a 6-hole
[Gerken ’08 and Nicolás ’07, independently]
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Lowerbound for 5-Hole: h(5) ≥ 10

All 5-gons in these 9 points have an inner point: h(5) = 10
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Lowerbound for 6-Hole: h(6) ≥ 30

29 points, no 6-hole [Overmars ’02]

▶ Found using simulated annealing... is now easy using SAT

▶ This contains 7-gons. Each 9-gon contains a 6-hole
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No Lowerbound for 7-Hole: Horton’s Construction

21 points, no 7-hole

22 points, no 7-hole

23 points, no 7-hole 25 points, no 7-hole
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Introduction

Discrete Geometry

Orientation Variables and Symmetry

Empty Hexagon Number

Everywhere Unbalanced
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Orientation Variables [Knuth ’92]

No explicit coordinates of points

Instead for every triple a < b < c,
one orientation variable Oabc to denote
whether point c is above the line ab

Triple orientations are enough
to express k-gons and k-holes

+

–

a
b

c

d

WLOG points are sorted from left to right

Not all assignments are realizable

▶ Realizability is hard [Mnëv ’88]

▶ Additional clauses eliminate many unrealizable assignments
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Symmetry Breaking: Sorted & Rotated Around Point 1

1

2
3

4
5

1

2
3

4
5

place leftmost point at origin

1

2
3

4
5

stretch points to the right to be
within y = x and y = −x

1
2

34
5

rotate by 45 degrees

1

2 3
4

5

projective transformation
(x, y) 7→ (y/(x+ ϵ), 1/(x+ ϵ))
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Realizability Constraints [Felsner & Weil ’01]

Under the assumption that points are sorted from left to right

a
b

c

d Oabc Oabd Oacd Obcd

+ + + +

+ + + −
+ + − −
+ − − −
− − − −
− − − +
− − + +
− + + +

Block multiple sign changes with Θ(n4) (ternary) clauses

▶ (Oabc ∨Oabd ∨Oacd)∧ (Oabc ∨Oabd ∨Oacd)

▶ (Oabc ∨Oacd ∨Obcd)∧ (Oabc ∨Oacd ∨Obcd)
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Encoding Rotational Symmetry

Symmetric unavoidable polygons?

▶ No three points in a line

▶ Erdős-Szekeres 1935

▶ Avoid k-gon: at most 2k−2 points

▶ Happy Ending Problem

▶ Image from Wikipedia

Searching for k-rotational configurations is tricky:

▶ Points are no longer sorted from left to right

▶ More complicated axiom clauses

▶ Let π(p) be the point after rotating p by 360
k

degrees

▶ Variables Oabc and Oπ(a)π(b)π(c) are equivalent

Discrete Geometry 24 / 36



Encoding Rotational Symmetry

Symmetric unavoidable polygons?

▶ No three points in a line
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Two New, Symmetric Point Sets without Hexagons

Realized by the Localizer tool

▶ https://github.com/bsubercaseaux/localizer
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Inside Variables

We introduce inside variables Ix;abc which are true if and only
if point x is in the triangle abc with a < x < b or b < x < c.

Four possible cases:

a b

c

x

a b

c

x

a b

c

x

a b

c

x

The left two cases with a < x < b:

Ix;abc ↔ ((
Oabc → (Oaxb ∧Oaxc)

)
∧
(
Oabc → (Oaxb ∧Oaxc)

))
The right two cases with b < x < c:

Ix;abc ↔ ((
Oabc → (Oaxc ∧Obxc)

)
∧
(
Oabc → (Oaxc ∧Obxc)

))
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Hole Variables

We introduce hole variables Habc which are true if and only if
no points occur with the triangle abc with a < b < c.

Habc ∨
∨

a<x<c

Ix;abc

∧
a<x<c

Habc ∨ Ix;abc (redundant)

Simple 6-hole encoding:∨
a,b,c∈XHabc ∀ X ⊂ S with |X| = 6
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Empty Hexagon Encoding

Given 6 points, how many empty triangles with these points
guarantee an empty hexagon (possibly among other points)?

If the points may not be in convex position: 10

If the points are in convex position:

▶ Requires assignment to four
orientation variables

▶ Includes info which points are
above/below the line a to f

a

b

c

d

e

f
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Empty Hexagon Encoding

Given 6 points, how many empty triangles with these points
guarantee an empty hexagon (possibly among other points)?

If the points may not be in convex position: 10

If the points are in convex position: 1

▶ Requires assignment to four
orientation variables

▶ Includes info which points are
above/below the line a to f

a

b

c

d

e

f

b ′
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k-Hole Encoding Using O(n4) Clauses

Shorter clauses, thus more propagation, but still O(n6)

Example

Introduce O(n3) auxiliary variables:

▶ Aacd: a 4-gon above the line ad

Oabc ∧Obcd → Aacd

▶ Bac ′d: a 4-gon below the line ad

Oab ′c ′ ∧Ob ′c ′d → Bac ′d

▶ Combine them to block 6-holes

Aacd ∨ Bac ′d ∨Hacc ′

a

b

b ′

c

c ′

d

This reduces the size of the encoding to O(n4) clauses
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Comparison to Existing Work

Szekeres and Peters (2006) solved g(6) = 17 in 63 CPU days

▶ Roughly 40 CPU hours on today’s hardware

▶ https://www.cpubenchmark.net/year-on-year.html

SAT solving, using the same abstraction, is much faster

▶ The independent SAT approaches by Marić and Scheucher
required a few CPU hours

▶ Their encodings consist of O(nk) clauses

Our O(n4) encoding for k-gons and k-holes is even faster

▶ g(6) = 17 can be solved in 10 CPU seconds

▶ About 4 orders of magnitude faster than the original proof
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Verification

The optimization steps are validated or part of the proof

Concurrent solving and proof checking for the first time

▶ The solver pipes the proof to a verified checker

▶ This avoids storing/writing/reading huge files

▶ Verified checker can easily catch up with the solver

CMU students have formalized and verified all parts in Lean
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Everywhere-Unbalanced Point Sets

Everywhere-unbalanced point sets:

▶ For each line through 2+ points,
unbalanced points by at least k

▶ k = 1 is trivial (a triangle)

▶ k = 2 with 12 points by Noga Alon

▶ Conjectured for every finite k

▶ Open: smallest odd configuration

Encoding into SAT:

▶ Per triple: Xabc (c above ab) and Yabc (c below ab)

▶ Constraints that enforce unbalancedness

▶ Also realizability constraints
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New, Optimal Result: 21 Points and 2-Unbalanced
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Conclusions

Theorem
h(6) = 30

SAT appears to be the most effective technology to solve a
range of problems in computational geometry

Many interesting open problems:

▶ Minimum number of 4-gons / 5-gons / 6-gons

▶ Determine whether g(7) = 33

▶ Unbalanced configurations (points can be collinear)
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